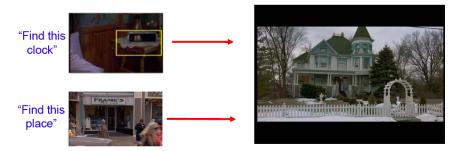
Indexing for Fast Retrieval

Recognizing or Retrieving Specific Objects

• Example: Visual search in feature films

Visually defined query

"Groundhog Day" [Rammis, 1993]



Demo: http://www.robots.ox.ac.uk/~vgg/research/vgoogle/

[Source: J. Sivic, slide credit: R. Urtasun]

Recognizing or Retrieving Specific Objects

• Example: Search photos on the web for particular places

Find these landmarks

... in these images and 1M more

[Source: J. Sivic, slide credit: R. Urtasun]

Sanja Fidler

Why is it Difficult?

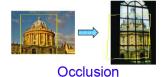
 Objects can have possibly large changes in scale, viewpoint, lighting and partial occlusion.

Scale



Viewpoint

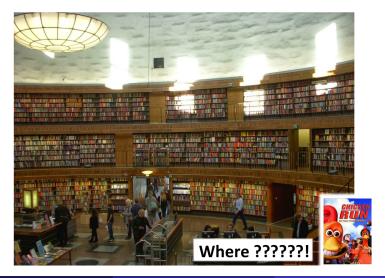
Lighting



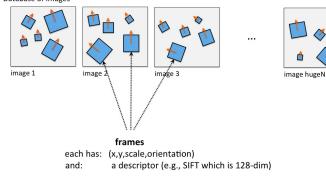
[Source: J. Sivic, slide credit: R. Urtasun]

Why is it Difficult?

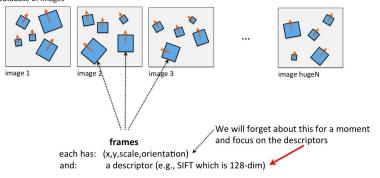
• There is tones of data.



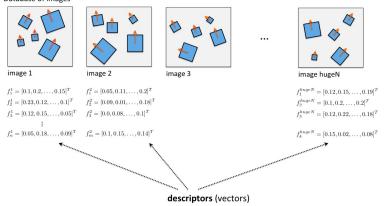
• For each image in our database we extracted local descriptors (e.g., SIFT) Database of images



• For each image in our database we extracted local descriptors (e.g., SIFT) Database of images



 Let's focus on descriptors only (vectors of e.g. 128 dim for SIFT) Database of images



Database of images

image 2

$$\begin{split} f_1^1 &= [0.1, 0.2, \dots, 0.15]^T \qquad f_1^2 &= [0.05, 0.11, \dots, 0.2]^T \\ f_2^1 &= [0.23, 0.12, \dots, 0.1]^T \qquad f_2^2 &= [0.09, 0.01, \dots, 0.18]^T \\ f_3^1 &= [0.12, 0.15, \dots, 0.05]^T \qquad f_3^2 &= [0.0, 0.08, \dots, 0.1]^T \\ \vdots &\vdots &\vdots \\ f_n^1 &= [0.05, 0.18, \dots, 0.09]^T \qquad f_m^2 &= [0.1, 0.15, \dots, 0.14]^T \end{split}$$

image 3

descriptors (vectors)

image hugeN

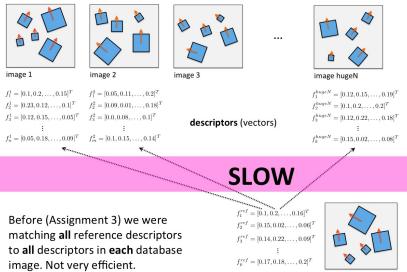
$$\begin{split} f_1^{hugeN} &= [0.12, 0.15, \dots, 0.19]^T \\ f_2^{hugeN} &= [0.1, 0.2, \dots, 0.2]^T \\ f_3^{hugeN} &= [0.12, 0.22, \dots, 0.18]^T \\ \vdots \\ f_k^{hugeN} &= [0.15, 0.02, \dots, 0.08]^T \end{split}$$

Now I get a reference (query) image of an object. I want to retrieve all images from the database that contain the object. **How?**

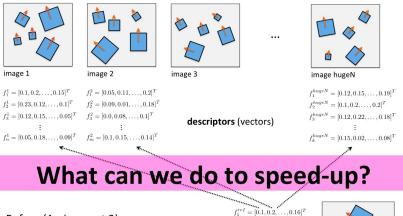
$$\begin{split} f_1^{ref} &= [0.1, 0.2, \dots, 0.16]^T \\ f_2^{ref} &= [0.15, 0.02, \dots, 0.06]^T \\ f_3^{ref} &= [0.14, 0.22, \dots, 0.09]^T \\ &\vdots \\ f_p^{ref} &= [0.17, 0.18, \dots, 0.2]^T \end{split}$$

...

Database of images



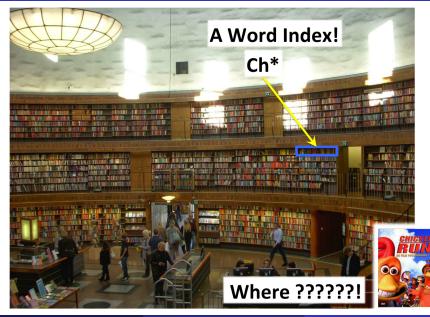
Database of images



Before (Assignment 3) we were matching **all** reference descriptors to **all** descriptors in **each** database image. Not very efficient.

$$\begin{split} & f_1^{ref} = [0.1, 0.2, \dots, 0.16]^T \\ & f_2^{ref} = [0.15, 0.02, \dots, 0.06]^T \\ & f_3^{ref} = [0.14, 0.22, \dots, 0.09]^T \\ & \vdots \\ & f_p^{ref} = [0.17, 0.18, \dots, 0.2]^T \end{split}$$

Indexing!



Indexing Local Features: Inverted File Index

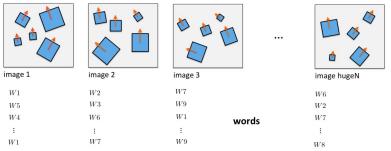
- For text documents, an efficient way to find all pages on which a word occurs is to use an index.
- We want to find all images in which a feature occurs.
- To use this idea, we'll need to map our features to "visual words".

• Why?

Index		
"Along I-75," From Detroit to	Butterfly Center, McGuire; 134	Driving Lanes; 85
Florida; inside back cover	CAA (see AAA)	Duval County; 163
"Drive I-95," From Boston to	CCC, The; 111,113,115,135,142	Eau Gallie; 175
Florida; inside back cover	Ca d'Zar; 147	Edison, Thomas; 152
1929 Spanish Trail Roadway: 101-102,104	Caloosahatchee River; 152 Name; 150	Eglin AFB; 116-118 Eight Reale; 176
511 Traffic Information; 83	Canaveral Natril Seashore; 173	Ellenton; 144-145
A1A (Barrier Isl) - I-95 Access; 86	Cannon Creek Airpark; 130	Emanuel Point Wreck; 120
AAA (and CAA); 83	Canopy Road; 106,169	Emergency Caliboxes; 83
AAA National Office: 88	Cape Canaveral; 174	Epiphyles; 142, 148, 157, 159
Abbreviations,	Castillo San Marcos; 169	Escambia Bay; 119
Colored 25 mile Maps; cover	Cave Diving; 131	Bridge (1-10); 119
Exit Services; 196	Cavo Costa, Name: 150	County: 120
Travelogue; 85	Celebration: 93	Estero: 153
Alvica: 177	Charlotte County: 149	Everglade.90.95.139-140.154-16
Apricultural Inspection Stra: 126	Charlotte Harbor; 150	Draining of: 156,181
Ah-Tah-Thi-Ki Museum: 160	Cheuteupue: 116	Wildlife MA: 160
Air Conditioning, First: 112	Chipley: 114	Wonder Gardens: 154
Alabama: 124	Name: 115	Falling Waters SP: 115
Alachuai: 132	Choctawatchee, Name: 115	Fantasy of Flight: 95
County: 131	Circus Museum, Ringling: 147	Faver Dykes SP: 171
Alafia River: 143	Citrus; 88,97,130,136,140,180	Fires, Forest: 166
Alapaha, Name; 126	CityPlace, W Palm Beach: 180	Fires, Prescribed : 148
Alfred B Mackay Gardens; 106	City Maps,	Fisherman's Village; 151
Alligator Alley; 154-155	Ft Lauderdale Expwys; 194-195	Flagler County; 171
Alligator Farm, St Augustine: 169	Jacksonville; 163	Flagler, Henry; 97,165,167,171
Alligator Hole (definition): 157	Kissimmee Expwys: 192-193	Florida Acuarkam: 186
Alligator, Buddy: 155	Marri Expressways: 194-195	Florida.
Alligators: 100.135.138.147.156	Orlando Expressways; 192-193	12,000 years ago; 187
Angstasia Island: 170	Persecola: 25	Cavers SP: 114
Anhaica: 108-109.148	Tallahassoe: 191	Map of all Expresswave: 2-3
Apalachicola River: 112	Tampa-St. Petersburg, 63	Mas of Natural History, 134
Appleton Mus of Art: 136	St. Augustine: 191	National Cemetery : 141
Acuiter: 102	Civil War: 100.108.127.138.141	Part of Africa: 177
Arabian Nights; 94	Cleanwater Marine Aquarium; 187	Platform: 187
Art Museum, Bingling: 147	Collier County; 154	Sheriff's Boys Camp; 126
Aruba Beach Cale: 183	Collier Barron: 152	Sports Hall of Fame: 130
Aucilla River Project: 105	Colonial Spanish Quarters: 168	Sup 'n Fun Muneum: 97
Baboork-Web WMA: 151	Columbia County; 101,128	Supreme Court: 107
Rahia Mar Marina: 184	Coguina Building Material: 165	Florida's Tumpike (FTP), 178,18
Baker County: 99	Corkscrew Swamp, Name: 154	25 mile Strip Maps: 66
Barefoot Maimer: 182	Cowboys: 95	Administration: 189
Baros Canal: 137	Crab Trap II: 144	Coin System: 190
Bee Line Expy: 80	Cracker, Florida: 88.95,132	Exit Services: 189
Belz Outlet Mall: 89	Crosstown Expy; 11,35,98,143	HEFT: 76.161.190
Bernard Castro: 136	Cuban Bread: 104	History: 189
Big 'T'; 165	Dade Rattefield: 140	Names: 189
Big Cypress; 155,158	Dade, Maj. Francis: 139-140,161	Service Plazas: 190
and address too too	Party internet. The factor	Contract in the second second

[Source: K. Grauman, slide credit: R. Urtasun]

Database of images



Imagine that I am somehow able to "name" my descriptors with a set of "words". How can this help me?

Database of images

image 2

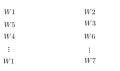


image 3 W7

W9

W1

W9

words

I	ł	7	e	5

W2 W7

: W8

Visual word	Image
1	1,3
2	2,hugeN
3	2
4	1
5	1
6	2,hugeN
7	2,3,hugeN

We can now build an **inverted file index** This is like an Index of a book

...

Database of images

image 2

W1	W2
W5	W3
W4	W6
:	:
W1	W7

⊘ ≁	
4	

ima 2 01

image 3		image hugeN
W7		W6
W9		W2
W1	words	W7
:	il or us	:
W9		W8

Visual word	Image
1	1,3
2	2,hugeN
3	2
4	1
5	1
6	2,hugeN
7	2,3,hugeN

We can also assign the descriptors in the reference image to the visual words

...

 \square

Database of images

image 1

image 2

W1	W2	
W5	W3	
W4	W6	
:	:	
W2	W7	

image 3	Z
W7	
W1	
W9	words
:	worus
W91	

image hugeN

W6	
W2	
W7	
:	
W8	

Visual word	Image
1	1,3
2	2,hugeN
3	2
4	1
5	1
6	2,hugeN
7	2,3,hugeN

And for each word in the reference image, we lookup our inverted file and check which images contain it. We only need to match our reference image to the retrieved set of images.

Database of images

image 1

image 2

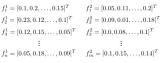


image 3

descriptors (vectors)

image hugeN

 $f_1^{hugeN} = [0.12, 0.15, \dots, 0.19]^T$ $f_2^{hugeN} = [0.1, 0.2, \dots, 0.2]^T$ $f_3^{hugeN} = [0.12, 0.22, \dots, 0.18]^T$ $f_{1}^{hugeN} = [0.15, 0.02, \dots, 0.08]^{T}$

What are our visual ``words"?

$$\begin{split} f_1^{ref} &= [0.1, 0.2, \dots, 0.16]^T \\ f_2^{ref} &= [0.15, 0.02, \dots, 0.06]^T \\ f_3^{ref} &= [0.14, 0.22, \dots, 0.09]^T \\ &\vdots \\ f_1^{ref} &= [0.17, 0.18, \dots, 0.2]^T \end{split}$$

...

Database of images

image 2

$$\begin{split} f_1^1 &= [0.1, 0.2, \dots, 0.15]^T \qquad f_1^2 &= [0.05, 0.11, \dots, 0.2]^T \\ f_2^1 &= [0.23, 0.12, \dots, 0.1]^T \qquad f_2^2 &= [0.09, 0.01, \dots, 0.18]^T \\ f_3^1 &= [0.12, 0.15, \dots, 0.05]^T \qquad f_3^2 &= [0.0, 0.08, \dots, 0.1]^T \\ \vdots &\vdots \\ f_n^1 &= [0.05, 0.18, \dots, 0.09]^T \qquad f_m^2 &= [0.1, 0.15, \dots, 0.14]^T \end{split}$$

descriptors (vectors)

...

$$\begin{split} f_1^{hingeN} &= [0.12, 0.15, \dots, 0.19]^T \\ f_2^{hingeN} &= [0.1, 0.2, \dots, 0.2]^T \\ f_3^{hingeN} &= [0.12, 0.22, \dots, 0.18]^T \\ &\vdots \\ f_k^{hingeN} &= [0.15, 0.02, \dots, 0.08]^T \end{split}$$

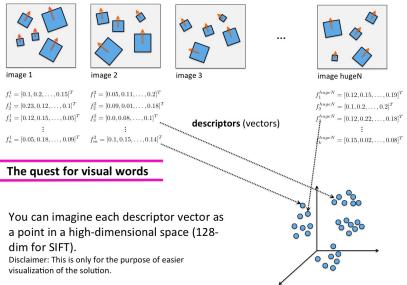
The quest for visual words

We could do something like:

If all coordinates of vector smaller than 0.1, then call this vector word 1 If first n-1 coordinates < 0.1, but last coordinate is > 0.1, call this vector word 2 If first n-2 and last coordinate < 0.1, but n-1 coordinate > 0.1, call this vector word 3 ...

Why is this not a very good choice? How can we do this better?

Database of images



Database of images

image 1

image 2

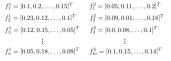


image 3

descriptors (vectors)

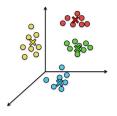
image hugeN

...

 $f_1^{hugeN} = [0.12, 0.15, \dots, 0.19]^T$ $f_2^{hugeN} = [0.1, 0.2, \dots, 0.2]^T$ $f_3^{hugeN} = [0.12, 0.22, \dots, 0.18]^T$ $f_{\nu}^{hugeN} = [0.15, 0.02, \dots, 0.08]^T$

The quest for visual words

- We can choose our visual words as ``representative" vectors in this space
- We can perform clustering (for example k-means)



Database of images

image 1

image 2

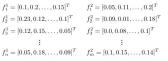


image 3

descriptors (vectors)

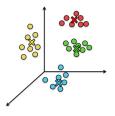
image hugeN

...

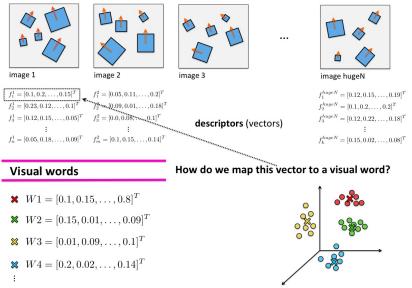
$$\begin{split} f_1^{hugeN} &= [0.12, 0.15, \dots, 0.19]^T \\ f_2^{hugeN} &= [0.1, 0.2, \dots, 0.2]^T \\ f_3^{hugeN} &= [0.12, 0.22, \dots, 0.18]^T \\ &\vdots \\ f_k^{hugeN} &= [0.15, 0.02, \dots, 0.08]^T \end{split}$$

Visual words: cluster centers

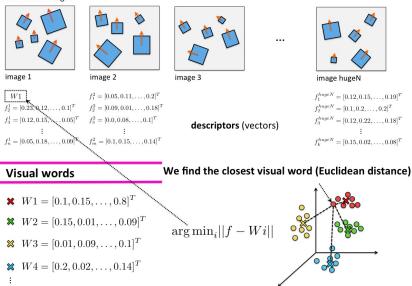
$$\begin{array}{l} \bigstar \quad W1 = [0.1, 0.15, \dots, 0.8]^T \\ \bigstar \quad W2 = [0.15, 0.01, \dots, 0.09]^T \\ \bigstar \quad W3 = [0.01, 0.09, \dots, 0.1]^T \\ \bigstar \quad W4 = [0.2, 0.02, \dots, 0.14]^T \end{array}$$



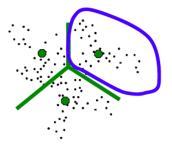
Database of images

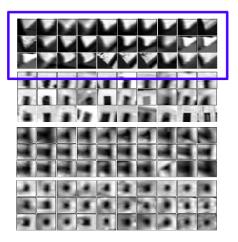


Database of images



• All example patches on the right belong to the same visual word.





[Source: R. Urtasun]

Now We Can do Our Fast Matching

Database of images

image 1

image 2

W1	W2	
W5	W3	
W4	W6	
:		
W2	W7	

image 3	
W7	
W1	
W9 words	
÷	
W91	

image hugeN

W6
W2
W7
:
W8

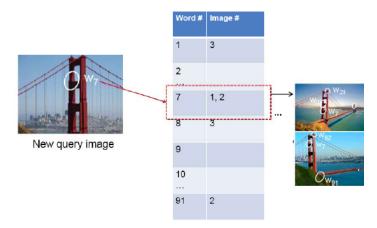
...

Visual word	Image
1	1,3
2	2,hugeN
3	2
4	1
5	1
6	2,hugeN
7	2,3,hugeN

And for each word in the reference image, we lookup our inverted file and check which images contain it. We only need to match our reference image to the retrieved set of images.

Inverted File Index

- Now we found all images in the database that have at least one visual word in common with the query image
- But this can still give us lots of images... What can we do?

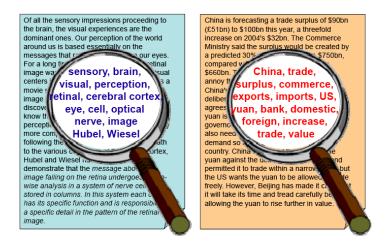


Inverted File Index

- Now we found all images in the database that have at least one visual word in common with the query image
- But this can still give us lots of images... What can we do?
- Idea: Compute meaningful similarity (efficiently) between query image and retrieved images. Then just match query to top K most similar images and forget about the rest.

Inverted File Index

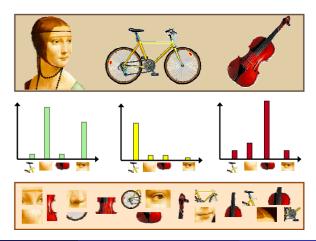
- Now we found all images in the database that have at least one visual word in common with the query image
- But this can still give us lots of images... What can we do?
- Idea: Compute meaningful similarity (efficiently) between query image and retrieved images. Then just match query to top K most similar images and forget about the rest.
- How can we do compute a meaningful similarity, and do it fast?



[Slide credit: R. Urtasun]

Bags of Visual Words

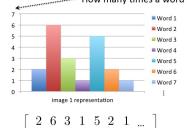
- Summarize entire image based on its distribution (histogram) of word occurrences.
- Analogous to bag of words representation commonly used for documents.



Compute a Bag-of-Words Description

Database of images

image 1	image 2	image 3	image hugeN	
W1	W2	W7	W6	
W5	W3	W9	W_2	
W4	W6	W1 W	words W7	
:	:	1	1	
W1	W7	W9	W8	
← How many times a word repeats in image (frequency)				



Compute a Bag-of-Words Description

Database of images

image 2

image 3

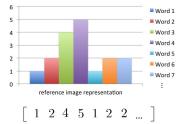
W7 W9 W1 : W9

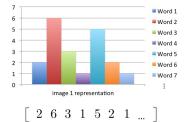
W6 W2 W7 :

...

words

We can do the same for the reference image





Compute a Bag-of-Words Description

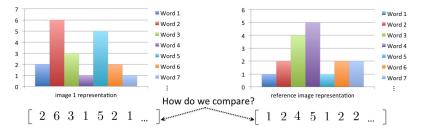
Database of images

image 2

W7W9W1W9

words

W6W2W7W8



Comparing Images

• Compute the similarity by normalized dot product between their representations (vectors)

$$\mathsf{sim}(\mathbf{t}_{j}, \mathbf{q}) = \frac{<\mathbf{t}_{j}, \mathbf{q} >}{||\mathbf{t}_{j}|| \cdot ||\mathbf{q}||}$$

- Rank images in database based on the similarity score (the higher the better)
- Take top *K* best ranked images and do spatial verification (compute transformation and count inliers)

Comparing Images

• Compute the similarity by normalized dot product between their representations (vectors)

$$sim(\mathbf{t_j}, \mathbf{q}) = \frac{\langle \mathbf{t_j}, \mathbf{q} \rangle}{||\mathbf{t_j}|| \cdot ||\mathbf{q}||}$$

- Rank images in database based on the similarity score (the higher the better)
- Take top K best ranked images and do spatial verification (compute transformation and count inliers)

Database of images

image 2

image 3

1	V
Ţ	V

...

W7

W8

7 Word 1 6 Word 2 5 Word 3 4 Word 4 3 Word 5 2 Word 6 1 Word 7 0 image 1 representation $6\ 3\ 1\ 5\ 2\ 1$ 2

Problem can quickly occur if one word appears in many many images and has a big count in each image (it dominates the vector)

This way any similarity based on this vector will be dominated with this very frequent, non-discriminative word.

Our similarity will not have much sense.

Database of images

image 2

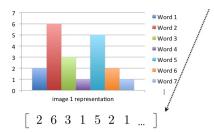
image 3 W7

W9

W1

words W9

W8



Intuition:

Re-weigh the entries such that words that appear in many images (documents) are down-weighted

This re-weighting is called tf-idf

...

Instead of a histogram, for retrieval it's better to re-weight the image description vector t = [t₁, t₂,..., t_i,...] with term frequency-inverse document frequency (tf-idf), a standard trick in document retrieval:

$$t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}$$

where:

- n_{id} ... is the number of occurrences of word *i* in image *d*
- n_d ... is the total number of words in image d
- n_i ... is the number of occurrences of word *i* in the whole database
- N ... is the number of documents in the whole database

Instead of a histogram, for retrieval it's better to re-weight the image description vector t = [t₁, t₂,..., t_i,...] with term frequency-inverse document frequency (tf-idf), a standard trick in document retrieval:

$$t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}$$

where:

- n_{id} ... is the number of occurrences of word *i* in image *d*
- n_d ... is the total number of words in image d
- n_i ... is the number of occurrences of word *i* in the whole database
- N ... is the number of documents in the whole database
- The weighting is a product of two terms: the word frequency <u>n_{id}</u>, and the inverse document frequency log <u>N</u>_{ni}

Instead of a histogram, for retrieval it's better to re-weight the image description vector t = [t₁, t₂,..., t_i,...] with term frequency-inverse document frequency (tf-idf), a standard trick in document retrieval:

$$t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}$$

where:

- n_{id} ... is the number of occurrences of word *i* in image *d*
- n_d ... is the total number of words in image d
- n_i ... is the number of occurrences of word i in the whole database
- N ... is the number of documents in the whole database
- The weighting is a product of two terms: the word frequency <u>n_{id}</u>, and the inverse document frequency log <u>N</u>_{ni}
- Intuition behind this: word frequency weights words occurring often in a particular document, and thus describe it well, while the inverse document frequency downweights the words that occur often in the full dataset

Comparing Images

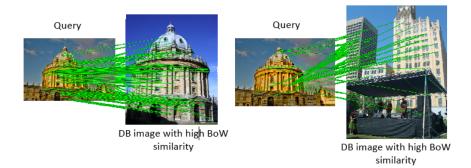
• Compute the similarity by normalized dot product between their **tf-idf** representations (vectors)

$$\mathsf{sim}(\mathsf{t}_{\mathsf{j}},\mathsf{q}) = \frac{<\mathsf{t}_{\mathsf{j}},\mathsf{q}>}{||\mathsf{t}_{\mathsf{j}}||\cdot||\mathsf{q}||}$$

- Rank images in database based on the similarity score (the higher the better)
- Take top K best ranked images and do spatial verification (compute transformation and count inliers)

Spatial Verification

- Both image pairs have many visual words in common
- Only some of the matches are mutually consistent



[Source: O. Chum]

Visual Words/Bags of Words

Good

- flexible to geometry / deformations / viewpoint
- compact summary of image content
- provides vector representation for sets
- good results in practice

Bad

- background and foreground mixed when bag covers whole image
- optimal vocabulary formation remains unclear
- basic model ignores geometry must verify afterwards, or encode via features

Fast image retrieval:

- Compute features in all images from database, and query image.
- Cluster the descriptors from the images in the database (e.g., k-means) to get k clusters. These clusters are vectors that live in the same dimensional space as the descriptors. We call them **visual words**.
- Assign each descriptor in database and query image to the closest cluster.
- Build an inverted file index
- For a query image, lookup all the visual words in the inverted file index to get a list of images that share at least one visual word with the query
- Compute a bag-of-words (BoW) vector for each retrieved image and query. This vector just counts the number of occurrences of each word. It has as many dimensions as there are visual words. Weight the vector with tf-idf.
- Compute similarity between query BoW vector and all retrieved image BoW vectors. Sort (highest to lowest). Take top K most similar images (e.g, 100)
- Do spatial verification on all top K retrieved images (RANSAC + affine or homography + remove images with too few inliers)

Summary – Stuff You Need To Know

Matlab function:

- [IDX, W] = KMEANS(X, K); where rows of X are descriptors, rows of W are visual words vectors, and *IDX* are assignments of rows of X to visual words
- Once you have *W*, you can quickly compute *IDX* via the DIST2 function (Assignment 2):

 $D = DIST2(X', W'); [\sim, IDX] = MIN(D, [], 2);$

- A much faster way of computing the closest cluster (IDX) is via the FLANN library: http://www.cs.ubc.ca/research/flann/
- Since X is typically super large, KMEANS will run for days... A solution is to randomly sample a few descriptors from X and cluster those. Another great possibility is to use this:

http://www.robots.ox.ac.uk/~vgg/software/fastanncluster/

Even Faster?

• Can we make the retrieval process even more efficient?

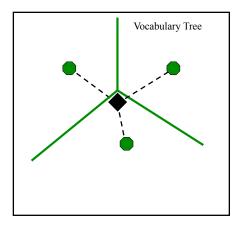
- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- k defines the branch factor (number of children of each node) of the tree.

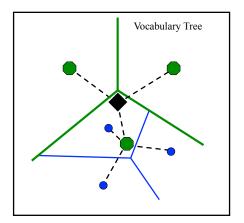
- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- k defines the branch factor (number of children of each node) of the tree.
- First, an initial k-means process is run on the training data, defining k cluster centers (same as we did before).

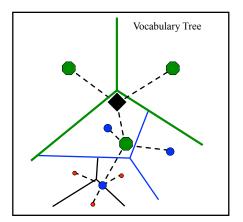
- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- *k* defines the branch factor (number of children of each node) of the tree.
- First, an initial k-means process is run on the training data, defining k cluster centers (same as we did before).
- The same process is then recursively applied to each group.

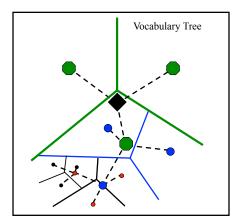
- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- *k* defines the branch factor (number of children of each node) of the tree.
- First, an initial k-means process is run on the training data, defining k cluster centers (same as we did before).
- The same process is then recursively applied to each group.
- The tree is determined level by level, up to some maximum number of levels *L*.

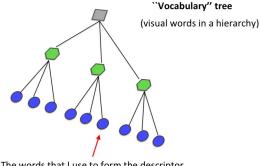
- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- *k* defines the branch factor (number of children of each node) of the tree.
- First, an initial k-means process is run on the training data, defining k cluster centers (same as we did before).
- The same process is then recursively applied to each group.
- The tree is determined level by level, up to some maximum number of levels *L*.



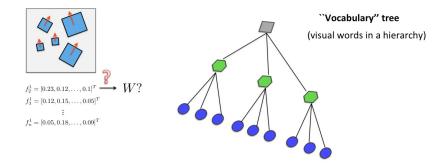






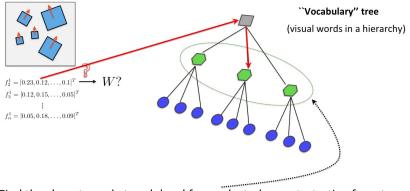


The words that I use to form the descriptor are the **leaves** of the tree



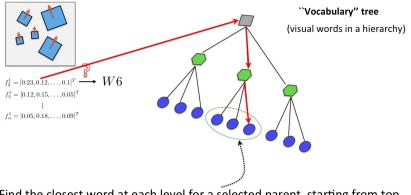
How do I transform my (eg, SIFT) descriptors into such visual words?

• Each descriptor vector is propagated down the tree by at each level comparing the descriptor vector to the k candidate cluster centers (represented by k children in the tree) and choosing the closest one.

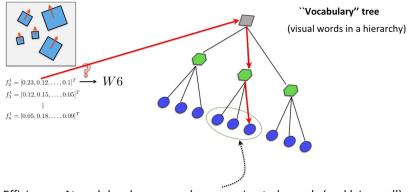


Find the closest word at each level for a selected parent, starting from top

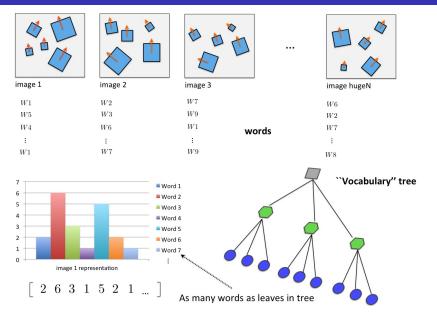
• Each descriptor vector is propagated down the tree by at each level comparing the descriptor vector to the k candidate cluster centers (represented by k children in the tree) and choosing the closest one.



• The tree allows us to efficiently match a descriptor to a very large vocabulary



Efficiency: At each level we are only comparing to k words (and k is small)



Vocabulary Size

- Complexity: branching factor and number of levels
- Most important for the retrieval quality is to have a large vocabulary

