Image Pyramids

Finding Waldo

- Let's revisit the problem of finding Waldo
- This time he is on the road

image

Finding Waldo

- He comes closer but our filter doesn't know that
- How can we find Waldo?

image

Idea: Re-size Image

• Re-scale the image multiple times! Do correlation on every size!

template (filter)

Image Sub-Sampling

• Idea: Throw away every other row and column to create a 1/2 size image

1/4

[Source: S. Seitz]

Image Sub-Sampling

• Why does this look so crufty?

[Source: S. Seitz]

- I want to resize my image by factor 2
- And I take every other column and every other row (1st, 3rd, 5th, etc)

Figure: Dashed line denotes the border of the image (it's not part of the image)

- I want to resize my image by factor 2
- And I take every other column and every other row (1st, 3rd, 5th, etc)
- Where is the rectangle!

Figure: Dashed line denotes the border of the image (it's not part of the image)

- What's in the image?
- Now I want to resize my image by half in the width direction
- And I take every other column (1st, 3rd, 5th, etc)

- What's in the image?
- Now I want to resize my image by half in the width direction
- And I take every other column (1st, 3rd, 5th, etc)

- What's in the image?
- Now I want to resize my image by half in the width direction
- And I take every other column (1st, 3rd, 5th, etc)
- Where is the chicken!

Image Sub-Sampling

[Source: F. Durand]

• What's happening?

[Source: L. Zhang]

Aliasing

 Occurs when your sampling rate is not high enough to capture the amount of detail in your image

• To do sampling right, need to understand the structure of your signal/image

[Source: R. Urtasun]

Aliasing

 Occurs when your sampling rate is not high enough to capture the amount of detail in your image

- \bullet To do sampling right, need to understand the structure of your signal/image
- The minimum sampling rate is called the Nyquist rate

[Source: R. Urtasun]

Aliasing

 Occurs when your sampling rate is not high enough to capture the amount of detail in your image

- \bullet To do sampling right, need to understand the structure of your signal/image
- The minimum sampling rate is called the **Nyquist rate**

[Source: R. Urtasun]

Mr. Nyquist

- Harry Nyquist says that one should look at the frequencies of the signal.
- One should find the highest frequency (via Fourier Transform)
- To sample properly you need to sample with at least twice that frequency
- For those interested: http://en.wikipedia.org/wiki/Nyquist%E2%80% 93Shannon_sampling_theorem

 He looks like a smart guy, we'll just believe him

2D example

[Source: N. Snavely]

Going back to Downsampling ...

- When downsampling by a factor of two, the original image has frequencies that are too high
- High frequencies are caused by sharp edges
- How can we fix this?

[Adopted from: R. Urtasun]

Going back to Downsampling ...

- When downsampling by a factor of two, the original image has frequencies that are too high
- High frequencies are caused by sharp edges
- How can we fix this?

[Adopted from: R. Urtasun]

Gaussian pre-filtering

• Solution: Blur the image via Gaussian, then subsample. Very simple!

[Source: N. Snavely]

Subsampling with Gaussian pre-filtering

[Source: S. Seitz]

Compare with ...

[Source: S. Seitz]

Where is the Rectangle?

My image

Figure: Dashed line denotes the border of the image (it's not part of the image)

Where is the Rectangle?

- My image
- Let's blur

Figure: Dashed line denotes the border of the image (it's not part of the image)

Where is the Rectangle?

- My image
- Let's blur
- And now take every other row and column

Figure: Dashed line denotes the border of the image (it's not part of the image)

Where is the Chicken?

My image

Where is the Chicken?

- My image
- Let's blur

Where is the Chicken?

- My image
- Let's blur
- And now take every other column

Gaussian Pyramids [Burt and Adelson, 1983]

- A sequence of images created with Gaussian blurring and downsampling is called a Gaussian Pyramid
- In computer graphics, a mip map [Williams, 1983]

• How much space does a Gaussian pyramid take compared to original image?

[Source: S. Seitz]

Gaussian Pyramids [Burt and Adelson, 1983]

- A sequence of images created with Gaussian blurring and downsampling is called a Gaussian Pyramid
- In computer graphics, a mip map [Williams, 1983]

• How much space does a Gaussian pyramid take compared to original image?

[Source: S. Seitz]

Example of Gaussian Pyramid

[Source: N. Snavely]

Image Up-Sampling

• This image is too small, how can we make it 10 times as big?

[Source: N. Snavely, R. Urtasun]

Image Up-Sampling

• This image is too small, how can we make it 10 times as big?

Simplest approach: repeat each row and column 10 times

[Source: N. Snavely, R. Urtasun]

Interpolation

d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]

d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

d = 1 in this example

What if we don't know f?

d = 1 in this example

What if we don't know f?

• Guess an approximation: for example nearest-neighbor

d = 1 in this example

What if we don't know f?

• Guess an approximation: for example nearest-neighbor

Guess an approximation: for example linear

d = 1 in this example

What if we don't know f?

- Guess an approximation: for example nearest-neighbor
- Guess an approximation: for example linear
- More complex approximations: cubic, B-splines

Linear Interpolation

d = 1 in this example

• Linear interpolation:

$$G(x) = \frac{x_2 - x}{x_2 - x_1} F(x_1) + \frac{x - x_1}{x_2 - x_1} F(x_2)$$

• Let's make this signal triple length

Make a vector G with d times the size of F

• Let's make this signal triple length (d = 3)

if $\frac{i}{d}$ integer: G(i) = F(i/d)

- Let's make this signal triple length (d = 3)
- If i/d is an integer, just copy from the signal

- Let's make this signal triple length (d = 3)
- If i/d is an integer, just copy from the signal
- Otherwise use the interpolation formula

Linear Interpolation via Convolution

d = 1 in this example

• Linear interpolation:

$$G(x) = \frac{x_2 - x}{x_2 - x_1} F(x_1) + \frac{x - x_1}{x_2 - x_1} F(x_2)$$

• With $t = x - x_1$ and $d = x_2 - x_1$ we can get:

$$G(x) = \frac{d-t}{d}F(x-t) + \frac{t}{d}F(x+d-t)$$

Linear Interpolation via Convolution

Linear interpolation:

$$G(x) = \frac{x_2 - x}{x_2 - x_1} F(x_1) + \frac{x - x_1}{x_2 - x_1} F(x_2)$$

• With $t = x - x_1$ and $d = x_2 - x_1$ we can get:

$$G(x) = \frac{d-t}{d}F(x-t) + \frac{t}{d}F(x+d-t)$$

(Kind of looks like convolution: $G(x) = \sum_t h(t)F(x-t)$)

• Let's make this signal triple length

• Let's make this signal triple length (d = 3)

- Let's make this signal triple length (d = 3)
- What should be my "reconstruction" filter h (such that G = h * G')?

- Let's make this signal triple length (d = 3)
- What should be my "reconstruction" filter h (such that G = h * G')?
- $h = [0, \frac{1}{d}, \dots, \frac{d-1}{d}, 1, \frac{d-1}{d}, \dots, \frac{1}{d}, 0]$, where d my upsampling factor

- Let's make this signal triple length (d = 3)
- What should be my "reconstruction" filter h (such that G = h * G')?
- $h = [0, \frac{1}{d}, \dots, \frac{d-1}{d}, 1, \frac{d-1}{d}, \dots, \frac{1}{d}, 0]$, where d my upsampling factor

- Let's make this signal triple length (d = 3)
- What should be my "reconstruction" filter h (such that G = h * G')?
- $h = [0, \frac{1}{d}, \dots, \frac{d-1}{d}, 1, \frac{d-1}{d}, \dots, \frac{1}{d}, 0]$, where d my upsampling factor

- Let's make this signal triple length (d = 3)
- What should be my "reconstruction" filter h (such that G = h * G')?
- $h = [0, \frac{1}{d}, \dots, \frac{d-1}{d}, 1, \frac{d-1}{d}, \dots, \frac{1}{d}, 0]$, where d my upsampling factor

Interpolation via Convolution (1D)

- Let's make this image triple size
- Copy image in every third pixel. What about the remaining pixels in G?

- Let's make this image triple size
- Copy image in every third pixel. What about the remaining pixels in *G*?
- How shall we compute this value?

- Let's make this image triple size
- Copy image in every third pixel. What about the remaining pixels in *G*?
- One possible way: nearest neighbor interpolation

- Let's make this image triple size
- Copy image in every third pixel. What about the remaining pixels in G?
- Better: bilinear interpolation (check out details: http://en.wikipedia.org/wiki/Bilinear_interpolation)

• What does the 2D version of this hat function look like?

• What does the 2D version of this hat function look like?

• And filter for nearest neighbor interpolation?

• What does the 2D version of this hat function look like?

• And filter for nearest neighbor interpolation?

• What does the 2D version of this hat function look like?

Better filters give better resampled images: Bicubic is a common choice

Image Interpolation via Convolution (2D)

• Let's make this image triple size: copy image values in every third pixel, place zeros everywhere else

Image Interpolation via Convolution (2D)

- Let's make this image triple size: copy image values in every third pixel, place zeros everywhere else
- Convolution with a reconstruction filter (e.g., bilinear) and you get the interpolated image

Image Interpolation

Original image

Interpolation results

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

[Source: N. Snavely]

Summary – Stuff You Should Know

- \bullet To down-scale an image: blur it with a small Gaussian (e.g., $\sigma=$ 1.4) and downsample
- To up-scale an image: interpolation (nearest neighbor, bilinear, bicubic, etc)
- Gaussian pyramid: Blur with Gaussian filter, downsample result by factor 2, blur it with the Gaussian, downsample by 2...

Matlab functions:

- ullet FSPECIAL: creates a Gaussian filter with specified σ
- IMFILTER: convolve image with the filter
- \bullet I(1:2:END, 1:2:END): takes every second row and column
- IMRESIZE(IMAGE, SCALE, METHOD): Matlab's function for resizing the image, where METHOD="nearest", "bilinear", "bicubic" (works for downsampling and upsampling)