Image Features:

Local Descriptors
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Local Features

@ Detection: Identify the interest points.
@ Description: Extract a feature descriptor around each interest point.

@ Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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Invariances

Multiple View
Geometry

I eomauter vaioh

e.g. scale,
translation,
rotation

[Source: T. Tuytelaars]
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Invariances

[Source: T. Tuytelaars]
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What If We Just Took Pixels?

@ The simplest way is to write down the list of intensities to form a feature
vector, and normalize them (i.e., mean 0, variance 1).

@ Why normalization?

@ But this is very sensitive to even small shifts, rotations and any affine
transformation.

region A region B

(I |

|

g

vector a vector b
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Tones Of Better Options

e SIFT

e PCA-SIFT

e GLOH

e HOG

e SURF

e DAISY

e LBP

@ Shape Contexts

@ Color Histograms
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e DAISY
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@ Shape Contexts

@ Color Histograms
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SIFT Descriptor [Lowe 2004]

@ SIFT stands for Scale Invariant Feature Transform

@ Invented by David Lowe, who also did DoG scale invariant interest
points

@ Actually in the same paper, which you should read:

David G. Lowe
Distinctive image features from scale-invariant
keypoints

International Journal of Computer Vision, 2004
Paper: http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

* | ¥
K 2%

(a) image gradients (b) keypoint descriptor
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http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Descriptor

@ Our scale invariant interest point detector gives scale p for each

keypoint
- 4
Is - I* G 26
Scale
_ (first
ES octave)
I,-1e( s
I: I« G ‘e
TI-TeG 6 = Difference of
° Gaussian Gaussian (DOG)

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor

@ For each keypoint, we take the Gaussian-blurred image at
scale p

corresponding

Scale <

(first

1 - Ik G octave)

k-(ws)

[Adopted from: F. Fl

Gaussian

ores-Mangas|
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SIFT Descriptor

© Compute the gradient magnitude and orientation in neighborhood of
each keypoint

Gaussian smoothed image

I+G, / at scale of keypoint

compute magnitude and orientation
of gradients in neighborhood

. 16x16
. pixel patch

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor

© Compute the gradient magnitude and orientation in neighborhood of
each keypoint

magnitude of gradient:

\VI(z,y)| = \/<8(1(%§x) *Gp)>2 N (3(1(:76,832 *Gp)>z

gradient orientation:

0(z,y) = arctan <8I*G /8I*G )

(in case you forgot ;))
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SIFT Descriptor

@ Compute dominant orientation of each keypoint. How?

Gaussian smoothed image
at scale of keypoint

compute magnitude and orientation
of gradients in neighborhood

- 16 x 16
~ pixel patch

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing Dominant Orientation

@ Compute a histogram of gradient orientations, each bin covers 10°

compute histograms of orientations
by orientation increments of 10°

H sl—osram
wuight
ﬂ:t‘ j T S sedent
W 20 300 ) 260°  Onewlodtion

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing Dominant Orientation

@ Compute a histogram of gradient orientations, each bin covers 10°
@ Orientations closer to the keypoint center should contribute more

weight influence of orientation

G41.5p

based on distance from center

i stoqram

wuight

—’1 QVaA rent

o 207 ”./ 360° O riewkortion

ViI(z,y)| - Gisp(d)

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing Dominant Orientation

@ Compute a histogram of gradient orientations, each bin covers 10°
@ Orientations closer to the keypoint center should contribute more
@ Orientation giving the peak in the histogram is the keypoint’s orientation

16 x 16
! ,“ Hi stoarom
T 3 - h-ﬂkes+
I woish? peak
\ 1
’ amEm i S i gradient
e T T A EANNSYS T 10?20 300 ?1} 260°  Oriewkortion

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor

@ Compute dominant orientation

compute magnitude and orientation
of gradients in neighborhood

16 x16
' pixel patch

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor

© Compute a 128 dimensional descriptor: 4 x 4 grid, each cell is a
histogram of 8 orientation bins relative to dominant orientation

compute descriptor, relative
to dominant orientation

128 dim
descriptor

[each descriptor has:]
P; = (zi,vyi, pi,9;) and  f; ... 128 dim vector

location scale orientation  feature vector

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing the Feature Vector

@ Compute the orientations relative to the dominant orientation

16 x 16 patch
centered in (z;,v;)

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing the Feature Vector

@ Compute the orientations relative to the dominant orientation

16 x 16 patch
centered in (z;,y;)

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing the Feature Vector

@ Compute the orientations relative to the dominant orientation
@ Form a 4 x 4 grid. For each grid cell compute a histogram of orientations for

8 orientation bins spaced apart by 45°
16 x 16 patch

: SIFT descriptor
centered in (z;,y;)

K

Hlﬂo‘y-om
compute histogram of orientations | JW
. . . |
this time 8 bins spaced by 45° = gootl__'\:\_woo sasbent

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing the Feature Vector

@ Compute the orientations relative to the dominant orientation

@ Form a 4 x 4 grid. For each grid cell compute a histogram of orientations for
8 orientation bins spaced apart by 45°

16 x 16 patch
centered in (z;,y;)

SIFT descriptor

again weigh contributions '"f‘ ﬂ
this time: |VI(z,y)|- Go.sp ﬂ]ﬁ%&_‘w&:

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing the Feature Vector

@ Compute the orientations relative to the dominant orientation

@ Form a 4 x 4 grid. For each grid cell compute a histogram of orientations for
8 orientation bins spaced apart by 45°

@ Form the 128 dimensional feature vector

16 x 16 patch
centered in (z;,y;)

SIFT descriptor

K

A=<~ — 7
—
[Adopted from: F. Flores-Mangas]

Sanja Fidler CSC420: Intro to Image Understanding



SIFT Descriptor: Post-processing

@ The resulting 128 non-negative values form a raw version of the
SIFT descriptor vector.

Sanja Fidler CSC420: Intro to Image Understanding



SIFT Descriptor: Post-processing

@ The resulting 128 non-negative values form a raw version of the
SIFT descriptor vector.

@ To reduce the effects of contrast or gain (additive variations are
already removed by the gradient), the 128-D vector is normalized to
unit length: f; = f;/||fi]|
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SIFT Descriptor: Post-processing

@ The resulting 128 non-negative values form a raw version of the
SIFT descriptor vector.

@ To reduce the effects of contrast or gain (additive variations are
already removed by the gradient), the 128-D vector is normalized to
unit length: f; = f;/||fi]|

@ To further make the descriptor robust to other photometric
variations, values are clipped to 0.2 and the resulting vector is once
again renormalized to unit length.
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SIFT Descriptor: Post-processing

@ The resulting 128 non-negative values form a raw version of the
SIFT descriptor vector.

@ To reduce the effects of contrast or gain (additive variations are
already removed by the gradient), the 128-D vector is normalized to
unit length: f; = f;/||fi]|

@ To further make the descriptor robust to other photometric
variations, values are clipped to 0.2 and the resulting vector is once
again renormalized to unit length.

@ Great engineering effort!
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SIFT Descriptor: Post-processing

@ The resulting 128 non-negative values form a raw version of the
SIFT descriptor vector.

@ To reduce the effects of contrast or gain (additive variations are
already removed by the gradient), the 128-D vector is normalized to
unit length: f; = f;/||fi]|

@ To further make the descriptor robust to other photometric
variations, values are clipped to 0.2 and the resulting vector is once
again renormalized to unit length.

@ Great engineering effort!
@ What is SIFT invariant to?
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Properties of SIFT

Invariant to:
@ Scale
@ Rotation
Partially invariant to:
@ lllumination changes (sometimes even day vs. night)
@ Camera viewpoint (up to about 60 degrees of out-of-plane rotation)
@ Occlusion, clutter (why?)
Also important:
@ Fast and efficient — can run in real time

@ Lots of code available
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Figure: Matching in day / night under viewpoint change

[Source: S. Seitz]
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Example

Figure: NASA Mars Rover images with SIFT feature matches

[Source: N. Snavely]
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PCA-SIFT

@ The dimensionality of SIFT is pretty high, i.e., 128D for each keypoint

@ Reduce the dimensionality using linear dimensionality reduction

In this case, principal component analysis (PCA)

@ Use 10D or so descriptor

[Source: R. Urtasun]
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Gradient location-orientation histogram (GLOH)

@ Developed by Mikolajczyk and Schmid (2005): variant of SIFT that uses a
log-polar binning structure instead of the four quadrants.

@ The spatial bins are 11, and 15, with eight angular bins (except for the
central region), for a total of 17 spatial bins and 16 orientation bins.

@ The 272D histogram is then projected onto a 128D descriptor using PCA
trained on a large database.

(a) image gradients (b) keypoint descriptor

[Source: R. Szeliski]
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Other Descriptors

e SURF

e DAISY

e LBP

e HOG

@ Shape Contexts

@ Color Histograms
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Local Features

@ Detection: Identify the interest points.
@ Description: Extract feature descriptor around each interest point.

@ Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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Image Features:

Matching the Local Descriptors
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Matching Local Descri

Once we have extracted keypoints and their descriptors, we want to match the
features between pairs of images.

@ Ideally a match is a correspondence between a local part of the object on
one image to the same local part of the object in another image
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Matching Local Descri

Once we have extracted keypoints and their descriptors, we want to match the
features between pairs of images.

@ lIdeally a match is a correspondence between a local part of the object on
one image to the same local part of the object in another image

@ How should we compute a match?

Figure: Images from K. Grauman
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Matching Local Descriptors

@ Simple: Compare them all, compute Euclidean distance
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Matching the Local Descriptors

@ Simple: Compare them all, compute Euclidean distance

ST A - Al
f =TT\ [[f1 — f3ll

g I1f1 — fsll

‘.
g =TT\ || — fooll
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Matching the Local Descriptors

@ Find closest match (min distance). How do we know if match is reliable?

; 5 I = £l
e T —111\ G T —11\ ||fi— £l

3 e e A A|

R
min (closest match)

¢ [Tr—111 ¢ =1

=

3 o £ — fioll
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Matching Local Descriptors

@ Find also the second closest match. Match reliable if first distance “much”
snn—)”ar t+han carAnd Aictanca

s (=11 1A — Al
o e e
[T T—11) b T =L [ — /3l
min (closest match)

f rr—1n
o DL - Al

second closest match
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Matching the Local Descriptors

@ Compute the ratio:
5 IE =7
L=

where f'T is the closest and '} second closest match to f;.

4

f [T T—11\ s =1 |lA - Al

f 1) N T e L O A

min (closest match)
L L
o LTI |1 = fill

second closest match
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Which Threshold to Use?

@ Setting the threshold too high results in too many false positives, i.e.,
incorrect matches being returned.

@ Setting the threshold too low results in too many false negatives, i.e., too
many correct matches being missed

Figure: Images from R. Szeliski

CSC420: Intro to Image Understanding
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Which Threshold to Use?

@ Threshold ratio of nearest to 2nd nearest descriptor
@ Typically: ¢; < 0.8

0.8

07

0.6 PDF for correct matches —
PDF for incorrect matches ---x
0.5

04

PDF

0.3

0.2 /- 1
0.1 N

0 01 02 03 04 05 06 07 08 09 1
Ratio of distances (closest/next closest)

0

Figure: Images from D. Lowe

[Source: K. Grauman]
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Applications of Local Invariant Features

o Wide baseline stereo

@ Motion tracking

@ Panorama stitching

@ Mobile robot navigation

3D reconstruction

Recognition

@ Retrieval

[Source: K. Grauman]
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Wide Baseline Stereo

[Source: T. Tuytelaars]
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Recognizing the Same Object

Rothganger et al. 2003 Lowe 2002

[Source: K. Grauman]
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Motion Tracking

Figure: Images from J. Pilet
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Now What

@ Now we know how to extract scale and rotation invariant features
@ We even know how to match features across images

@ Can we use this to find Waldo in an even more sneaky scenario?
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Now What

@ Now we know how to extract scale and rotation invariant features
@ We even know how to match features across images

@ Can we use this to find Waldo in an even more sneaky scenario?

template

Waldo on the road
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Now What

@ Now we know how to extract scale and rotation invariant features
@ We even know how to match features across images

@ Can we use this to find Waldo in an even more sneaky scenario?

template

He comes closer... We know how to solve this
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Now What

@ Now we know how to extract scale and rotation invariant features
@ We even know how to match features across images

@ Can we use this to find Waldo in an even more sneaky scenario?

template

Someone takes a (weird) picture of him!

Sanja Fidler CSC420: Intro to Image Understanding 29 /57



Find My DVD!

@ More interesting: If we have DVD covers (e.g., from Amazon), can
we match them to DVDs in real scenes?
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Matching Planar Objects In New

Viewpoints
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What Kind of Transformation Happened To My DVD?
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What Kind of Transformation Happened To My DVD?

@ Rectangle goes to a parallelogram (almost but not really, but let's believe
that for now)
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All 2D Linear Transformations

Linear transformations are combinations of E
@ Scale,
@ Rotation
@ Shear

@ Mirror

[Source: N. Snavely]
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All 2D Linear Transformations

Properties of linear transformations:

@ Origin maps to origin
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All 2D Linear Transformations

Properties of linear transformations:
@ Origin maps to origin

@ Lines map to lines
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All 2D Linear Transformations

Properties of linear transformations:
@ Origin maps to origin
@ Lines map to lines

@ Parallel lines remain parallel
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All 2D Linear Transformations

Properties of linear transformations:
@ Origin maps to origin
@ Lines map to lines
@ Parallel lines remain parallel

@ Ratios are preserved
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All 2D Linear Transformations

Properties of linear transformations:
@ Origin maps to origin
@ Lines map to lines
@ Parallel lines remain parallel
@ Ratios are preserved

@ Closed under composition
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All 2D Linear Transformations

Properties of linear transformations:
@ Origin maps to origin
@ Lines map to lines

@ Parallel lines remain parallel

Ratios are preserved

Closed under composition

=L el AL I
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All 2D Linear Transformations

Properties of linear transformations:
@ Origin maps to origin
@ Lines map to lines

@ Parallel lines remain parallel

Ratios are preserved

Closed under composition
x| _|a b|le fl i j||x
y'| |c d|l|g h||k ||y

What about the translation?

[Source: N. Snavely]
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Affine Transformations

Affine transformations are combinations of:
@ Linear transformations, and

@ Translations
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Affine Transformations

Affine transformations are combinations of:
@ Linear transformations, and

@ Translations

Same as:
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Affine Transformations

Affine transformations are combinations of:
@ Linear transformations, and

@ Translations

Properties of affine transformations:
@ Origin does not necessarily map to origin
@ Lines map to lines
@ Parallel lines remain parallel
@ Ratios are preserved
@ Closed under composition
@ Rectangles go to parallelograms

[Source: N. Snavely]
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2D Image Tranformations

A roiectiv
b similarity projective
translation|

_—r g L :
_
Euclidean Ae

Transformation Matrix #DoF Preserves Icon
translation [ I ‘ t ]2 N 2 orientation D
x
rigid (Euclidean) [ R [ # ] 3 lengths O
2x3
similarity [ sR ‘ t ] 4 angles O
2x3
affine [ A ]2 A 6 parallelism D
X
projective [ H ] 8 straight lines Q
3x3

@ These transformations are a nested set of groups

@ Closed under composition and inverse is a member
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What Transformation Happened to My DVD?

o Affine transformation approximates viewpoint changes for roughly
planar objects and roughly orthographic cameras (more about
these later in class)

o DVD went affinel!

(%:,7:) o

(2. ¥)
(]
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Computing the (Affine) Transformation

Given a set of matches between images | and J

@ How can we compute the affine transformation A from | to J?
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Computing the (Affine) Transformation

Given a set of matches between images | and J
@ How can we compute the affine transformation A from | to J?

@ Find transform A that best “agrees” with the matches

[Source: N. Snavely]
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Computing the Affine Transformation

(%:34)

° —_ o

@ Let (x;,y;) be a point on the reference (model) image, and (x/, y/) its match
in the test image

@ An affine transformation A maps (x;, y;) to (x/,y/):

X,-’iabex':
W= le g d
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Computing the Affine Transformation

(%:34)

° —_ o

@ Let (x;,y;) be a point on the reference (model) image, and (x/, y/) its match
in the test image

@ An affine transformation A maps (x;, y;) to (x/,y/):

X,-’iabex':
W= le g d

@ We can rewrite this into a simple linear system:

x yi 0 0 1 0
0 0 x5 yi 0 1

N0 Q0 T W
Il
| — |
X
| I
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Computing the Affine Transformation

@ But we have many matches:

a
: b :
Xi Yi 0 0 1 0 C o Xi/
0 0 x y; 0 1 d | | ¥
f :
P \T—/ p/

@ For each match we have two more equations
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Computing the Affine Transformation

@ But we have many matches:

a
: b :
Xi Yi 0 0 1 0 C o Xi/
0 0 x y; 0 1 d | | ¥
f :
P \T—/ p/

@ For each match we have two more equations

@ How many matches do we need to compute A?
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Computing the Affine Transformation

@ But we have many matches:

a
: b :
Xi Yi 0 0 1 0 C o Xi/
0 0 x y; 0 1 d | | ¥
f :
P \T—/ p/

@ For each match we have two more equations

@ How many matches do we need to compute A?
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Computing the Affine Transformation

@ But we have many matches:

a
: b :
Xi Yi 0 0 1 0 C o Xi/
0 0 x y; 0 1 d | | ¥
f :
P \T—/ p/

For each match we have two more equations

@ How many matches do we need to compute A?
@ 6 parameters — 3 matches

@ But the more, the better (more reliable)

@ How do we compute A?
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Computing the Affine Transformation

a .
: b :
x yi 0 0 1 0 c| | X
0 0 x i Yi 01 d B _yl.l
. e :
f N
P "

@ If we have 3 matches, then computing A is really easy:

a=P'P
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Computing the Affine Transformation

a .
: b :
x yi 0 0 1 0 c| | X
0 0 x i Yi 01 d B _yl.l
. e :
f N
P "

@ If we have 3 matches, then computing A is really easy:
a=P'P
@ If we have more than 3, then we do least-squares estimation:

in ||Pa—P|3
a,gj_l_r_]f\l a— P
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Computing the Affine Transformation

a .
: b :
x yi 0 0 1 0 c| | X
0 0 x i Yi 01 d B _yl.l
. e :
f N
P "

@ If we have 3 matches, then computing A is really easy:
a=P'P
@ If we have more than 3, then we do least-squares estimation:

in ||Pa—P|3
a,gj_l_r_]f\l a— P

@ Which has a closed form solution:

a=(P"P)"'PTP
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Image Alignment Algorithm: Affine Case

Given images | and J
@ Compute image features for | and J
@ Match features between / and J

© Compute affine transformation A between | and J using least squares on the
set of matches
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Image Alignment Algorithm: Affine Case

Given images | and J
@ Compute image features for | and J
@ Match features between / and J

© Compute affine transformation A between | and J using least squares on the
set of matches

Is there a problem with this?

[Source: N. Snavely]
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outliers

[Source: N. Snavely]
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Simple Case

(This example is unrelated to the object matching example, but it nicely shows
how to robustify estimation)

@ Let's consider a simpler example ... Fit a line to the points below!

Problem: Fit a line to these datapoints Least squares fit
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Simple Case

(This example is unrelated to the object matching example, but it nicely shows
how to robustify estimation)

@ Let's consider a simpler example ... Fit a line to the points below!

Problem: Fit a line to these datapoints Least squares fit

@ How can we fix this?

[Source: N. Snavely]
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Simple Idea: RANSAC

@ Take the minimal number of points to compute what we want. In the line
example, two points (in our affine example, three matches)
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Simple Idea: RANSAC

@ Take the minimal number of points to compute what we want. In the line
example, two points (in our affine example, three matches)

@ By “take” we mean choose at random from all points
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Simple Idea: RANSAC

@ Take the minimal number of points to compute what we want. In the line

example, two points (in our affine example, three matches)
@ By “take” we mean choose at random from all points

@ Fit a line to the selected pair of points
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Simple Idea: RANSAC

@ Take the minimal number of points to compute what we want. In the line
example, two points (in our affine example, three matches)

@ By “take” we mean choose at random from all points
@ Fit a line to the selected pair of points

@ Count the number of all points that “agree” with the line: We call the
agreeing points inliers
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Simple Idea: RANSAC

@ Take the minimal number of points to compute what we want. In the line
example, two points (in our affine example, three matches)

@ By “take” we mean choose at random from all points
@ Fit a line to the selected pair of points

@ Count the number of all points that “agree” with the line: We call the
agreeing points inliers

@ "Agree” = within a small distance of the line
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Simple Idea: RANSAC

@ Take the minimal number of points to compute what we want. In the line
example, two points (in our affine example, three matches)

@ By “take” we mean choose at random from all points
@ Fit a line to the selected pair of points

@ Count the number of all points that “agree” with the line: We call the
agreeing points inliers

@ “Agree” = within a small distance of the line
@ Repeat this many times, remember the number of inliers for each trial

@ Among several trials, select the one with the largest number of inliers

This procedure is called RAndom SAmple Consensus
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RANSAC for Line Fitting Example

@ Randomly select minimal
subset of points

[Source: R. Raguram]
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RANSAC for Line Fitting Example

@ Randomly select minimal
subset of points

@ Hypothesize a model s

[Source: R. Raguram]
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RANSAC for Line Fitting Example

@ Randomly select minimal

subset of points
@ Hypothesize a model
© Compute error function 5 y P 4 .
“ .
- }.-", -
™

[Source: R. Raguram]
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RANSAC for Line Fitting Example

@ Randomly select minimal

subset of points
@ Hypothesize a model : o
© Compute error function . NV,
F " _-’s . E
@ Select points consistent k- Ve
with model te g :
, -
1 )

[Source: R. Raguram]
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RANSAC for Line Fitting Example

@ Randomly select minimal

subset of points
@ Hypothesize a model - .
© Compute error function ) S

2 * I.;~ * .

© Select points consistent g BT ;

with model ' a
© Repeat hypothesize and ; aie

verify loop .

3.

[Source: R. Raguram]
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RANSAC for Line Fitting Example

@ Randomly select minimal
subset of points

@ Hypothesize a model

.
Tei

© Compute error function

Ll o l-’~ - .
@ Select points consistent * e i
with model T A e
© Repeat hypothesize and ) e .
verify loop . &

[Source: R. Raguram]
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RANSAC for Line Fitting Example

@ Randomly select minimal
subset of points

@ Hypothesize a model
© Compute error function . ) 7 .

@ Select points consistent .': B 1 S
with model T 3

© Repeat hypothesize and e
verify loop

@ Choose model with w
largest set of inliers

[Source: R. Raguram]
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Translations

el

i ,..F

[Source: N. Snavely]
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RAndom SAmple Consensus

Select one match at random, count inliers

[Source: N. Snavely]
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RAndom SAmple Consensus

Select another match at random, count inliers

[Source: N. Snavely]
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RAndom SAmple Consensus

KA T —

Wy wy o II;"

Output the translation with the highest number of inliers

[Source: N. Snavely]
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RANSAC

@ All the inliers will agree with each other on the translation vector; the
(hopefully small) number of outliers will (hopefully) disagree with each other
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RANSAC

@ All the inliers will agree with each other on the translation vector; the
(hopefully small) number of outliers will (hopefully) disagree with each other

@ RANSAC only has guarantees if there are < 50% outliers

Sanja Fidler CSC420: Intro to Image Understanding



RANSAC

@ All the inliers will agree with each other on the translation vector; the
(hopefully small) number of outliers will (hopefully) disagree with each other

@ RANSAC only has guarantees if there are < 50% outliers

@ "All good matches are alike; every bad match is bad in its own way." —
[Tolstoy via Alyosha Efros]

[Source: N. Snavely]
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Affine Transformation

How?

Sanja Fidler CSC420: Intro to Image Understanding



Affine Transformation

How?

@ Find matches across images / and J. This gives us points X; in image / and
Xj in J, where we know that the point X,k is a match with XJ"

@ lterate:

e Choose 3 pairs of matches randomly

o Compute the affine transformation

e Project all matched points X; from / to J via the computed
transformation. This gives us X

e Find how many matches are inliers, i.e., ||)A<,k — X¥|| < thresh.

@ Choose the transformation with the most inliers
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RANSAC

@ Inlier threshold related to the amount of noise we expect in inliers
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RANSAC

@ Inlier threshold related to the amount of noise we expect in inliers

@ Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
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RANSAC

@ Inlier threshold related to the amount of noise we expect in inliers
@ Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

@ Number of rounds related to the percentage of outliers we expect, and the
probability of success we'd like to guarantee
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RANSAC

@ Inlier threshold related to the amount of noise we expect in inliers
@ Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

@ Number of rounds related to the percentage of outliers we expect, and the
probability of success we'd like to guarantee

@ Suppose there are 20% outliers, and we want to find the correct answer with
99% probability
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RANSAC

@ Inlier threshold related to the amount of noise we expect in inliers
@ Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

@ Number of rounds related to the percentage of outliers we expect, and the
probability of success we'd like to guarantee

@ Suppose there are 20% outliers, and we want to find the correct answer with
99% probability

@ How many rounds do we need?

[Source: R. Urtasun]
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How many rounds?

@ Sufficient number of trials S must be tried.
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How many rounds?

@ Sufficient number of trials S must be tried.

@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.
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How many rounds?

@ Sufficient number of trials S must be tried.

@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

@ The likelihood in one trial that all k random samples are inliers is p*
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How many rounds?

@ Sufficient number of trials S must be tried.

@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

@ The likelihood in one trial that all k random samples are inliers is p*

@ The likelihood that S such trials will all fail is

1-P=(1-p"°
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How many rounds?

@ Sufficient number of trials S must be tried.

@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

@ The likelihood in one trial that all k random samples are inliers is p*

@ The likelihood that S such trials will all fail is

1-P=(1-p"°

@ The required minimum number of trials is

_ log(1—-P)
- log(1 — pk)
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How many rounds?

@ Sufficient number of trials S must be tried.

@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

@ The likelihood in one trial that all k random samples are inliers is p*

@ The likelihood that S such trials will all fail is

1-P=(1-p"°

@ The required minimum number of trials is

_ log(1—-P)
- log(1 — pk)

@ The number of trials grows quickly with the number of sample points used.
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How many rounds?

@ Sufficient number of trials S must be tried.

@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

@ The likelihood in one trial that all k random samples are inliers is p*

@ The likelihood that S such trials will all fail is

1-P=(1-p"°

@ The required minimum number of trials is

_ log(1—-P)
- log(1 — pk)

@ The number of trials grows quickly with the number of sample points used.

[Source: R. Urtasun]
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RANSAC pros and cons

Pros

@ Simple and general
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RANSAC pros and cons

Pros
@ Simple and general

@ Applicable to many different problems
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RANSAC pros and cons
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@ Simple and general
@ Applicable to many different problems

@ Often works well in practice
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RANSAC pros and cons

Pros
@ Simple and general
@ Applicable to many different problems
@ Often works well in practice

Cons

@ Parameters to tune
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RANSAC pros and cons

Pros
@ Simple and general
@ Applicable to many different problems
@ Often works well in practice
Cons
@ Parameters to tune

@ Sometimes too many iterations are required
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RANSAC pros and cons

Pros
@ Simple and general
@ Applicable to many different problems
@ Often works well in practice
Cons
@ Parameters to tune
@ Sometimes too many iterations are required

@ Can fail for extremely low inlier ratios
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RANSAC pros and cons

Pros
@ Simple and general
@ Applicable to many different problems
@ Often works well in practice
Cons
@ Parameters to tune
@ Sometimes too many iterations are required
@ Can fail for extremely low inlier ratios
@ We can often do better than brute-force sampling

[Source: N. Snavely, slide credit: R. Urtasun]
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Ransac Verification

[Source: K. Grauman, slide credit: R. Urtasun]
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To match image / and J under affine transformation:

@ Compute scale and rotation invariant keypoints in both images

Compute a (rotation invariant) feature vector in each keypoint (e.g., SIFT)

Match all features in / to all features in J

@ For each feature in reference image / find closest match in J

If ratio between closest and second closest match is < 0.8, keep match
@ Do RANSAC to compute affine transformation A:

o Select 3 matches at random
o Compute A
o Compute the number of inliers

Repeat

Find A that gave the most inliers
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