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Textbook

If you are interested, this book has it all:

A. Zisserman and R. Hartley

Multiview Geometry

Cambridge University Press, 2003
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Camera

Camera is structurally similar to the eye

[Source: L.W. Kheng]
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Camera

Remember the pinhole camera from Lecture 2?

Size of the pinhole is called aperture

[Source: A. Torralba]
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Pinhole Camera

[Source: A. Torralba]

ExampleSanja Fidler CSC420: Intro to Image Understanding 6 / 67



Shrinking the Aperture

Why not make the aperture as small as possible?

Less light gets through

Diffraction effects...

[Source: N. Snavely]
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Shrinking the Aperture

[Source: N. Snavely]
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Adding a Lens

[Pic from Wikipedia]

Small pinhole Big pinhole Lens

A lens focuses light onto the film

There is a specific distance at which objects are in focus

Changing the shape of the lens changes this distance

[Source: N. Snavely]
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Some “Cameras” Have Bigger Lenses than Others

http://www.use.com/images/s_2/thick_glasses_13b6941623c255ff400a_1.jpg?
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Imaging

Images are 2D projections of real world scene

Images capture two kinds of information:

Geometric: positions, points, lines, curves, etc.

Photometric: intensity, color

Complex 3D-2D relationships

Camera models approximate these relationships

[Source: L.W. Kheng]
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Projection

[Source: N. Snavely]
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Projection

[Source: N. Snavely]
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3D to 2D Projection

How are 3D primitives projected onto the image plane?

We can do this using a linear 3D to 2D projection matrix

Different types:

Perspective projection

Orthographic projection

Scaled orthographic projection

Paraperspective projection

[source: R. Urtasun]
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3D to 2D Projection

How are 3D primitives projected onto the image plane?

We can do this using a linear 3D to 2D projection matrix

Different types, most common:

Perspective projection

Orthographic projection

Scaled orthographic projection

Paraperspective projection

[source: R. Urtasun]
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Modeling Projection
[Pics from: A. Torralba, Forsyth & Ponce]

We will use the pinhole model as an approximation
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Modeling Projection
[Pics from: A. Torralba, Forsyth & Ponce]
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Focal Length

Can be thought of as zoom

Related to the field of view

!"##$ %&##$

!&&##$ '&&##$

Figure: Image from N. Snavely
[Source: N. Snavely, slide credit: R. Urtasun]
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Modeling Projection
[Pics from: A. Torralba, Forsyth & Ponce]

We will use the pinhole model as an approximation

Since it’s easier to think in a non-upsidedown world, we will work with the
virtual image plane, and just call it the image plane.

How do points in 3D project to image plane? If I know a point in 3D, can I
compute to which pixel it projects?
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Modeling Projection

First some notation which will help us derive the math

To start with, we need a coordinate system
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Modeling Projection

We place a coordinate system relative to camera: optical center or camera
center C is thus at origin (0, 0, 0).
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Modeling Projection

The Z axis is called the optical or principal axis. It is orthogonal to the
image plane. Axes X and Y are parallel to the image axes.
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Modeling Projection

We will use a right handed coordinate system
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Modeling Projection

The optical axis intersects the image plane in a point, p. We call this point
a principal point. It’s worth to remember the principal point since it will
appear again later in the math.
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Modeling Projection

The distance from the camera center to the principal point is called focal
length, we will denote it with f . It’s worth to remember the focal length
since it will appear again later in the math.
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Modeling Projection

We’ll denote the image axes with x and y . An image we see is of course
represented with these axes. We’ll call this an image coordinate system.

The tricky part is how to get from the camera’s coordinate system (3D) to
the image coordinate system (2D).
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Modeling Projection

Let’s take some point Q in 3D. Q “lives” relative to the camera; its
coordinates are assumed to be in camera’s coordinate system.
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Modeling Projection

We call the line from Q to camera center a projection line.
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Modeling Projection

The projection line intersects the image plane in a point q. This is the point
we see in our image.
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Modeling Projection

First thing to notice is that all points from Q’s projection line project to the
same point q in the image!

Ambiguity: It’s impossible to know how far a 3D point is from the camera
along the projection line by looking only at the image (point q).
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Modeling projection

From the movie Bone Collector

Ambiguity: It’s impossible to know how far a 3D point is from the camera
along the projection line by looking only at the image (point q).

It’s impossible to know the real 3D size of objects just from an image

Why did the detective put a dollar bill next to the footprint?

How would you compute the shoe’s dimensions?
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Projection: Ready for Math
[Pic from: Zisserman & Hartley]

Projection Equations

Using similar triangles:

Q = (X ,Y ,Z )T →
( f · X

Z
,
f · Y
Z

, f
)T

This is relative to principal point p. To move the origin to (0, 0) in image:

q = (X ,Y ,Z )T →
( f · X

Z
+ px ,

f · Y
Z

+ py , f
)T

where p = (px , py ) is the principal point
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Projection: Ready for Math

Projection Equations

Using similar triangles:

Q = (X ,Y ,Z )T →
( f · X

Z
,
f · Y
Z

, f
)T

This is relative to principal point p. To move the origin to (0, 0) in image:

q = (X ,Y ,Z )T →
( f · X

Z
+ px ,

f · Y
Z

+ py , f
)T

where p = (px , py ) is the principal point

Get the projection by throwing the last coordinate:

Q = (X ,Y ,Z )T → q =
( f · X

Z
+ px ,

f · Y
Z

+ py
)T

This is NOT a linear transformation as a division by Z is non-linear
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Homogeneous Coordinates!

We will use homogeneous coordinates, which simply append a 1 to the vector

!"#"$%&%"'()*""+,-&./%()/")/0%)+%(*'%1)

0"#"$%&%"'()-#.$%))
*""+,-&./%()

0"#"$%&%"'()(*%&%))
*""+,-&./%()

2"&3%+4&$)!"#$)0"#"$%&%"'()*""+,-&./%()

[Source: N. Snavely]
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Homogeneous Coordinates!

We will use homogeneous coordinates, which simply append a 1 to the vector

In homogeneous coordinates, scaling doesn’t affect anything:xy
1

 ∼
w · xw · y

w


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Homogeneous Coordinates!

We will use homogeneous coordinates, which simply append a 1 to the vector

In homogeneous coordinates, scaling doesn’t affect anything:xy
1

 ∼
w · xw · y

w



In Projective Geometry, all points are equal under scaling
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Useful Trivia about Homogeneous Coordinates

Homogeneous coordinates are quite useful in general. Let’s see why

Let’s look at equation of a line in 2D: ax + by + c = 0

I can represent the line with a homogeneous vector l := (a, b, c)T (why
homogeneous?) and a homogeneous vector x := (x , y , 1). How?

Dot product is 0: lT · x = 0!

So if I have a line and someone gives me a point (x , y), how do I quickly
check if the point lies on the line? Homogeneous coordinates, and check if
dot product is 0.

Ok, what if I give you two points (x1, y1) and (x2, y2) and I ask you to write
an equation for the line between them?

You can solve a linear system. But it’s much easier in homogeneous
coordinates: Since both points lie on a line, the homogeneous vectors are
both “orthogonal” to the line vector l (dot product 0).

We know that a vector orthogonal to two vectors is a cross product between
them: l = (x1, y1, 1)T × (x2, y2, 1)T . And this is easy to compute.
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Back to Perspective Projection

We currently have this (the nasty division by Z ):

Q = (X ,Y ,Z )T → q =

[
f ·X
Z + px

f ·Y
Z + py

]

Write this with homogeneous coordinates:

Q = (X ,Y ,Z )T → q =

 f ·X
Z + px

f ·Y
Z + py

1

 ∼
f · X + Z · px
f · Y + Z · py

Z



We can now write this as matrix multiplication:

Q =

XY
Z

 →

f · X + Z · px
f · Y + Z · py

Z

 =

f 0 px
0 f py
0 0 1

XY
Z


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Camera Intrinsics

From previous slide:

Q =

XY
Z

 →

f · X + Z · px
f · Y + Z · py

Z

 =

f 0 px
0 f py
0 0 1

XY
Z


Write:

K =

f 0 px
0 f py
0 0 1


This is called a camera calibration matrix or intrinsic parameter matrix.
The parameters in K are called internal camera parameters.

Finally:

w · xw · y
w

 = K

XY
Z

 → q =

[
x
y

]
[Source: Zisserman & Hartley]
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Camera Intrinsics

Camera calibration matrix:

K =

f 0 px
0 f py
0 0 1



It can be a little more complicated. Pixels may not be square:

K =

fx 0 px
0 fy py
0 0 1


And there might be a skew angle θ between x and y image axis:

K =

fx −fx cot θ px
0 fy/ sin θ py
0 0 1


[Source: Zisserman & Hartley]

Sanja Fidler CSC420: Intro to Image Understanding 26 / 67



Camera Intrinsics

Camera calibration matrix:

K =

f 0 px
0 f py
0 0 1


It can be a little more complicated. Pixels may not be square:

K =

fx 0 px
0 fy py
0 0 1



And there might be a skew angle θ between x and y image axis:

K =

fx −fx cot θ px
0 fy/ sin θ py
0 0 1


[Source: Zisserman & Hartley]

Sanja Fidler CSC420: Intro to Image Understanding 26 / 67



Camera Intrinsics

Camera calibration matrix:

K =

f 0 px
0 f py
0 0 1


It can be a little more complicated. Pixels may not be square:

K =

fx 0 px
0 fy py
0 0 1


And there might be a skew angle θ between x and y image axis:

K =

fx −fx cot θ px
0 fy/ sin θ py
0 0 1


[Source: Zisserman & Hartley]

Sanja Fidler CSC420: Intro to Image Understanding 26 / 67



Camera Intrinsics

Camera calibration matrix:

K =

f 0 px
0 f py
0 0 1

 We’ll work with this one

It can be a little more complicated. Pixels may not be square:

K =

fx 0 px
0 fy py
0 0 1


And there might be a skew angle θ between x and y image axis:

K =

fx −fx cot θ px
0 fy/ sin θ py
0 0 1


[Source: Zisserman & Hartley]
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Perspective Projection

[Source: N. Snavely]
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Dimensionality Reduction Machine (3D to 2D)

Figures © Stephen E. Palmer, 2002 
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Slide by A. Efros 
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Projection properties

Many-to-one: any points along same ray map to same point in image
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Projection properties

Figure: Proof by drawing
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Projection properties

Many-to-one: any points along same ray map to same point in image

Points → points

Lines → lines

But line through principal point projects to a point. Why?

Figure: Can you tell where is the principal point?
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Projection properties

Many-to-one: any points along same ray map to same point in image

Points → points

Lines → lines

But line through principal point projects to a point. Why?

Planes → planes
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Projection properties

Many-to-one: any points along same ray map to same point in image

Points → points

Lines → lines

But line through principal point projects to a point. Why?

Planes → planes

But plane through principal point which is orthogonal to image plane
projects to line. Why?
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Projection Properties: Cool Facts

Parallel lines converge at a vanishing point

Each different direction in the world has its own vanishing point

[Adopted from: N. Snavely, R. Urtasun]

Sanja Fidler CSC420: Intro to Image Understanding 31 / 67



Projection Properties: Cool Facts

Parallel lines converge at a vanishing point

Each different direction in the world has its own vanishing point

All lines with the same 3D direction intersect at the same vanishing point

[Pic: R. Szeliski]
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Projection Properties: Vanishing Point

All lines with the same 3D direction intersect at the same vanishing point.
Why?
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Projection Properties: Vanishing Point

All lines with the same 3D direction intersect at the same vanishing point.
Why?

Figure: We need to prove this.
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Projection Properties: Vanishing Point
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Projection Properties: Vanishing Point

All lines with the same 3D direction intersect at the same vanishing point.
Why?

Line that passes through V with direction D: X = V + tD.

Project it:wxwy
w

 = KX =

f 0 px
0 f py
0 0 1

Vx + tDx

Vy + tDy

Vz + tDz

 =

fVx + ftDx + pxVz + tpxDz

fVy + ftDy + pyVz + tpyDz

Vz + tDz


Send t →∞ and compute x and y :

x = lim
t→∞

fVx + ftDx + pxVz + tpxDz

Vz + tDz
=

fDx + pxDz

Dz

y = lim
t→∞

fVy + ftDy + pyVz + tpyDz

Vz + tDz
=

fDy + pyDz

Dz

This doesn’t depend on V! So all lines with direction D go to this point!
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Projection Properties: Vanishing Point

All lines with the same 3D direction intersect at the same vanishing point.

The easiest way to find this point: Translate line with direction D to the
camera center. This line intersects the image plane in the vanishing point
corresponding to direction D! Why?
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Projection Properties: Cool Facts

Parallel lines converge at a vanishing point

Each different direction in the world has its own vanishing point

Lines parallel to image plane are also parallel in the image (we say that they
intersect at infinity). Why?
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intersect at infinity.
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Projection Properties: Cool Tricks

This picture has been recorded from a car with a camera on top. We know
the camera intrinsic matrix K .

Can we tell the incline of the hill we are driving on?

How?
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Projection Properties: Cool Tricks

Can we tell the incline of the hill we are driving on?

Figure: This is the 3D world behind the picture.
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Projection Properties: Cool Tricks

Can we tell the incline of the hill we are driving on?

Figure: If we compute the 3D direction of the house’s vertical lines relative to
camera, we have the incline! How can we do that?
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Projection Properties: Cool Tricks

Can we tell the incline of the hill we are driving on?

Figure: Extract “vertical” lines and compute vanishing point. How can we
compute direction in 3D from vanishing point (if we have K )?
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Projection Properties: Cool Tricks

Can we tell the incline of the hill we are driving on?

Figure: This picture should help.
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Projection Properties: Cool Tricks

Can we tell the incline of the hill we are driving on?

We have:w · vpxw · vpy
w

 = KD → D = wK−1

vpxvpy
1

 → normalize D to norm 1
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Vanishing Points Can be Deceiving

Parallel lines converge at a vanishing point.

But intersecting lines in 2D are not necessary parallel in 3D.

[Source: A. Jepson]
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Projection Properties: Cool Facts

Parallel lines converge at a vanishing point

Each different direction in the world has its own vanishing point

For lines on the same 3D plane, the vanishing points lie on a line. We call it
a vanishing line. Vanishing line for the ground plane is a horizon line.
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Projection Properties: Cool Facts

Parallel lines converge at a vanishing point

For lines on the same 3D plane, the vanishing points lie on a line. We call it
a vanishing line. Vanishing line for the ground plane is a horizon line.

Some horizon lines are nicer than others ;)

Punta Cana
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Projection Properties: Cool Facts

Parallel lines converge at a vanishing point

For lines on the same 3D plane, the vanishing points lie on a line. We call it
a vanishing line or a horizon line.

Parallel planes in 3D have the same horizon line in the image.
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Projection Properties: Cool Facts

Can I tell how much above ground this picture was taken?

Sanja Fidler CSC420: Intro to Image Understanding 45 / 67



Projection Properties: Cool Facts

Can I tell how much above ground this picture was taken?

Sanja Fidler CSC420: Intro to Image Understanding 45 / 67



Projection Properties: Cool Facts

Same distance as where the horizon intersects a building
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Projection Properties: Cool Facts

Same distance as where the horizon intersects a building: 50 floors up
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Projection Properties: Cool Facts

This is only true when the camera (image plane) is orthogonal to the ground
plane. And the ground plane is flat.

A very nice explanation of this phenomena can be find by Derek Hoiem here:
https://courses.engr.illinois.edu/cs543/sp2011/materials/3dscene_

book_svg.pdf
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Orthographic Projection

[Source: R. Urtasun]

Requires no division and simply drops the Z coordinate.
Orthographic projection:

Q =


X
Y
Z
1

 →

XY
1

 =

1 0 0 0
0 1 0 0
0 0 0 1



X
Y
Z
1


Special case of perspective projection where the distance from the camera
center to the image plane is infinity
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Orthographic Projection

[Source: N. Snavely]
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Orthographic Projection

For perspective projection lines parallel in 3D are not parallel in the image.

For orthographic projection lines parallel in 3D are parallel in the image.

[Source: A. Torralba]
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Camera Parameters

We are not yet done with projection. To fully specify projection, we need to:

Describe its internal parameters (we know this, this is our K)

Describe its pose in the world. Two important coordinate systems:

World coordinate system

Camera coordinate system
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[Source: N. Snavely, slide credit: R. Urtasun]
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Camera Parameters

Why two coordinate systems?

Figure: Imagine this is your room.
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Camera Parameters

Why two coordinate systems?

Figure: When you were furnishing you measured everything in detail.
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Camera Parameters

Why two coordinate systems?

Figure: Thus you know all coordinates relative to a special point (origin) and
coordinate system in the room. This is your room’s (world) coordinate system.
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Camera Parameters

Why two coordinate systems?

Figure: Now you take a picture and you wonder how points project to camera. In
order to project, you need all points in camera’s coordinate system.
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Camera Parameters

Why two coordinate systems?

Figure: For e.g. self-driving cars, 3D points are typically measured with Velodyne.
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Camera Parameters

Why two coordinate systems?

Figure: We want to be able to project the 3D points in Velodyne’s coordinate
system onto an image captured by a camera.
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Camera Parameters

Why two coordinate systems?

Figure: We want to be able to project the 3D points in Velodyne’s coordinate
system onto an image captured by a camera.
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Projection

To project a point (X ,Y ,Z ) in world coordinates on the image plane, we need to:

Transform (X ,Y ,Z ) into camera coordinates. We thus need:

Camera position (in world coordinates)

Camera orientation (in world coordinates)

To project into the image plane

Need to know camera intrinsics

These can all be described with matrices!

[Source: N. Snavely, slide credit: R. Urtasun]
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Camera Extrinsics

Figure: We first need our camera position and orientation in the room’s world.
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Camera Extrinsics
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Camera Extrinsics

Sanja Fidler CSC420: Intro to Image Understanding 52 / 67



Camera Extrinsics
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Camera Extrinsics
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Camera Extrinsics
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Camera Extrinsics

Figure: Final Transformation
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Projection Equations

Projection matrix P models the cumulative effect of all intrinsic and
extrinsic parameters. We use homogeneous coordinates for 2D and 3D:

q =

axay
a

 = P


X
Y
Z
1



It can be computed as

P =

f 0 px
0 f py
0 0 1


︸ ︷︷ ︸

intrinsics K

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

projection

[
R3×3 03×1
01×3 1

]
︸ ︷︷ ︸

rotation

[
I3×3 T3×1
01×3 1

]
︸ ︷︷ ︸

translation

To get a point q in the image plane, I need to compute P(X ,Y ,Z , 1)T ,
where P is a 3× 4 matrix. This gives me a 3× 1 vector. Now I divide all
coordinates with the third coordinate (making the third coordinate equal to
1), and then drop the last coordinate. As simple as that.
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The Projection Matrix

The projection matrix is defined as

P = K︸︷︷︸
intrinsics

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

projection

[
R3×3 03×1
01×3 1

]
︸ ︷︷ ︸

rotation

[
I3×3 T3×3
01×3 1

]
︸ ︷︷ ︸

translation︸ ︷︷ ︸[
R t

]
More compactly

P = K
[
R t

]
Sometimes you will see notation:

P = K
[
R | t

]
It’s the same thing.

This might look complicated. Truth is, in most cases you don’t have P at
all, so you can’t really compute any projections. When you have a calibrated
camera, then someone typically gives you P. And then projection is easy.
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R3×3 03×1
01×3 1

]
︸ ︷︷ ︸

rotation

[
I3×3 T3×3
01×3 1

]
︸ ︷︷ ︸

translation︸ ︷︷ ︸[
R t

]
More compactly

P = K
[
R t

]
Sometimes you will see notation:

P = K
[
R | t

]
It’s the same thing.

This might look complicated. Truth is, in most cases you don’t have P at
all, so you can’t really compute any projections. When you have a calibrated
camera, then someone typically gives you P. And then projection is easy.
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A Short Note on Camera Calibration

The general procedure:

Place a 3D pattern (for which you know all distances) in front of camera.

Take a picture. Detect corners in image and find correspondences with the
points in the pattern.

Go to the internet and check out the math that tells you how to compute K
from these 2D-3D correspondences. ;) We won’t cover in class.

[Pic from: R. Duraiswami]
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Camera Calibration: Interesting Fact

Let’s say you have an image but you don’t know anything about the camera
(for example, image downloaded from the web).

For images where you see lines corresponding to 3 orthogonal directions, like
cubes or rooms, you can compute the camera matrix K as well as R and t!

How to do this is explained in the Zisserman & Hartley book.
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Projection Properties: Cool Facts

As a consequence, for scenes with lots of lines (e.g. man-made scenes) one
can reconstruct the scene in 3D from a single image!
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Projection Properties: Cool Facts

As a consequence, for scenes with lots of lines (e.g. man-made scenes) one
can reconstruct the scene in 3D from a single image!
For those interested, check out the math here:

A. Criminisi, I. Reid, and A. Zisserman

Single View Metrology

International Journal of Computer Vision, vol 40, num 2, 2000

http://www.cs.cmu.edu/ ph/869/papers/Criminisi99.pdf
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Inserting Objects [Karsch et al., 2011]

K. Karsch, V. Hedau, D. Forsyth, D. Hoiem, Rendering synthetic objects into legacy photographs, SIGGRAPH’11

link to video
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https://vimeo.com/28962540


Camera Calibration: Another Interesting Fact

From a longer video in which the sun travels across the sky you can
compute the camera intrinsic matrix, as well as extrinsic, i.e., the GPS
location where you are! Well, up to a 100km accuracy...
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Camera Calibration: Another Interesting Fact

J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros

What Do the Sun and Sky Tell Us About the Camera?

International Journal on Computer Vision, 88(1), May 2010
Paper: http://vision.gel.ulaval.ca/~jflalonde/projects/

sky/index.html

Code: https://github.com/jflalonde/webcamCalibration

From a longer video in which the sun travels across the sky you can
compute the camera intrinsic matrix, as well as extrinsic, i.e., the GPS
location where you are! Well, up to a 100km accuracy...

Is this useful? Maybe, to catch terrorists that record their videos outside.
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Exercise (Not Very Easy, But Fun)

We want to render (project) a 3D CAD model of a car to this image in a
realistic way

How?
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Exercise

First get a CAD model. There are tones of them, e.g. 3D Warehouse (free)
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Exercise

We downloaded this model. Now what?

Figure: A CAD model is a collection of 3D vertices and faces that connect the
vertices. Each face represents a small triangle. It typically has color.
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Exercise

Our image was collected with a car on the road:

A camera was on top of the car, approximately 1.7m above ground
Image plane is orthogonal to the ground
We have the internal parameters of the camera, K.
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Exercise

Our image was collected with a car on the road:

A camera was on top of the car, approximately 1.7m above ground

Image plane is orthogonal to the ground

We have the internal parameters of the camera, K.

With a little bit of math, we can compute the ground plane in 3D, relative

to camera. We a bit more math we can compute which point on the ground

plane projects to an image point (x , y).

How?

We can now “place” our CAD model to this point (compute R and t)

Rendering:

Compute [ax , ay , a]T = K
[
R | t

]
[X ,Y ,Z , 1]T for each CAD

vertex[X ,Y ,Z ]T . Divide [ax , ay , a]T with third coord and drop it.
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Exercise

That’s it. Make a video for more fun
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Exercise

That’s it. Make a video for more fun
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Can we Turn Fun into Useful?

Can we use this in some more practical (useful) application?
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Can we Turn Fun into Useful?

Generate 3D boxes and score (classifier on some image features)

X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler, R. Urtasun. 3D Object Proposals
for Accurate Object Class Detection. NIPS’15
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A Little More on Camera Models
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