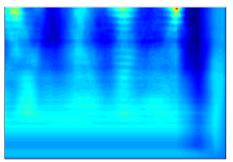
- Let's revisit the problem of finding Waldo
- And let's take a simple example

image

template (filter)

- Let's revisit the problem of finding Waldo
- And let's take a simple example



normalized cross-correlation



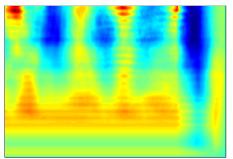
Waldo detection (putting box around max response)

- Now imagine Waldo goes shopping
- ... but our filter doesn't know that

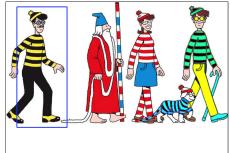
template (filter)

image

- Now imagine Waldo goes shopping (and the dog too)
- but our filter doesn't know that



normalized cross-correlation



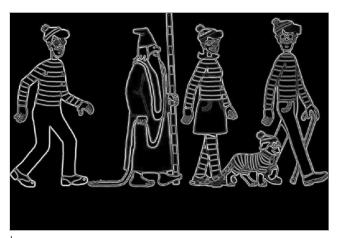
Waldo detection (putting box around max response)

Finding Waldo (again)

• What can we do to find Waldo again?

Finding Waldo (again)

- What can we do to find Waldo again?
- Edges!!!

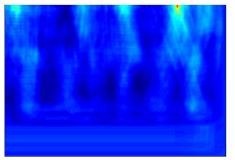


image

template (filter)

Finding Waldo (again)

- What can we do to find Waldo again?
- Edges!!!



normalized cross-correlation (using the edge maps)

Waldo detection (putting box around max response)

Waldo and Edges

- Map image to a set of **curves** or **line segments** or **contours**.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition

Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]

- Map image to a set of **curves** or **line segments** or **contours**.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications

Figure: Parse basketball court (left) to figure out how far the guy is from net

- Map image to a set of curves or line segments or contours.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications

f0

Figure: How can a robot pick up or grasp objects?

- Map image to a set of curves or line segments or contours.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications

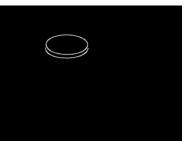
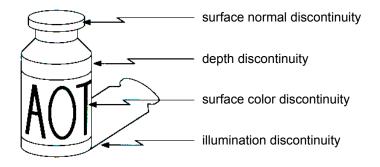


Figure: How can a robot pick up or grasp objects?

Origin of Edges

Edges are caused by a variety of factors



[Source: N. Snavely]

What Causes an Edge?

Reflectance change: appearance information, texture

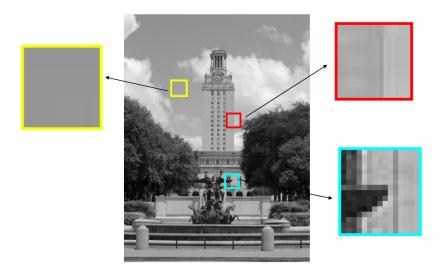
Depth discontinuity: object boundary

Cast shadows

Change in surface orientation: shape

[Source: K. Grauman]

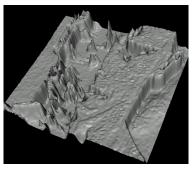
Looking More Locally...



[Source: K. Grauman]

Images as Functions

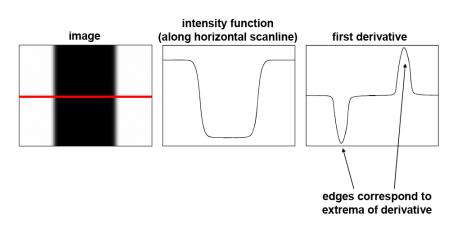
• Edges look like steep cliffs



[Source: N. Snavely]

Characterizing Edges

• An **edge** is a place of rapid change in the image intensity function.



[Source: S. Lazebnik]

How can we differentiate a digital image f[x, y]?

• If image f was continuous, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x,y)}{\epsilon}$$

How can we differentiate a digital image f[x, y]?

If image f was continuous, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x,y)}{\epsilon}$$

• Since it's discrete, take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x,y]}{1}$$

How can we differentiate a digital image f[x, y]?

If image f was continuous, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x,y)}{\epsilon}$$

• Since it's discrete, take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x,y]}{1}$$

• What would be the filter to implement this using correlation/convolution?

How can we differentiate a digital image f[x, y]?

• If image f was continuous, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x,y)}{\epsilon}$$

Since it's discrete, take discrete derivative (finite difference)

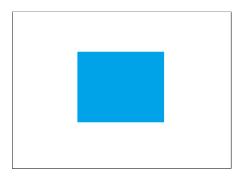
$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x,y]}{1}$$

• What would be the filter to implement this using correlation/convolution?

$$\frac{\partial f}{\partial x}$$
:

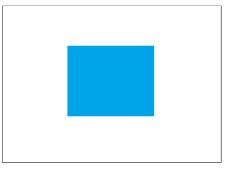
[Source: S. Seitz]

• How does the horizontal derivative using the filter [-1, 1] look like?



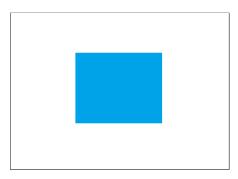
Image

• How does the horizontal derivative using the filter [-1, 1] look like?



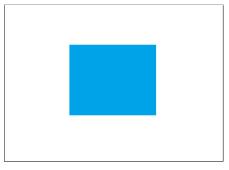
 $\frac{\partial f(\textbf{x},\textbf{y})}{\partial \textbf{x}}$ with [-1,1] and correlation

• How about the vertical derivative using filter $[-1,1]^T$?



Image

• How about the vertical derivative using filter $[-1,1]^T$?

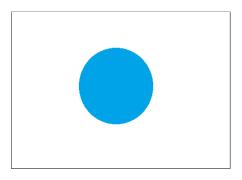




Image

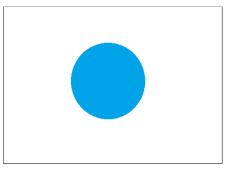
$$\frac{\partial f(x,y)}{\partial y}$$
 with $[-1,1]^T$ and correlation

• How does the horizontal derivative using the filter [-1, 1] look like?

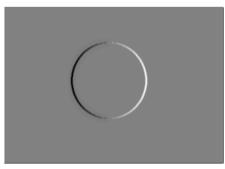


Image

• How does the horizontal derivative using the filter [-1, 1] look like?

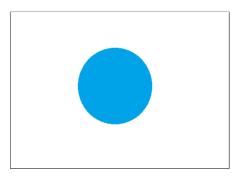


Image



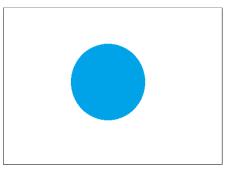
 $\frac{\partial f(x,y)}{\partial x}$ with [-1,1] and correlation

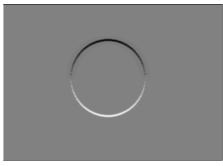
• How about the vertical derivative using filter $[-1,1]^T$?



Image

• How about the vertical derivative using filter $[-1,1]^T$?





 $\frac{\partial f(x,y)}{\partial y}$ with $[-1,1]^{\mathcal{T}}$ and correlation

Figure: Using correlation filters

[Source: K. Grauman]

Finite Difference Filters

Prewitt:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & -1 \end{bmatrix}$

Sobel: $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Roberts: $M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$; $M_y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

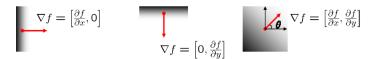
```
>> My = fspecial('sobel');
>> outim = imfilter(double(im), My);
>> imagesc(outim);
```

>> colormap gray;

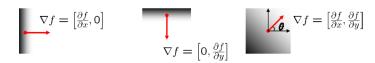
[Source: K. Grauman]

• The gradient of an image $\nabla f = \left[rac{\partial f}{\partial x}, rac{\partial f}{\partial y}
ight]$

- The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$
- The gradient points in the direction of most rapid change in intensity



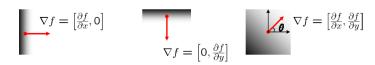
- The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity



• The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

- ullet The gradient of an image $\nabla f = \left[rac{\partial f}{\partial x}, rac{\partial f}{\partial y}
 ight]$
- The gradient points in the direction of most rapid change in intensity



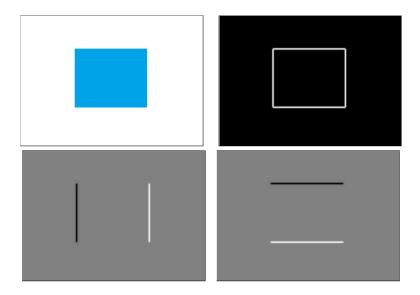
• The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

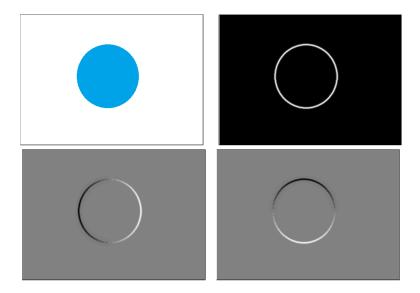
• The **edge strength** is given by the magnitude $||\nabla f|| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2}$

[Source: S. Seitz]

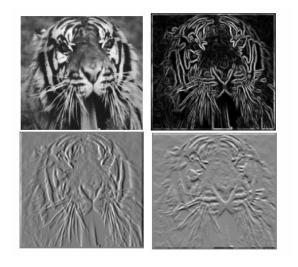
Example: Image Gradient



Example: Image Gradient



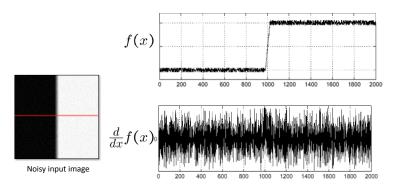
Example: Image Gradient



[Source: S. Lazebnik]

Effects of noise

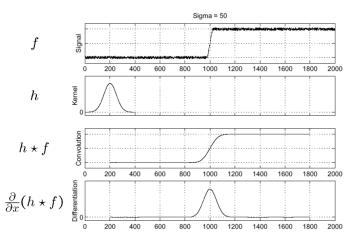
- What if our image is noisy? What can we do?
- Consider a single row or column of the image.
- Plotting intensity as a function of position gives a signal.



[Source: S. Seitz]

Effects of noise

• Smooth first with h (e.g. Gaussian), and look for peaks in $\frac{\partial}{\partial x}(h*f)$.



[Source: S. Seitz]

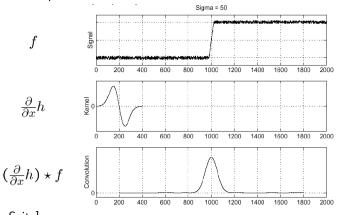
Derivative theorem of convolution

Differentiation property of convolution

$$\frac{\partial}{\partial x}(h * f) = \left(\frac{\partial h}{\partial x}\right) * f = h * \left(\frac{\partial f}{\partial x}\right)$$

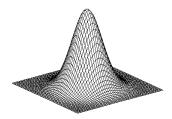
It saves one operation

 $\frac{\partial}{\partial x}h$

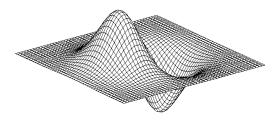


[Source: S. Seitz]

2D Edge Detection Filters

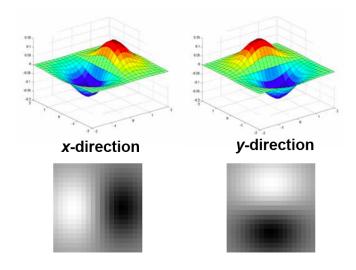


Gaussian $h_{\sigma}(x,y) = \tfrac{1}{2\pi\sigma^2} \exp^{-\tfrac{u^2+v^2}{2\sigma^2}}$



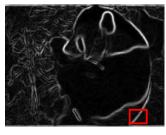
Derivative of Gaussian (x) $\frac{\partial}{\partial x}h_{\sigma}(u,v)$

Derivative of Gaussians



[Source: K. Grauman]

• Applying the Gaussian derivatives to image



Applying the Gaussian derivatives to image

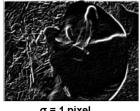
Properties:

- Zero at a long distance from the edge
- Positive on both sides of the edge
- Highest value at some point in between, on the edge itself

Effect of σ on derivatives

The detected structures differ depending on the Gaussian's scale parameter:

- Larger values: detects edges of larger scale
- Smaller values: detects finer structures



 σ = 1 pixel

 σ = 3 pixels

[Source: K. Grauman]

Let's take the most popular picture in computer vision: Lena

Figure: Canny's approach takes gradient magnitude

Figure: Thresholding

Figure: Gradient magnitude

Non-Maxima Suppression

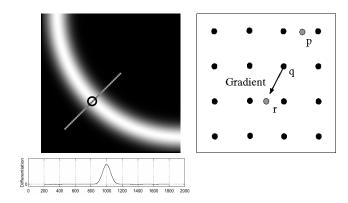


Figure: Gradient magnitude

- Check if pixel is local maximum along gradient direction
- If yes, take it

Finding Edges

Problem: pixels along this edge didn't survive the thresholding

Figure: Problem with thresholding

[Source: K. Grauman]

Hysteresis thresholding

 Use a high threshold to start edge curves, and a low threshold to continue them

[Source: K. Grauman]

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

[Source: L. Fei Fei]

Located Edges!

Figure: Thinning: Non-maxima suppression

Canny Edge Detector

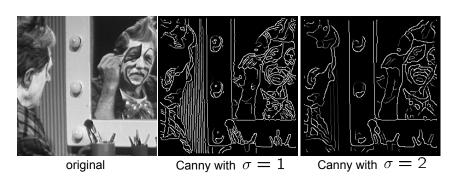
Matlab: edge(image, 'canny')

- Filter image with derivative of Gaussian (horizontal and vertical directions)
- 2 Find magnitude and orientation of gradient
- Non-maximum suppression
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

[Source: D. Lowe and L. Fei-Fei]

Canny Edge Detector

- ullet large σ (in step 1) detects "large-scale" edges
- ullet small σ detects fine edges



[Source: S. Seitz]

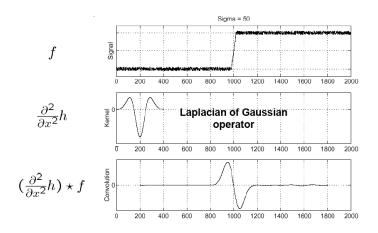
Canny Edge detector

- Still one of the most widely used edge detectors in computer vision
- J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
- ullet Depends on several parameters: σ of the **blur** and the **thresholds**

[Adopted by: R. Urtasun]

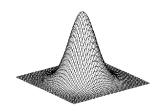
Another Way of Finding Edges: Laplacian of Gaussians

• Edge by detecting zero-crossings of bottom graph



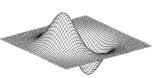
[Source: S. Seitz]

2D Edge Filtering



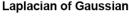
Gaussian

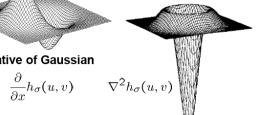
$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$



derivative of Gaussian

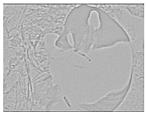
$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

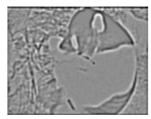




with
$$\nabla^2$$
 the Laplacian operator $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

[Source: S. Seitz]

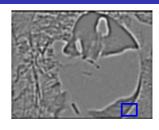




 $\sigma=1$ pixels

 $\sigma={\rm 3~pixels}$

• Applying the Laplacian operator to image



 $\sigma=1$ pixels

 $\sigma=$ 3 pixels

Applying the Laplacian operator to image

Properties:

- Zero at a long distance from the edge
- Positive on the lighter side of edge
- Negative on the darker side
- Zero at some point in between, on edge itself

 $\sigma=1$ pixels

 $\sigma = 3$ pixels

Applying the Laplacian operator to image

Properties:

- Zero at a long distance from the edge
- Positive on the lighter side of edge
- Negative on the darker side
- Zero at some point in between, on edge itself

But Sanja, we are in 2021

This is "old-style" Computer Vision. We are now in the era of successful Machine Learning techniques.

Question: Can we use ML to do a better job at finding edges?

Summary – Stuff You Should Know

Not so good:

- Horizontal image gradient: Subtract intensity of left neighbor from pixel's intensity (filtering with [-1,1])
- **Vertical image gradient**: Subtract intensity of bottom neighbor from pixel's intensity (filtering with $[-1,1]^T$)

Much better (more robust to noise):

- **Horizontal image gradient**: Apply derivative of Gaussian with respect to *x* to image (filtering!)
- **Vertical image gradient**: Apply derivative of Gaussian with respect to *y* to image
- Magnitude of gradient: compute the horizontal and vertical image gradients, square them, sum them, and $\sqrt{}$ the sum
- Edges: Locations in image where magnitude of gradient is high
- Phenomena that causes edges: rapid change in surface's normals, depth discontinuity, rapid changes in color, change in illumination

Summary – Stuff You Should Know

Properties of gradient's magnitude:

- Zero far away from edge
- Positive on both sides of the edge
- Highest value directly on the edge
- Higher σ emphasizes larger structures

Canny's edge detector:

- Compute gradient's direction and magnitude
- Non-maxima suppression
- Thresholding at two levels and linking

Summary – Stuff You Should Know

Matlab functions:

- FSPECIAL: gives a few gradients filters (PREWITT, SOBEL, ROBERTS)
- SMOOTHGRADIENT: function to compute gradients with derivatives of Gaussians. Find it in Lecture's 3 code (check class webpage)
- ullet EDGE: use EDGE(I,'CANNY') to detect edges with Canny's method, and EDGE(I,'LOG') for Laplacian method

Python functions (in skimage):

- SKIMAGE.FILTERS.(PREWITT/SOBEL/ROBERTS): gives a few gradients filters (PREWITT, SOBEL, ROBERTS)
- SCIPY.NDIMAGE.GAUSSIAN_FILTER(I, order = 1): compute image gradients with derivatives of Gaussians. Order 0 corresponds to convolution with a Gaussian kernel. A positive order implements convolution with a derivative of a Gaussian.
- SKIMAGE.FEATURE.CANNY: detect edges with Canny's method