Image Features:

Scale Invariant Interest Point Detection
Our Goal: Matching Objects / Images

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?

Figure: We want to be able to match these two objects / images
Our Goal: Matching Objects / Images

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. **How?**

Figure: But these shouldn’t be matched!
Our Goal: Matching Objects / Images

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. **How?**
 - Find interest points on each image

Figure: Find some interest points in an image
Our Goal: Matching Objects / Images

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. **How?**
 - Find interest points on each image

Figure: And **independently** in other images (independently: my algorithm only sees one image at a time – why is this a good idea?)
Our Goal: Matching Objects / Images

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. **How?**
 - Find interest points on each image

Figure: How can we match points??
Our Goal: Matching Objects / Images

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?
 - Find interest points on each image
 - Form a vector description of each point. How?

Figure: We could match if we took a patch around each point, and describe it with a feature vector (we know how to compare vectors)
Our Goal: Matching Objects / Images

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. **How?**
 - Find **scale invariant** interest points on each image
 - Form a vector description of each point. **How?**

Figure: What if my interest point detector tells me the size (scale) of the patch? We are hoping that this “canonical” size somehow reflects size of the object.
Our Goal: Matching Objects / Images

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. **How?**
 - Find **scale invariant** interest points on each image
 - Form a vector description of each point. **How?**

Figure: And then we can form our feature vectors with respect to this size (how?)
Our Goal: Matching Objects / Images

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. **How?**
 - Find **scale invariant** interest points on each image
 - Form a vector description of each point. **How?**
 - Matching

Figure: Then life is easy: we find the best matches and compute a transformation (scale, rotation, etc) of the object – in the next lecture
Our Goal: Matching Objects / Images

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. **How?**
 - Find **scale invariant** interest points on each image
 - Form a vector description of each point. **How?**
 - Matching

Figure: And we are hoping that our feature vectors and our matching algorithm will be able to say that this image does not contain our object!
Our Goal: Matching Objects / Images

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. **How?**
 - Find **scale invariant** interest points on each image
 - Form a vector description of each point. How?
 - Matching
Scale Invariant Interest Points

How can we **independently** select interest points in each image, such that the detections are repeatable across different scales?

[Source: K. Grauman, slide credit: R. Urtasun]
Scale Invariant Interest Points

How can we \textbf{independently} select interest points in each image, such that the detections are repeatable across different scales?

[Source: K. Grauman, slide credit: R. Urtasun]
Scale Invariant Interest Points

How can we *independently* select interest points in each image, such that the detections are repeatable across different scales?

- Extract features at a variety of scales, e.g., by using multiple resolutions in a pyramid, and then matching features at the same level.

- When does this work?
How can we **independently** select interest points in each image, such that the detections are repeatable across different scales?

- More efficient to extract features that are stable in both location and scale.

\[f(I_{h \cdots m}(x, \sigma)) = f(I_{h \cdots m}(x', \sigma')) \]

[Source: K. Grauman, slide credit: R. Urtasun]
Scale Invariant Interest Points

How can we **independently** select interest points in each image, such that the detections are repeatable across different scales?

- Find scale that gives local maxima of a function f in both position and scale.

$$f(I_{x,y}(x,\sigma)) = f(I_{x,y}(x',\sigma'))$$

[Source: K. Grauman, slide credit: R. Urtasun]
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).

Source: T. Tuyttellaars, slide credit: R. Urtasun
Automatic Scale Selection

Function responses for increasing scale (scale signature).

Source: T. Tuyttellaars, slide credit: R. Urtasun
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
What Can the Signature Function Be?

[Source: R. Szeliski, slide credit: R. Urtasun]
What Can the Signature Function Be?

[Source: R. Szeliski, slide credit: R. Urtasun]
Blob Detection – Laplacian of Gaussian

- Laplacian of Gaussian: We mentioned it for edge detection
 \[
 \nabla^2 g(x, y, \sigma) = \frac{\partial^2 g(x, y, \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y, \sigma)}{\partial y^2},
 \]
 where \(g \) is a Gaussian

- It is a circularly symmetric operator (finds difference in all directions)
- It can be used for 2D blob detection! How?
Blob Detection – Laplacian of Gaussian

- Laplacian of Gaussian: We mentioned it for edge detection

\[\nabla^2 g(x, y, \sigma) = -\frac{1}{\pi \sigma^4} \left(1 - \frac{x^2 + y^2}{2\sigma^2} \right) \exp\left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

- It is a circularly symmetric operator (finds difference in all directions)

- It can be used for 2D blob detection! How?
Blob Detection – Laplacian of Gaussian

- It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
Blob Detection – Laplacian of Gaussian

- It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
Blob Detection – Laplacian of Gaussian

- It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
Blob Detection – Laplacian of Gaussian

- It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
Blob Detection – Laplacian of Gaussian

- It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
Blob Detection in 2D: Scale Selection

Laplacian of Gaussian = blob detector

[Source: B. Leibe, slide credit: R. Urtasun]
We define the **characteristic scale** as the scale that produces peak (minimum or maximum) of the Laplacian response.
Example

[Source: K. Grauman]
Interest points are local maxima in both position and scale.

$L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow (x, y, \sigma)$

Squared filter response maps

Kristen Grauman
[Source: S. Lazebnik]
That’s nice. But can we do faster?

Remember again the Laplacian of Gaussian:

\[\nabla^2 g(x, y, \sigma) = \frac{\partial^2 g(x, y, \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y, \sigma)}{\partial y^2}, \]

where \(g \) is a Gaussian.
That’s nice. But can we do faster?

Remember again the Laplacian of Gaussian:

\[
\nabla^2 g(x, y, \sigma) = \frac{\partial^2 g(x, y, \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y, \sigma)}{\partial y^2},
\]

where \(g \) is a Gaussian

Larger scale (\(\sigma \)), larger the filters (more work for convolution)

Can we do it faster?
Approximate the Laplacian of Gaussian

\[L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right) \]

(Laplacian)

\[DoG = G(x, y, k\sigma) - G(x, y, \sigma) \]

(Difference of Gaussians)

\[I(k\sigma) \quad I(\sigma) \quad I(k\sigma) - I(\sigma) \]

[Source: K. Grauman]
Lowe’s DoG

- Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian filters looking for 3D (space+scale) maxima in the resulting structure

[Source: R. Szeliski, slide credit: R. Urtasun]
Lowe’s DoG

- First compute a Gaussian image pyramid

[Source: F. Flores-Mangas]
Lowe’s DoG

- First compute a Gaussian image pyramid
- Compute Difference of Gaussians

\[D(x, y, \rho) = I(x, y) \ast (G(x, y, k\rho) - G(x, y, \rho)) \]

for \(\rho = \{ \sigma, k\sigma, k^2\sigma, \ldots, k^{s-1}\sigma \}, \quad k = 2^{1/s} \)

[Source: F. Flores-Mangas]
Lowe’s DoG

- First compute a Gaussian image pyramid
- Compute Difference of Gaussians
- At every scale

[Source: F. Flores-Mangas]
Lowe’s DoG

- First compute a Gaussian image pyramid
- Compute Difference of Gaussians
- At every scale
- Find local maxima in scale
- A bit of pruning of bad maxima and we’re done!

[Source: F. Flores-Mangas]
Lowe’s DoG

- First compute a Gaussian image pyramid
- Compute Difference of Gaussians
- At every scale
- Find local maxima in scale
- A bit of pruning of bad maxima and we’re done!

[Source: F. Flores-Mangas]
Figure: Let’s first try out some synthetic images
Figure: Detected interest points (kind of make sense)
Figure: Other roundy objects
Figure: Detected interest points
Examples

Figure: Real images
Figure: Detected interest points
Examples

Figure: Detected interest points
Other Interest Point Detectors (Many Good Options!)

- Lindeberg: Laplacian of Gaussian
- Lowe: DoG (typically called the SIFT interest point detector)
- Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
- Tuyttelaars & Van Gool: EBR and IBR
- Matas: MSER
- Kadir & Brady: Salient Regions
To match the same scene or object under different viewpoint, it’s useful to first detect **interest points** (keypoints)

We looked at these interest point detectors:

- Harris corner detector: translation and rotation but not scale invariant
- Scale invariant interest points: Laplacian of Gaussians and Lowe’s DoG

Harris’ approach computes l_x^2, l_y^2 and $l_x l_y$, and blurs each one with a Gaussian. Denote with: $A = g * l_x^2$, $B = g * (l_x l_y)$ and $C = g * l_y^2$. Then $M_{xy} = \begin{pmatrix} A(x, y) & B(x, y) \\ B(x, y) & C(x, y) \end{pmatrix}$ characterizes the shape of E_{WSSD} for a window around (x, y). Compute “cornerness” score for each (x, y) as $R(x, y) = \det(M_{xy}) - \alpha \text{trace}(M_{xy})^2$. Find $R(x, y) > \text{threshold}$ and do non-maxima suppression to find corners.

Lowe’s approach creates a Gaussian pyramid with s blurring levels per octave, computes difference between consecutive levels, and finds local extrema in space and scale.
Matching Results Based on SIFT Interest Points

- Works pretty well in variety of settings

Figure: Lowe’s interest point detector finds scale-invariant points that can be reliably matched across different images. (We will talk about how to do matching soon)
Matching Results Based on SIFT Interest Points

- Works pretty well in variety of settings

Figure: Lowe’s interest point detector finds scale-invariant points that can be reliably matched across different images. (We will talk about how to do matching soon.)
Matching Results Based on SIFT Interest Points

- Works pretty well in variety of settings

Figure: Lowe’s interest point detector finds scale-invariant points that can be reliably matched across different images. (We will talk about how to do matching soon)
Matching Results Based on SIFT Interest Points

- What about in different lighting/weather conditions?
Matching Results Based on SIFT Interest Points

Fails in very different lighting conditions

Figure: Green point(s) are repeatable interest points, red are non-repeatable
Can we use Machine Learning to detect interest points more reliably?

Learning an Interest Point Detector:

Y. Verdie, K. M. Yi, P. Fua and V. Lepetit
Large TILDE: A Temporally Invariant Learned DEtector
CVPR 2015

Project page & Code: http://cvlab.epfl.ch/research/tilde
Training Data

- What can we use?
Training Data

- What can we use? Data from webcams!
Training Data

- Now that we have training images, how shall we train the detector?
Training the Detector

- Detect e.g. SIFT Interest Points in images across time
- Keep only those that are repeatable across time.
- These are our (super reliable) positive training examples. What about negative examples?
Training the Detector

- Detect e.g. SIFT Interest Points in images across time
- Keep only those that are repeatable across time.
- These are our (super reliable) positive training examples. What about negative examples? All other points with some distance wrt positive points
Training the Detector

- Detect e.g. SIFT Interest Points in images across time
- Keep only those that are repeatable across time.
- These are our (super reliable) positive training examples. What about negative examples? All other points with some distance wrt positive points
- Take a patch around each point, extract some features on it.
- Train a classifier or a regressor

(a) Stack of training images
(b) Desired response on positive samples
Trained Filters

- Remember from the lecture where we trained a classifier to detect edges:
 If we train a linear classifier on a patch, it can be seen as a filter
Trained Filters

- Remember from the lecture where we trained a classifier to detect edges:

 If we train a linear classifier on a patch, it can be seen as a filter

Tiny lesson learned: Sometime our intermediate results (filters in this case) don’t look interpretable at all, but they still do the job
Now that we trained our detector, how can we use it on new images?
Using the Learned Interest Point Detector

- Apply our filter on each image patch (convolution, if it’s a linear classifier)

(c) Regressor response for a new image
Using the Learned Interest Point Detector

- Apply our filter on each image patch (convolution, if it’s a linear classifier)
- This has response everywhere. How can we find the actual interest points?
Using the Learned Interest Point Detector

- Apply our filter on each image patch (convolution, if it’s a linear classifier)
- This has response everywhere. How can we find the actual interest points?
- Non-maxima suppression (keep only points that are local maxima)
Qualitative Results (nice looking pictures)

- Visually check how well we can now match with new interest points

SIFT, SURF are hand-designed interest point detectors

FAST is trained to detect corners fast: First employs a slow method to detect corners, then trains decision trees to detect them really fast

Quantitative Results (performance numbers)

- Every method is much more convincing if it shows quantitative performance.
- If there are baselines for the problem, rule is: the more baselines the better.
- The more datasets, the better

<table>
<thead>
<tr>
<th>Proposed approach:</th>
<th>Webcam (2%)</th>
<th>Oxford Stand. (2%)</th>
<th>EF Stand. (2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILDE-GB</td>
<td>33.3</td>
<td>54.5</td>
<td>32.8</td>
</tr>
<tr>
<td>TILDE-CNN</td>
<td>36.8</td>
<td>51.8</td>
<td>49.3</td>
</tr>
<tr>
<td>TILDE-P24</td>
<td>40.7</td>
<td>58.7</td>
<td>59.1</td>
</tr>
<tr>
<td>TILDE-P</td>
<td>48.3</td>
<td>58.1</td>
<td>55.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baselines: previous approaches to interest point detection</th>
<th>Webcam (2%)</th>
<th>Oxford Stand. (2%)</th>
<th>EF Stand. (2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAST-9</td>
<td>26.4</td>
<td>53.8</td>
<td>47.9</td>
</tr>
<tr>
<td>SFOP</td>
<td>22.9</td>
<td>51.3</td>
<td>39.3</td>
</tr>
<tr>
<td>SIFER</td>
<td>25.7</td>
<td>45.1</td>
<td>40.1</td>
</tr>
<tr>
<td>SIFT</td>
<td>20.7</td>
<td>46.5</td>
<td>43.6</td>
</tr>
<tr>
<td>SURF</td>
<td>29.9</td>
<td>56.9</td>
<td>57.6</td>
</tr>
<tr>
<td>TaSK</td>
<td>14.5</td>
<td>25.7</td>
<td>15.7</td>
</tr>
<tr>
<td>WADE</td>
<td>27.5</td>
<td>44.3</td>
<td>51.0</td>
</tr>
<tr>
<td>MSER</td>
<td>22.3</td>
<td>51.5</td>
<td>35.9</td>
</tr>
<tr>
<td>LCF</td>
<td>30.9</td>
<td>55.0</td>
<td>40.1</td>
</tr>
<tr>
<td>EdgeFoci</td>
<td>30.0</td>
<td>54.9</td>
<td>47.5</td>
</tr>
</tbody>
</table>
Detection: Identify the interest points.

Description: Extract a feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]