Matching Planar Objects In New
Viewpoints ... And Much More
— via Homography
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What Transformation Happened To My DVD?

@ Rectangle goes to a parallelogram
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Affine Transformations

Affine transformations are combinations of
@ Linear transformations, and

@ Translations

Properties of affine transformations:
@ Origin does not necessarily map to origin
@ Lines map to lines
@ Parallel lines remain parallel
@ Ratios are preserved
@ Closed under composition
@ Rectangles go to parallelograms

[Source: N. Snavely, slide credit: R. Urtasun]
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What Transformation Really Happened To My DV

@ What about now?
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What Transformation Really Happened To My DV

@ Actually a rectangle goes to quadrilateral

not parallel
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2D Image Transformations

) $13%
\mmum | b gaacihd
1 nndhnun

Enc lnk n Al‘

S x

\j

Transformation Matrix #DoF Preserves

]

translation [ I | t ] orientation
2x3

rigid (Euclidean) [ R|t ]2 , 3 lenghs

QeSS OlE

similarity [ sR|t ] 4 angles
2x3
affine [ A ] 6 parallelism
2x3
projective [f{ ] 8 straight lines [|
3x3

@ These transformations are a nested set of groups

@ Closed under composition and inverse is a member [source: R. Szeliski]
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Projective Transformations

@ Homography:

x' a b c| [x
wl|y'|=|d e f| |y
1 g h i| |1
Properties:

@ Origin does not necessarily map to origin

@ Lines map to lines

@ Parallel lines do not necessarily remain parallel

@ Ratios are not preserved

@ Closed under composition

@ Rectangle goes to quadrilateral

@ Affine transformation is a special case, where g=h=0and i =1

[Source: N. Snavely, slide credit: R. Urtasun]
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What Transformation Really Happened to My DVD?

not parallel

For planar objects:
@ Viewpoint change for planar objects is a homography

o Affine transformation approximates viewpoint change for planar

objects that are far away from camera
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What Transformation Happened to My DVD?

@ Why should | care about homography?
@ Now that | care, how should | estimate it?

o | want to understand the geometry behind homography. That is, why
aren't parallel lines mapped to parallel lines in oblique viewpoints?

How did we get that equation for computing the homography?
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Homography

@ Why should | care about homography? Let’s answer this first
@ Now that | care, how should | estimate it?

o | want to understand the geometry behind homography. That is, why
aren't parallel lines mapped to parallel lines in oblique viewpoints?

How did we get that equation for computing the homography?
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Homography

not parallel affine approximation

@ Why do we need homography? Can't we just assume that the
transformation is affine? The approximation on the right looks pretty

decent to me...
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Homography

not parallel affine approximation

@ Why do we need homography? Can't we just assume that the
transformation is affine? The approximation on the right looks pretty
decent to me...

@ That's right. If | want to detect (match) an object in a new viewpoint,

an affine transformation is a relatively decent approximation
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Homography

not parallel affine approximation

@ Why do we need homography? Can't we just assume that the
transformation is affine? The approximation on the right looks pretty

decent to me...

@ That's right. If | want to detect (match) an object in a new viewpoint,

an affine transformation is a relatively decent approximation

@ But for some applications | want to be more accurate. Which?
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Application 1: a Little Bit of CSI

@ Tom Cruise is taking an exam on Monday

Sanja Fidler CSC420: Intro to Image Understanding 12 / 46



Application 1: a Little Bit of CSI

exam is here

@ The professor keeps the exams in this office
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Application 1: a Little Bit of CSI

@ He enters (without permission) and takes a picture of the laptop

screen
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Application 1: a Little Bit of CSI

@ His picture turns out to not be from a viewpoint he was shooting for
(it's difficult to take pictures while hanging)

@ Can he still read the exam?
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Warping an Image with a Global Transformation

@ Transformation T is a coordinate-changing machine:
[x'.y'1=T(x,y)

@ What does it mean that T is global?

o Is the same for any point p
e Can be described by just a few numbers (parameters)

[Source: N. Snavely, slide credit: R. Urtasun]
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Warping an Image with a Global Transformation

@ Example of warping for different transformations:

translation rotation aspect

perspective
affine

Sanja Fidler CSC420: Intro to Image Understanding



Forward and Inverse Warping

@ Forward Warping: Send each pixel f(x) to its corresponding location
(X', y') = T(x,y) ing(x',y")

procedure forwardWarp( f, h,out g):
For every pixel @ in f(x)
1. Compute the destination location =’ = h(x).

2. Copy the pixel f(x) to g(x’).

@ Inverse Warping: Each pixel at destination is sampled from original image

procedure inverseWarp( f, h.out g):
For every pixel =’ in g(=')
1. Compute the source location = = h(z’)

2. Resample f(x) at location a and copy to g(z")

[source: R. Urtasun]
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Application 1: a Little Bit of CSI

@ We want to transform the picture (plane) inside these 4 points into a

rectangle (laptop screen)
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Application 1: a Little Bit of CSI

(1,1) (1,1440)

Screen resolution is 900 x 1440

(900, 1) (900, 1440)

@ We want it to look like this. How can we do this?
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Application 1: a Little Bit of CSI

@ A transformation that maps a projective plane (a quadrilateral) to
another projective plane (another quadrilateral, in this case a

rectangle) is a homography

homography H

(1,1) (1,1440)

Sereen resolution is 900 x 1440

(900, 1)
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Application 1: a Little Bit of CSI

o If we compute the homography and warp the image according to it,

we get this

Sanja Fidler CSC420: Intro to Image Understanding 16 / 46



Application 1: a Little Bit of CSI

o If we used affine transformation instead, we'd get this. Would be even

worse if our picture was taken closer to the laptop
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Application 1: a Little More of CSI

The floor (enlarged) Automatically

Slide from Antonio Criminisi rectified floor
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Application 1: a Little More of CSI

From Martin Kemp The Science of Art
(manual reconstruction)

Automatic rectification

Slide from Anton\i
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Application 1: a Little More of CSI

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano
Slide from Criminisi
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Application 1: a Little More of CSI

Automatic
rectification

From Martin Kemp, The Science of Art

(manual reconstruction)
-

Slide from Criminisi
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Application 2: How Much do Soccer Players Run?
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Application 2: How Much do Soccer Players Run?

@ How many meters did this player run?
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Application 2: How Much do Soccer Players Run?
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o Field is planar. We know its dimensions (look on Wikipedia).
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Application 2: How Much do Soccer Players Run?

@ Let's take the 4 corner points of the field
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Application 2: How Much do Soccer Players Run?

60 Yds
55M
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@ We need to compute a homography that maps them to these 4

corners
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Application 2: How Much do Soccer Players Run?

@ We need to compute a homography that maps the 4 corners. Any
other point from this plane (the field) also maps to the right with the
same homography
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Application 2: How Much do Soccer Players Run?

@ Nice. What happened to the players?
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Application 2: How Much do Soccer Players Run?

@ We can now also transform the player’s trajectory — and we have it
in meters!
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Application 2: How Much do Soccer Players Run?

@ If we used affine transformation... Our estimations of running would
not be accurate!
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Application 3: Panorama Stitching

Take a tripod, rotate camera

and take pictures

[Source: Fernando Flores-Mangas]
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Application 3: Panorama Stitching

[Source: Fernando Flores-Mangas]
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Application 3: Panorama Stitching

@ Each pair of images is related by homography! If we also moved the
camera, this wouldn’t be true (next class) [Source: Fernando Flores-Mangas]
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Application 3: Panorama Stitching

@ To do panorama stitching, we need to:
e Match points between pairs of images | and J
e Compute a transformation between the between matches in | and J : a
homography
e Do it robustly (RANSAC)
e Warp the first image to the second using the estimated homography
@ Apart from the last point, this is exactly the same procedure as for

the problem of matching planar objects across viewpoints

@ So this should motivate the why do | care part of the homographies
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Homography

@ Why should | care about homography?
@ Now that | care, how should | estimate it? Let’s do this now

o | want to understand the geometry behind homography. That is, why
aren't parallel lines mapped to parallel lines in oblique viewpoints?

How did we get that equation for computing the homography?
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Solving for Homographies

@ Let (x;,y;) be a point on the reference (model) image, and (x/, y/) its match
in the test image

@ A homography H maps (x;,y;) to (x/,y!):

ax! hoo ho1  ho2| |xi
ayl| = |ho hui hio| |yi
a ho ha ho| |1
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Solving for Homographies

@ Let (x;,y;) be a point on the reference (model) image, and (x/, y/) its match
in the test image

@ A homography H maps (x;,y;) to (x/,y!):

ax! hoo ho1  ho2| |xi
ayl| = |ho hui hio| |yi
a ho ha ho| |1

@ We can get rid of that a on the left:

,_ hooxi + hovyi + ho2
Xi =

hooxi + ho1y; + hoo

) = hiox; + hi1yi + hio

hooxi + ho1yi + hao
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Solving for Homographies

@ Let (x;,y;) be a point on the reference (model) image, and (x/, y/) its match
in the test image

@ A homography H maps (x;,y;) to (x/,y!):

ax! hoo ho1  ho2| |xi
ayl| = |ho hui hio| |yi
a ho ha ho| |1

@ We can get rid of that a on the left:

,_ hooxi + hovyi + ho2
Xi =

hooxi + ho1y; + hoo

) = hiox; + hi1yi + hio

hooxi + ho1yi + hao

@ Hmmmm... Can | still rewrite this into a linear system in h?

[Source: R. Urtasun]
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Solving for homographies

@ From:
S - hoox; + horyi + ho2
' haoxi + ha1yi + hoo
y = hiox; + hi1yi + hio
! =

hooxi + ha1yi + hoo

@ We can easily get this:

X (haoxi + ho1yi + h2) = hooxi + horyi + ho2
yi/ (haoxi + ho1yi + h2e) = hioxi + hyi + b2

@ Rewriting it a little:

hooxi + ho1yi + ho2 — X! (haoxi + ho1y;i + h2) = 0
hioxi + hi1yi + ho — yi (hooxi + horyi + h) = 0
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Solving for homographies

@ We can re-write these equations:

hoox; + ho1yi + hoo — X} (haoxi — ho1y;i — h2) = 0
hioxi + hyi + hi2 — yi (haoxi — ho1yi — h) =

@ as a linear system!

hoo
h’Ol
ho2
z; y; 1 0 0 0 —zla; —aly; —:1:?] Zlo _ [O]
0 00 vi 1 —ymi —yy ~v||uo| LO

II,20
h21
]1.22

[Source: R. Urtasun]
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Solving for homographies

@ Taking all our matches into account:

hoo
ho1
3 y17 1 0 0 O —:13:1.171 —:l?:ljjl —A':l ho2 0
0 0 0z y1 1 —yio1 —yiy1 —v) hio 0
H hi1 | = ¢
Tn yn 1 0 0 O —zpwn —ahyn —zp, | | h12 0
0 0 0 @n yn 1 —ypaon —ynyn —vn | | h2o 0
hoy
h22
2nx9 9 2n
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Solving for homographies

@ Taking all our matches into account:

hoo
ho1
3 y17 1 0 0 O —.13:1.1'1 —:l?:ljjl —A'jl ho2 0
0 0 0z y»1 1 —yiz1 —yiy1 —v3 hio 0
H hi1 | = ¢
Tn yn 1 0 0 O —zpwn —ahyn —zp, | | h12 0
0 0 0 @n yn 1 —ypaon —ynyn —vn | | h2o 0
hoy
h22
2nx9 9 2n

@ How many matches do | need to estimate H?
@ This defines a least squares problem:
min | Ah 2
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Solving for homographies

@ Taking all our matches into account:

hoo
ho1
3 y17 1 0 0 O —.13:1.1'1 —:l?:ljjl —A'jl ho2 0
0 0 0z y»1 1 —yiz1 —yiy1 —v3 hio 0
H hi1 | = ¢
Tn yn 1 0 0 O —zpwn —ahyn —zp, | | h12 0
0 0 0 @n yn 1 —ypaon —ynyn —vn | | h2o 0
hoy
h22
2nx9 9 2n

@ How many matches do | need to estimate H?
@ This defines a least squares problem:
min | Ah 2

@ Since h is only defined up to scale, solve for unit vector
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Solving for homographies

@ Taking all our matches into account:

hoo
ho1
3 y17 1 0 0 O —.r'l.rl —i"Il!/l —J"l ho2 0
0 0 0= y1 1 —vhzr —vhmn —v) || ko 0
H hi1 | = ¢
zn yn 1 0 0 O 7:1'1,;1'” 7.1",,yn 7.114, hi2 (0]
0 0 0 a@n yn 1 —ypxn —ynyn —vp | | h2o 0
hoy
h22
2nx9 }91 2n

How many matches do | need to estimate H?

This defines a least squares problem:
min | AhI 3

Since h is only defined up to scale, solve for unit vector

Solution: h = eigenvector of AT A with smallest eigenvalue
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Solving for homographies

@ Taking all our matches into account:

hoo
ho1
3 y17 1 0 0 O —.r'l.rl —i"Il!/l —J"l ho2 0
0 0 0= y1 1 —vhzr —vhmn —v) || ko 0
H hi1 | = ¢
zn yn 1 0 0 O 7:1'1,;1'” 7.1",,yn 7.114, hi2 (0]
0 0 0 a@n yn 1 —ypxn —ynyn —vp | | h2o 0
hoy
h22
2nx9 }91 2n

How many matches do | need to estimate H?

This defines a least squares problem:
min | AhI 3

Since h is only defined up to scale, solve for unit vector

Solution: h = eigenvector of AT A with smallest eigenvalue
@ Works with 4 or more points

Source: R. Urtasun
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Image Alignment Algorithm: Homography

Given images | and J
@ Compute image features for | and J
@ Match features between / and J
© Compute homography transformation A between / and J (with RANSAC)
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Image Alignment Algorithm: Homography

Given images | and J
@ Compute image features for | and J
@ Match features between / and J
© Compute homography transformation A between / and J (with RANSAC)

[Source: N. Snavely]
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Panorama Stitching: Example 1

o Compute the matches

[Source: R. Queiroz Feitosa]
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Panorama Stitching: Example 1

@ Estimate the homography and warp

[Source: R. Queiroz Feitosa]
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Panorama Stitching: Example 1

e Stitch

[Source: R. Queiroz Feitosa]
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Panorama Stitching: Example 2

[Source: Fernando Flores-Mangas]
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Panorama Stitching: Example 2

[Source: Fernando Flores-Mangas]
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Panorama Stitching: Example 2

( Broww 2 Llowe itev 2003) google * Lowe Brown Autoshfch”

[Source: Fernando Flores-Mangas]

Sanja Fidler CSC420: Intro to Image Understanding 39 / 46



@ A homography is a mapping between projective planes

@ You need at least 4 correspondences (matches) to compute it

Matlab functions:

@ TFORM = MAKETFORM (’AFFINE’,[x1,Y1],[x2,Y2]); % Computes
affine transformation between points [x1, y1] and [x2, y2]. Needs 3 pairs
of matches (x1, y1, X2, y2 have three rows)

@ TFORM = MAKETFORM(’PROJECTIVE’,[Xx1,Y1],[X2,Y2]); %
Computes homography between points [x1, y1] and [x2, y»]. Needs 4
pairs of matches

@ IMW = IMTRANSFORM(IM, TFORM, ’BICUBIC’,’FILL’, 0); % Warps
the image according to transformation

. J
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Birdseye View on What We Learned So Far

Problem Detection Description Matching
Find Planar Scale Invariant | Local feature: | All features to all features
Distinctive Objects | Interest Points SIFT + Affine / Homography

Scale Invariant | Local feature: | All features to all features

P Stitchi
anorama TN | | terest Points SIFT + Homography
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Exercise: How Dangerous is This Street?

@ Can | walk here during the night? Can we tell this from an image?
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Exercise: How Dangerous is This Street?

@ Can | walk here during the night? Can we tell this from an image?

Hancock buliding
In Chicago
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Exercise: How Dangerous is This Street?

It's Chicago...

m Chicago Annual Crimes

VIOLENT PROPERTY TOTAL
mam 27,295 113,323 140,618
ey 10.08 41.84 51.92

Violent Crime Comparison per

NATIONAL
MEDIAN

3.9

MY CHANCES OF
BECOMING A
VICTIM

n Chicago
4.15 1in99

n lnoks

1in 241

Cnkago $nots

Chicago violent crimes Population 2,708,382
MURDER RAPE ROBBERY ASSAULT
REPORT TOTAL 500 UNREPORTED 13,506 12,217
RATE PER 1,000 0.18 UNREPORTED 499 453

ttp: . .
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http://www.neighborhoodscout.com/il/chicago/crime/

Exercise: How Dangerous is This Street?

@ It's Chicago... Can | walk here during the day?

w/

Sanja Fidler CSC420: Intro to Image Understanding



Exercise: How Dangerous is This Street?

— ‘“ﬁﬁyg =

et e

@ Idea: Match image to Google's StreetView images of Chicago!
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Exercise: How Dangerous is This Street?

@ Our match to StreetView

| - B+t & v e tom

At bbry 013 Fhate s O3 Crnan o Sy At o W Wty *

e
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Exercise: How Dangerous is This Street?

@ Lookup the GPS location...

L N T Ly ey
,: Ty A tbiiery 2003 Pete -Q_ oo Buwn  Patele S T S

e
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Exercise: How Dangerous is This Street?

@ Lookup the crime map for that GPS location

EDCICICIDI:I---

http://www.neighborhoodscout.com/il/chicago/crime/
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Exercise: How Dangerous is This Street?

@ Lookup the crime map for that GPS location

Neighborhood Crime Data Crime Data FAQ

m Neighborhood Annual Crimes
VIOLENT PROPERTY TOTAL
(100 is safest)

n

annual crimes per 1,000 residents

SUBSCRIBE TO

vncoce PoF CLICK TO SUBSCRIBE AND UNLOCK
|

Violent Crime Comparison per 1,000 residents

NATIONAL
5 MEDIAN
55
. Q 3.9
19
10 CLICK TO 10.08 MY CHANCES OF
SUBSCRIBE BECOMING A
AND UNLOCK VICTIM
inNStateSt / E
5 415 Ontario St
- SUBSCRIBE FOR
DETAIL
in Chicago
o 1in99
in Ilinois
N'State St / E Ontario Chicago tinofs 11in 241

http://www.neighborhoodscout.com/il/chicago/crime/
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http://www.neighborhoodscout.com/il/chicago/crime/

Lesson of the Execise

@ We're in 2017...

Think not (only) what you can do with one image, but

what lots and lots of images can do for you
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Lesson of the Execise

@ We're in 2017...

Think not (only) what you can do with one image, but

what lots and lots of images can do for you

@ Would our current matching method work with lots of data?
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@ So far we matched a known object in a new viewpoint

@ What if we have to match an object to LOTS of images? Or LOTS of
objects to one image?

@ Please read this and we will discuss:

Josef Sivic, Andrew Zisserman
Video Google: A Text Retrieval Approach to Object Matching in Videos
ICCV 2003

Paper link: http://www.robots.ox.ac.uk/~vgg/publications/papers/sivic03.pdf
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Next Time:

Camera Models
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