Image Features
Image Features

- Image features are useful descriptions of local or global image properties designed (or learned!) to accomplish a certain task
- You may want to choose different features for different tasks
- Depending on the problem we need to typically answer three questions:
 - **Where** to extract image features?
 - **What** to extract (what’s the content of the feature)?
 - How to use them for your task, e.g., **how to match** them?
Let’s watch a video clip
Where is the movie taking place?
Image Features

- Where is the movie taking place?
Where is the movie taking place?
Where is the movie taking place?

We matched in:

- Distinctive locations: **keypoints**
- Distinctive features: **descriptors**
Tracking: Where did the scene/actors move?

Where did it each point originate from the previous frame?
Image Features

- **Tracking**: Where to did the scene/actors move?

We matched:
- Quite distinctive locations
- Quite distinctive features

Where did it each point originate from the previous frame?
A shot in a movie is a clip with a coherent camera (no sudden viewpoint changes)
Image Features

- A shot in a movie is a clip with a coherent camera (no sudden viewpoint changes)

We matched:

- **Globally** – one descriptor for full image
- Descriptor can be simple, e.g. **color**
Image Features

- How could we tell which type of scene it is?

What kind of scene is behind the actors?
Kitchen? Bedroom? Street? Bar?
Image Features

- How could we tell which type of scene it is?

We matched:

- **Globally** – one descriptor for full image (?)
- More complex descriptor: color, gradients, “deep” features (learned), etc

What kind of scene is behind the actors?
Kitchen? Bedroom? Street? Bar?
How would we solve this?

Are these two cups of the same type?
Image Features

- How would we solve this?

We matched:
- One descriptor for full patch
- Descriptor can be simple, e.g. color

Are these two cups of the same type?
How would we solve this?

Where can I find this pattern?
How would we solve this?

We matched:
- At each location
- Compared pixel values

Where can I find this pattern?
How would we solve this?

Where can I find this pattern?
Image Features

- How would we solve this?

We matched:
- Distinctive locations
- Distinctive features
- Affine invariant

Where can I find this pattern?
How would we solve this?
Image Features

- **Detection**: Where to extract image features?
 - “Interesting” locations (keypoints, interesting regions)
 - In each location (densely)

- **Description**: What to extract?
 - What’s the spatial scope of the feature?
 - What’s the content of the feature?

- **Matching**: How to match them?
Image Features

- **Detection:** Where to extract image features?
 - “Interesting” locations (keypoints) **TODAY**
 - In each location (densely)

- **Description:** What to extract?
 - What’s the spatial scope of the feature?
 - What’s the content of the feature?

- **Matching:** How to match them?
Image Features:

Interest Point (Keypoint) Detection
Application Example: Image Stitching

[Source: K. Grauman]
Local Features

- **Detection**: Identify the interest points.
- **Description**: Extract **feature vector** descriptor around each interest point.
- **Matching**: Determine correspondence between descriptors in two views.

\[x_1 = [x_{1(1)}, \ldots, x_{d(1)}] \]

(Source: K. Grauman)
Goal: Repeatability of the Interest Point Operator

- Our goal is to detect (at least some of) the same points in both images
- We have to be able to run the detection procedure independently per image
- We need to generate enough points to increase our chances of detecting matching points
- We shouldn’t generate too many or our matching algorithm will be too slow

Figure: Too few keypoints → little chance to find the true matches

[Source: K. Grauman, slide credit: R. Urtasun]
Goal: Distinctiveness of the Keypoints

- We want to be able to **reliably** determine which point goes with which.

[Source: K. Grauman, slide credit: R. Urtasun]
What Points to Choose?

[Source: K. Grauman]
What Points to Choose?

- Textureless patches are nearly impossible to localize.

[Adopted from: R. Urtasun]
What Points to Choose?

- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.

[Adopted from: R. Urtasun]
What Points to Choose?

- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.
- But straight line segments cannot be localized on line segments with the same orientation (aperture problem)

[Adopted from: R. Urtasun]
What Points to Choose?

- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.
- But straight line segments cannot be localized on line segments with the same orientation (aperture problem).
- Gradients in at least two different orientations are easiest, e.g., corners!

[Adopted from: R. Urtasun]
What Points to Choose?

- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.
- But straight line segments cannot be localized on lines segments with the same orientation (aperture problem)
- Gradients in at least two different orientations are easiest, e.g., corners!

[Adopted from: R. Urtasun]
How can we find corners in an image?
Interest Points: Corners

- We should easily recognize the point by looking through a small window.
- Shifting a window in any direction should give a large change in intensity.

Figure: (left) flat region: no change in all directions, (center) edge: no change along the edge direction, (right) corner: significant change in all directions

[Source: Alyosha Efros, Darya Frolova, Denis Simakov]
Interest Points: Corners

- Compare two image patches using (weighted) summed square difference
- Measures change in appearance of window $w(x, y)$ for the shift

$$E_{WSSD}(u, v) = \sum_x \sum_y w(x, y)[I(x + u, y + v) - I(x, y)]^2$$

[Source: J. Hays]
Interest Points: Corners

- Compare two image patches using (weighted) summed square difference
- Measures change in appearance of window $w(x, y)$ for the shift

$$E_{WSSD}(u, v) = \sum_x \sum_y w(x, y)[I(x + u, y + v) - I(x, y)]^2$$

[Source: J. Hays]
Interest Points: Corners

- Compare two image patches using (weighted) summed square difference
- Measures change in appearance of window \(w(x, y) \) for the shift

\[
E_{WSSD}(u, v) = \sum_{x} \sum_{y} w(x, y)[I(x + u, y + v) - I(x, y)]^2
\]

- Window function
- Shifted intensity
- Intensity

Window function \(w(x, y) = \)

1 in window, 0 outside

Gaussian

[Source: J. Hays]
Interest Points: Corners

- Let’s look at E_{WSSD}
- We want to find out how this function behaves for small shifts

$E(u, v)$

- Remember our goal to detect corners:
Interest Points: Corners

- Using a simple first-order Taylor Series expansion:

\[
I(x + u, y + v) \approx I(x, y) + u \cdot \frac{\partial I}{\partial x}(x, y) + v \cdot \frac{\partial I}{\partial y}(x, y)
\]

- And plugging it in our expression for \(E_{WSSD}\):

\[
E_{WSSD}(u, v) = \sum_x \sum_y w(x, y) \left(I(x + u, y + v) - I(x, y) \right)^2 \\
\approx \sum_x \sum_y w(x, y) \left(I(x, y) + u \cdot I_x + v \cdot I_y - I(x, y) \right)^2 \\
= \sum_x \sum_y w(x, y) \left(u^2 I_x^2 + 2u \cdot v \cdot I_x \cdot I_y + v^2 I_y^2 \right) \\
= \sum_x \sum_y w(x, y) \cdot \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} I_x^2 & I_x \cdot I_y \\ I_x \cdot I_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}
\]
Interest Points: Corners

- Since \((u, v)\) doesn't depend on \((x, y)\) we can rewriting it slightly:

\[
E_{\text{WSSD}}(u, v) = \sum_x \sum_y w(x, y) \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} I_x^2 & I_x \cdot I_y \\ I_x \cdot I_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}
\]

\[
= \begin{bmatrix} u & v \end{bmatrix} \left(\sum_x \sum_y w(x, y) \begin{bmatrix} I_x^2 & I_x \cdot I_y \\ I_x \cdot I_y & I_y^2 \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}
\]

Let's denotes this with \(M\)

\[
= \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}
\]

- \(M\) is a \(2 \times 2\) second moment matrix computed from image gradients:

\[
M = \sum_x \sum_y w(x, y) \begin{bmatrix} I_x^2 & I_x \cdot I_y \\ I_x \cdot I_y & I_y^2 \end{bmatrix}
\]
How Do I Compute M?

Let’s say I have this image.
How Do I Compute M?

Let’s say I have this image

I need to compute a 2×2 second moment matrix in each image location
How Do I Compute M?

Let’s say I have this image

I need to compute a 2×2 second moment matrix in each image location

In a particular location I need to compute M as a weighted average of gradients in a window
How Do I Compute M?

Let's say I have this image. I need to compute a 2×2 second moment matrix in each image location. In a particular location, I need to compute M as a weighted average of gradients in a window.

I can do this efficiently by computing three matrices, I_x^2, I_y^2 and $I_x \cdot I_y$, and convolving each one with a filter, e.g. a box or Gaussian filter.

Let's say I have this image.

I need to compute a 2×2 second moment matrix in each image location.

In a particular location, I need to compute M as a weighted average of gradients in a window.

\[
M = \sum_x \sum_y w(x, y) \begin{bmatrix}
I_x^2 & I_x \cdot I_y \\
I_y \cdot I_x & I_y^2
\end{bmatrix}
\]

$I_x = \frac{\partial I}{\partial x}$

$I_y = \frac{\partial I}{\partial y}$

$I_x \cdot I_y$
Interest Points: Corners

- We now have M computed in each image location
- Our E_{WSSD} is a **quadratic function** where M implies its shape

$$E_{WSSD}(u, v) = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum_x \sum_y w(x, y) \begin{bmatrix} I_x^2 & I_x \cdot I_y \\ I_x \cdot I_y & I_y^2 \end{bmatrix}$$

[Source: J. Hays]
Interest Points: Corners

- Let's take a horizontal “slice” of $E_{WSSD}(u, v)$:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

- This is the equation of an ellipse

Figure: Different ellipses obtained by different horizontal “slices”
Interest Points: Corners

- Let's take a horizontal “slice” of $E_{WSSD}(u, \nu)$:
 \[
 \begin{bmatrix} u & \nu \end{bmatrix} M \begin{bmatrix} u \\ \nu \end{bmatrix} = \text{const}
 \]

- This is the equation of an ellipse

Figure: Different ellipses obtained by different horizontal “slices”
Interest Points: Corners

- Our matrix M is symmetric:

$$M = \sum_x \sum_y w(x, y) \begin{bmatrix} I_x^2 & I_x \cdot I_y \\ I_x \cdot I_y & I_y^2 \end{bmatrix}$$

- And thus we can diagonalize it (in Matlab: $[V, D] = \text{EIG}(M)$):

$$M = V \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} V^{-1}$$

- Columns of V are major and minor axes of ellipse, $\lambda^{-1/2}$ are radius

[Source: J. Hays]
Interest Points: Corners

- Columns of V are **principal directions**
- λ_1, λ_2 are **principal curvatures**

[Source: F. Flores-Mangas]
Interest Points: Corners

- The eigenvalues of $M (\lambda_1, \lambda_2)$ reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.

[Source: R. Szeliski, slide credit: R. Urtasun]
Interest Points: Corners

- How do the ellipses look like for this image?

[Source: J. Hays]
Interest Points: Corners

- How do the ellipses look like for this image?

[Source: J. Hays]
Interest Points: Corners

“edge”:
\[\lambda_1 \gg \lambda_2 \]
\[\lambda_2 \gg \lambda_1 \]

“corner”:
\[\lambda_1 \text{ and } \lambda_2 \text{ are large,} \]
\[\lambda_1 \sim \lambda_2; \]

“flat” region
\[\lambda_1 \text{ and } \lambda_2 \text{ are small;} \]

[Source: K. Grauman, slide credit: R. Urtasun]
Harris and Stephens, ’88, is rotationally invariant and downweighs edge-like features where $\lambda_1 \gg \lambda_0$

$$R = \det(M) - \alpha \cdot \text{trace}(M)^2 = \lambda_0 \lambda_1 - \alpha(\lambda_0 + \lambda_1)^2$$

Why go via det and trace and not use a criteria with λ?

α a constant (0.04 to 0.06)

The corresponding detector is called **Harris corner detector**
Interest Points: Criteria to Find Corners

- Harris and Stephens, 88 is rotationally invariant and downweights edge-like features where $\lambda_1 \gg \lambda_0$

 \[R = \det(M) - \alpha \text{trace}(M)^2 = \lambda_0 \lambda_1 - \alpha(\lambda_0 + \lambda_1)^2 \]

- Shi and Tomasi, 94 proposed the smallest eigenvalue of A, i.e., $\lambda_0^{-1/2}$.

- Triggs, 04 suggested

 \[\lambda_0 - \alpha \lambda_1 \]

 also reduces the response at 1D edges, where aliasing errors sometimes inflate the smaller eigenvalue

- Brown et al, 05 use the harmonic mean

 \[\frac{\det(A)}{\text{trace}(A)} = \frac{\lambda_0 \lambda_1}{\lambda_0 + \lambda_1} \]

[Source R. Urtasun]
Harris Corner detector

1. Compute gradients I_x and I_y
2. Compute I_x^2, I_y^2, $I_x \cdot I_y$
3. Average (Gaussian) → gives M
4. Compute
 \[R = \det(M) - \alpha \text{trace}(M)^2 \]
 for each image window (cornerness score)
5. Find points with large R ($R >$ threshold).
6. Take only points of local maxima, i.e., perform non-maximum suppression
Example

[Source: K. Grauman]
1) Compute Cornerness

[Source: K. Grauman]
2) Find High Response

[Source: K. Grauman]
3) Non-maxima Suppression

[Source: K. Grauman]
Results

[Source: K. Grauman]
Another Example

[Source: K. Grauman]
Cornerness

[Source: K. Grauman]
Interest Points

[Source: K. Grauman]
Interest Points – Ideal Properties?

- We want corner locations to be **invariant** to photometric transformations and **covariant** to geometric transformations

Invariance: Image is transformed and corner locations do not change

Covariance: If we have two transformed versions of the same image, features should be detected in corresponding locations
Properties of Harris Corner Detector

- Shift?

Harris corner detector is shift-covariant (our window functions shift)

[Source: J. Hays]
Properties of Harris Corner Detector

- Rotation?

- Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same
- Harris corner detector is rotation-covariant

[Source: J. Hays]
Properties of Harris Corner Detector

- Scale?

Corner location is **not scale invariant/covariant**!

[Source: J. Hays]
Can we also define keypoints that are shift, rotation and scale invariant/covariant?

What should be our description around keypoint?