Image Features:

Scale Invariant Interest Point Detection

 Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?

Figure: We want to be able to match these two objects / images

 Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?

Figure: But these shouldn't be matched!

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?
 - Find interest points on each image

Figure: Find some interest points in an image

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?
 - Find interest points on each image

Figure: And **independently** in other images (independently: my algorithm only sees one image at a time – why is this a good idea?)

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?
 - Find interest points on each image

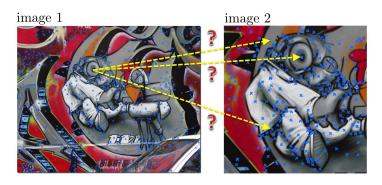


Figure: How can we match points??

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?
 - Find interest points on each image
 - Form a vector description of each point. How?

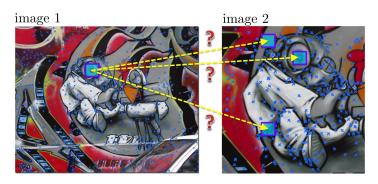


Figure: We could match if we took a patch around each point, and describe it with a feature vector (we know how to compare vectors)

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?
 - Find scale invariant interest points on each image
 - Form a vector description of each point. How?

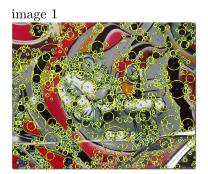


Figure: What if my interest point detector tells me the size (scale) of the patch? We are hoping that this "canonical" size somehow reflects size of the object.

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?
 - Find scale invariant interest points on each image
 - Form a vector description of each point. How?

image 1

Figure: And then we can form our feature vectors with respect to this size (how?)

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?
 - Find scale invariant interest points on each image
 - Form a vector description of each point. How?
 - Matching

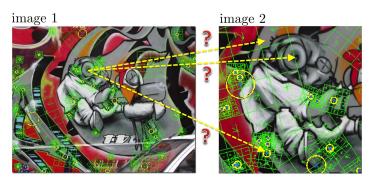


Figure: Then life is easy: we find the best matches and compute a transformation (scale, rotation, etc) of the object – in the next lecture

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?
 - Find scale invariant interest points on each image
 - Form a vector description of each point. How?
 - Matching

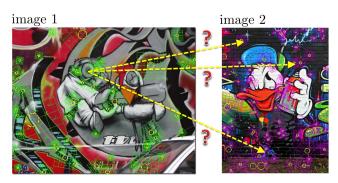


Figure: And we are hoping that our feature vectors and our matching algorithm will be able to say that this image does not contain our object!

- Our goal is to be able to match an object in different images where the object appears in different scale, rotation, viewpoints, etc. How?
 - Find scale invariant interest points on each image Let's do this first!
 - Form a vector description of each point. How?
 - Matching

How can we **independently** select interest points in each image, such that the detections are repeatable across different scales?

[Source: K. Grauman, slide credit: R. Urtasun]

How can we **independently** select interest points in each image, such that the detections are repeatable across different scales?

[Source: K. Grauman, slide credit: R. Urtasun]

How can we **independently** select interest points in each image, such that the detections are repeatable across different scales?

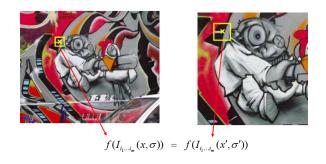
- Extract features at a variety of scales, e.g., by using multiple resolutions in a pyramid, and then matching features at the same level.
- When does this work?

If I detect an interest point here

Then I also want to detect one here

How can we **independently** select interest points in each image, such that the detections are repeatable across different scales?

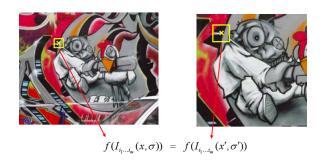
• More efficient to extract features that are stable in both location and scale.



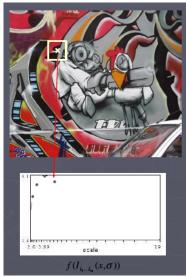
[Source: K. Grauman, slide credit: R. Urtasun]

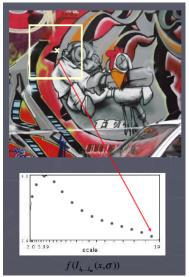
How can we **independently** select interest points in each image, such that the detections are repeatable across different scales?

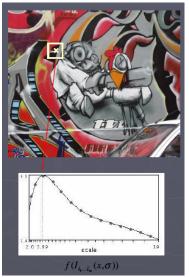
• Find scale that gives local maxima of a function f in both position and scale.

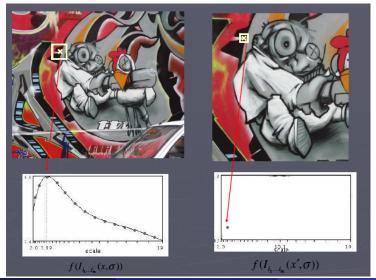


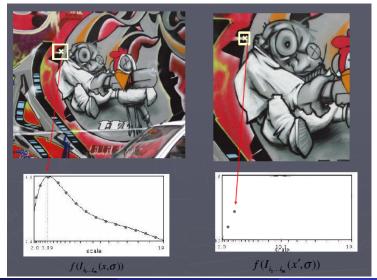
[Source: K. Grauman, slide credit: R. Urtasun]

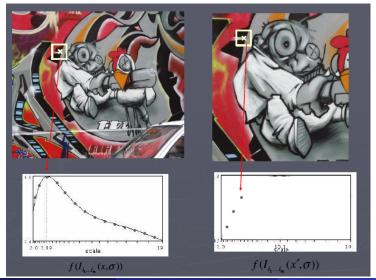


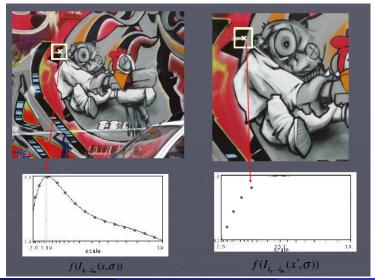


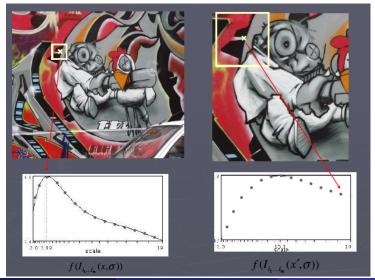


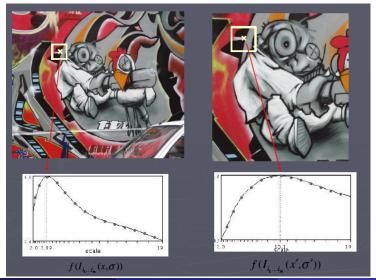






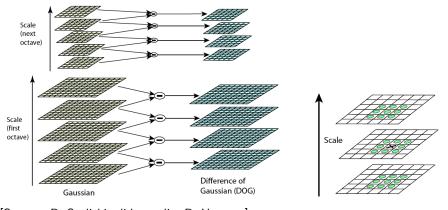






What Can the Signature Function Be?

- Lindeberg (1998): extrema in the Laplacian of Gaussian (LoG).
- Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian filters looking for 3D (space+scale) maxima in the resulting structure.

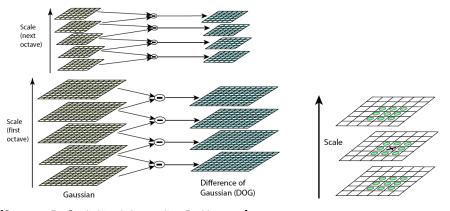


[Source: R. Szeliski, slide credit: R. Urtasun]

. . .

What Can the Signature Function Be?

- Lindeberg (1998): extrema in the Laplacian of Gaussian (LoG).
- Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian filters looking for 3D (space+scale) maxima in the resulting structure.



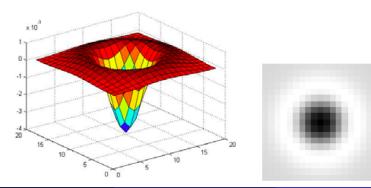
[Source: R. Szeliski, slide credit: R. Urtasun]

Blob Detection - Laplacian of Gaussian

• Laplacian of Gaussian: We mentioned it for edge detection

$$\nabla^2 g(x,y,\sigma) = \frac{\partial^2 g(x,y,\sigma)}{\partial x^2} + \frac{\partial^2 g(x,y,\sigma)}{\partial y^2}, \quad \text{ where } g \text{ is a Gaussian}$$

- It is a circularly symmetric operator (finds difference in all directions)
- It can be used for 2D blob detection! How?

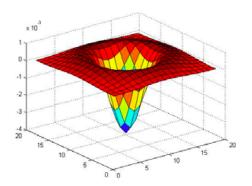


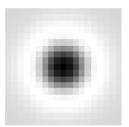
Blob Detection - Laplacian of Gaussian

• Laplacian of Gaussian: We mentioned it for edge detection

$$abla^2 g(x, y, \sigma) = -rac{1}{\pi \sigma^4} \Big(1 - rac{x^2 + y^2}{2\sigma^2} \Big) \exp^{-rac{x^2 + y^2}{2\sigma^2}}$$

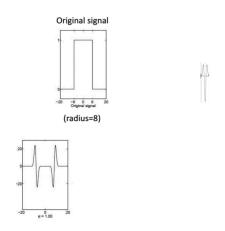
- It is a circularly symmetric operator (finds difference in all directions)
- It can be used for 2D blob detection! How?





Blob Detection – Laplacian of Gaussian

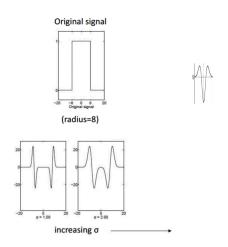
• It can be used for 2D blob detection! How?



[Source: F. Flores-Mangas]

Blob Detection - Laplacian of Gaussian

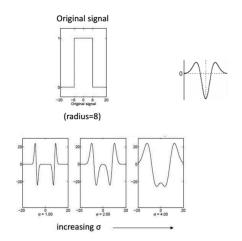
• It can be used for 2D blob detection! How?



[Source: F. Flores-Mangas]

Blob Detection - Laplacian of Gaussian

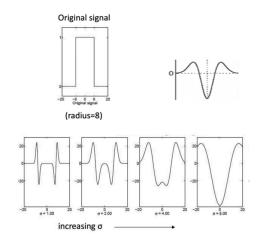
• It can be used for 2D blob detection! How?



[Source: F. Flores-Mangas]

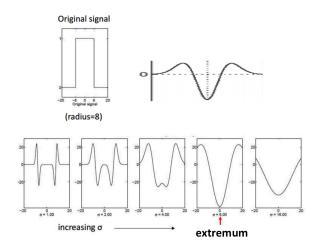
Blob Detection - Laplacian of Gaussian

• It can be used for 2D blob detection! How?



Blob Detection - Laplacian of Gaussian

• It can be used for 2D blob detection! How?



Blob Detection in 2D: Scale Selection

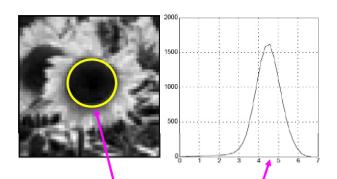
Laplacian of Gaussian = blob detector



[Source: B. Leibe, slide credit: R. Urtasun]

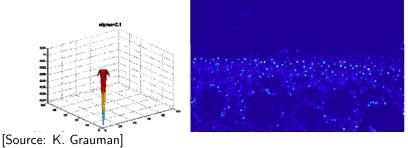
Characteristic Scale

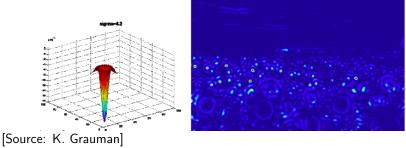
 We define the characteristic scale as the scale that produces peak (minimum or maximum) of the Laplacian response

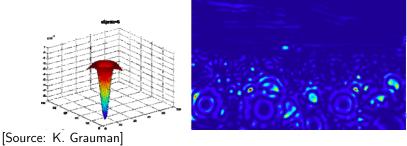


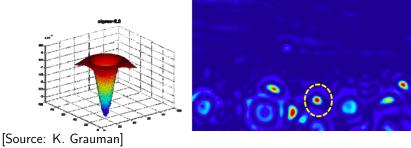
characteristic scale

[Source: S. Lazebnik]

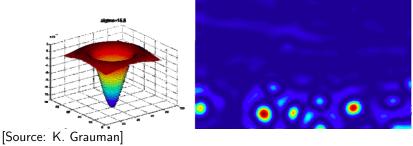


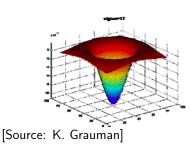


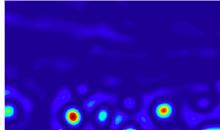




Sanja Fidler

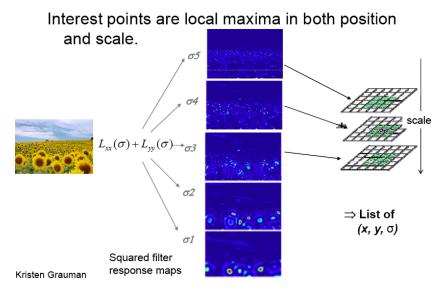






Sanja Fidler

Scale Invariant Interest Points



[Source: S. Lazebnik]

Blob Detection - Laplacian of Gaussian

- That's nice. But can we do faster?
- Remember again the Laplacian of Gaussian:

$$\nabla^2 g(x, y, \sigma) = \frac{\partial^2 g(x, y, \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y, \sigma)}{\partial y^2}, \quad \text{where } g \text{ is a Gaussian}$$

Blob Detection - Laplacian of Gaussian

- That's nice. But can we do faster?
- Remember again the Laplacian of Gaussian:

$$\nabla^2 g(x, y, \sigma) = \frac{\partial^2 g(x, y, \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y, \sigma)}{\partial y^2}, \quad \text{where } g \text{ is a Gaussian}$$

- So computing our interest points means two convolutions (one for each derivative) per scale
- Larger scale (σ) , larger the filters (more work for convolution)
- Can we do it faster?

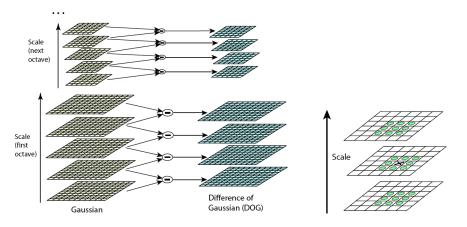
Approximate the Laplacian of Gaussian

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)
$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
(Difference of Gaussians)
$$I(k\sigma) \qquad I(\sigma) \qquad I(k\sigma) - I(\sigma)$$

$$= \bigcup_{k=1}^{Laplacian} DoG$$

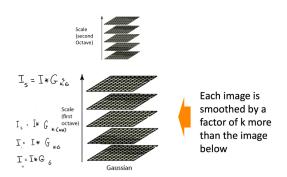
[Source: K. Grauman]

• Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian filters looking for 3D (space+scale) maxima in the resulting structure



[Source: R. Szeliski, slide credit: R. Urtasun]

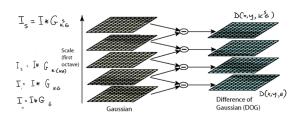
First compute a Gaussian image pyramid



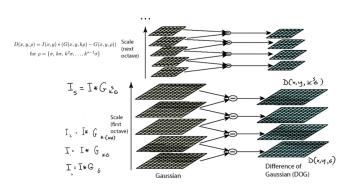
- First compute a Gaussian image pyramid
- Compute Difference of Gaussians

$$D(x, y, \rho) = I(x, y) * (G(x, y, k\rho) - G(x, y, \rho))$$

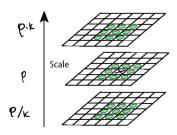
for $\rho = \{\sigma, k\sigma, k^2\sigma, \dots, k^{s-1}\sigma\}, \quad k = 2^{1/s}$



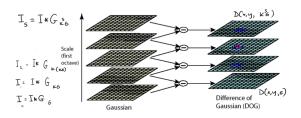
- First compute a Gaussian image pyramid
- Compute Difference of Gaussians
- At every scale



- First compute a Gaussian image pyramid
- Compute Difference of Gaussians
- At every scale
- Find local maxima in scale
- A bit of pruning of bad maxima and we're done!



- First compute a Gaussian image pyramid
- Compute Difference of Gaussians
- At every scale
- Find local maxima in scale
- A bit of pruning of bad maxima and we're done!



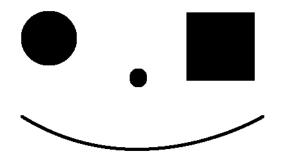


Figure: Let's first try out some synthetic images

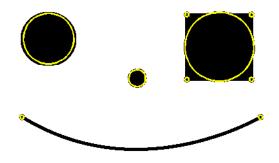


Figure: Detected interest points (kind of make sense)

Figure: Other roundy objects

Figure: Detected interest points

Figure: Real images

Figure: Detected interest points

Figure: Detected interest points

Other Interest Point Detectors (Many Good Options!)

- Lindeberg: Laplacian of Gaussian
- Lowe: DoG (typically called the SIFT interest point detector)
- Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
- Tuyttelaars & Van Gool: EBR and IBR
- Matas: MSER
- Kadir & Brady: Salient Regions

Summary – Stuff You Should Know

- To match the same scene or object under different viewpoint, it's useful to first detect interest points (keypoints)
- We looked at these interest point detectors:
 - Harris corner detector: translation and rotation but not scale invariant
 - Scale invariant interest points: Laplacian of Gaussians and Lowe's DoG
- Harris' approach computes I_x^2 , I_y^2 and I_xI_y , and blurs each one with a Gaussian. Denote with: $A=g*I_x^2$, $B=g*(I_xI_y)$ and $C=g*I_y^2$. Then $M_{xy}=\begin{pmatrix} A(x,y) & B(x,y) \\ B(x,y) & C(x,y) \end{pmatrix}$ characterizes the shape of E_{WSSD} for a window around (x,y). Compute "cornerness" score for each (x,y) as $R(x,y)=\det(M_{xy})-\alpha\operatorname{trace}(M_{xy})^2$. Find $R(x,y)>\operatorname{threshold}$ and do non-maxima suppression to find corners.
- Lowe's approach creates a Gaussian pyramid with s blurring levels per octave, computes difference between consecutive levels, and finds local extrema in space and scale

Works pretty well in variety of settings

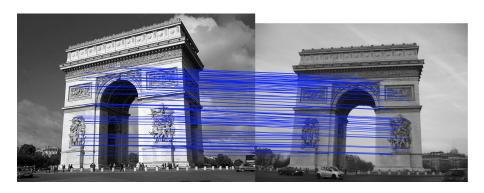


Figure: Lowe's interest point detector finds scale-invariant points that can be reliably matched across different images. (We will talk about how to do matching soon)

Works pretty well in variety of settings

Figure: Lowe's interest point detector finds scale-invariant points that can be reliably matched across different images. (We will talk about how to do

Works pretty well in variety of settings



Figure: Lowe's interest point detector finds scale-invariant points that can be reliably matched across different images. (We will talk about how to do matching soon)

• What about in different lighting/weather conditions?

[Pic from: Y. Verdie, K. M. Yi, P. Fua and V. Lepetit. TILDE: A Temporally Invariant Learned DEtector. CVPR'15]

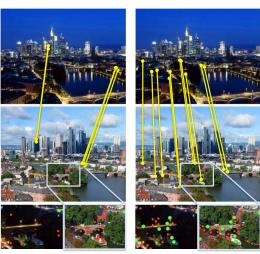
• Fails in very different lighting conditions

Figure: Green point(s) are repeatable interest points, red are non-repeatable

Machine Learning to Find Better Keypoints?

[Pic from: Y. Verdie, K. M. Yi, P. Fua and V. Lepetit. TILDE: A Temporally Invariant Learned DEtector. CVPR'15]

• Can we use Machine Learning to detect interest points more reliably?



SIFT

Learned Interest Point Detector?

Learning an Interest Point Detector:

Y. Verdie, K. M. Yi, P. Fua and V. Lepetit
Large *TILDE: A Temporally Invariant Learned DEtector*CVPR 2015

Paper: http://infoscience.epfl.ch/record/206786/files/top.pdf
Project page & Code: http://cvlab.epfl.ch/research/tilde

Training Data

• What can we use?

Training Data

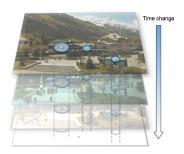
• What can we use? Data from webcams!

Training Data

• Now that we have training images, how shall we train the detector?

Training the Detector

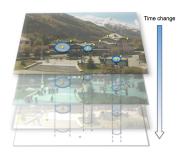
- Detect e.g. SIFT Interest Points in images across time
- Keep only those that are repeatable across time.
- These are our (super reliable) positive training examples. What about negative examples?



(a) Stack of training images

Training the Detector

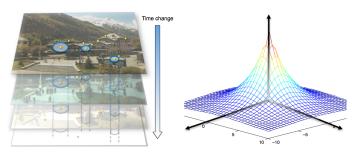
- Detect e.g. SIFT Interest Points in images across time
- Keep only those that are repeatable across time.
- These are our (super reliable) positive training examples. What about negative examples? All other points with some distance wrt positive points



(a) Stack of training images

Training the Detector

- Detect e.g. SIFT Interest Points in images across time
- Keep only those that are repeatable across time.
- These are our (super reliable) positive training examples. What about negative examples? All other points with some distance wrt positive points
- Take a patch around each point, extract some features on it.
- Train a classifier or a regressor

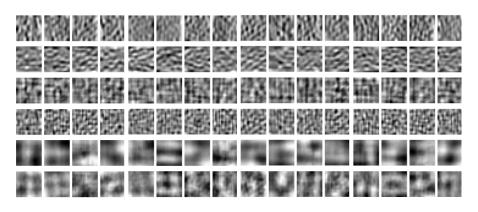


(a) Stack of training images

(b) Desired response on

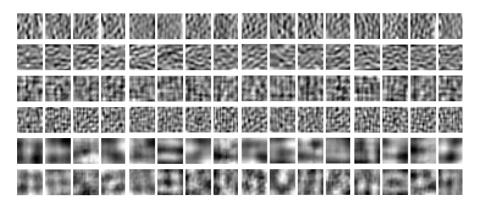
Trained Filters

Remember from the lecture where we trained a classifier to detect edges:
 If we train a linear classifier on a patch, it can be seen as a filter



Trained Filters

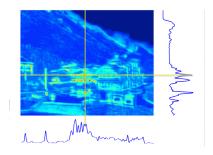
Remember from the lecture where we trained a classifier to detect edges:
 If we train a linear classifier on a patch, it can be seen as a filter



Tiny lesson learned: Sometime our intermediate results (filters in this case) don't look interpretable at all, but they still do the job

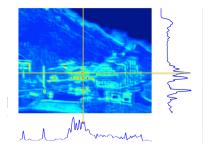
• Now that we trained our detector, how can we use it on new images?

• Apply our filter on each image patch (convolution, if it's a linear classifier)



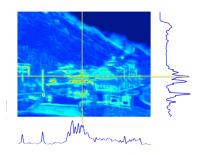
(c) Regressor response for a new image

- Apply our filter on each image patch (convolution, if it's a linear classifier)
- This has response everywhere. How can we find the actual interest **points**?



(c) Regressor response for a new image

- Apply our filter on each image patch (convolution, if it's a linear classifier)
- This has response everywhere. How can we find the actual interest **points**?
- Non-maxima suppression (keep only points that are local maxima)

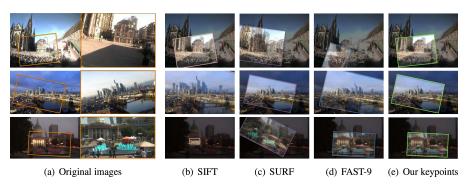


(c) Regressor response for a new image

(d) Keypoints detected in the new image

Qualitative Results (nice looking pictures)

Visually check how well we can now match with new interest points



- SIFT, SURF are hand-designed interest point detectors
- FAST is trained to detect corners fast: First employs a slow method to detect corners, then trains decision trees to detect them really fast

[E. Rosten and T. Drummond. Machine Learning for HighSpeed Corner Detection. ECCV 2006 Paper: http://www.edwardrosten.com/work/rosten_2006_machine.pdf]

Quantitative Results (performance numbers)

- Every method is much more convincing if it shows quantitative performance.
- If there are baselines for the problem, rule is: the more baselines the better.
- The more datasets, the better

		Different datasets					
			/				
	_		Webcam	Oxford		EF	
		#keypoints	(2%)	Stand.	(2%)	Stand.	(2%)
Proposed approach: Different instantiations of the model, e.g. different parameters, classifiers, etc	{	TILDE-GB	33.3	54.5	32.8	43.1	16.2
		TILDE-CNN	36.8	51.8	49.3	43.2	27.6
		TILDE-P24	40.7	58.7	59.1	46.3	33.0
		TILDE-P	48.3	58.1	55.9	45.1	31.6
Baselines: previous approaches to interest point detection	,	FAST-9	26.4	53.8	47.9	39.0	28.0
	/	SFOP	22.9	51.3	39.3	42.2	21.2
		SIFER	25.7	45.1	40.1	27.4	17.6
		SIFT	20.7	46.5	43.6	32.2	23.0
		SURF	29.9	56.9	57.6	43.6	28.7
		TaSK	14.5	25.7	15.7	22.8	10.0
		WADE	27.5	44.3	51.0	25.6	28.6
		MSER	22.3	51.5	35.9	38.9	23.9
		LCF	30.9	55.0	40.1	41.6	23.1
		EdgeFoci	30.0	54.9	47.5	46.2	31.0

Local Descriptors – Next Time

- **Detection**: Identify the interest points.
- **Description**: Extract a feature descriptor around each interest point.
- Matching: Determine correspondence between descriptors in two views.

