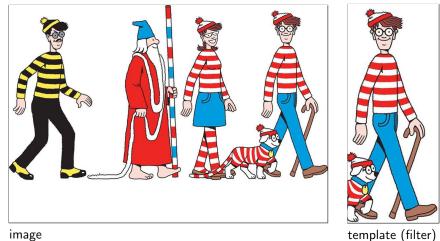
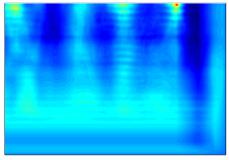
- Let's revisit the problem of finding Waldo
- And let's take a simple example



#### image

- Let's revisit the problem of finding Waldo
- And let's take a simple example



normalized cross-correlation

Waldo detection (putting box around max response)

- Now imagine Waldo goes shopping
- ... but our filter **doesn't know that**

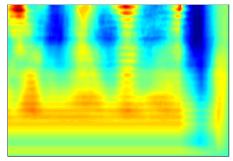


#### image

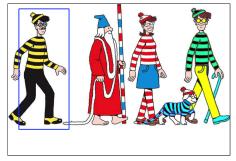
Sanja Fidler

#### CSC420: Intro to Image Understanding

- Now imagine Waldo goes shopping (and the dog too)
- ... but our filter **doesn't know that**



normalized cross-correlation



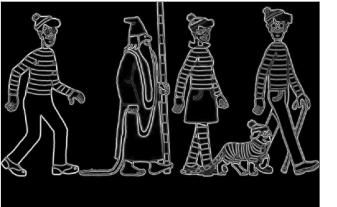
Waldo detection (putting box around max response)

## Finding Waldo (again)

• What can we do to find Waldo again?

## Finding Waldo (again)

- What can we do to find Waldo again?
- Edges!!!





#### template (filter)

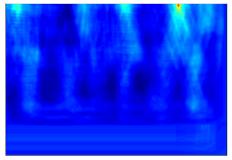
#### Sanja Fidler

image

#### CSC420: Intro to Image Understanding

## Finding Waldo (again)

- What can we do to find Waldo again?
- Edges!!!

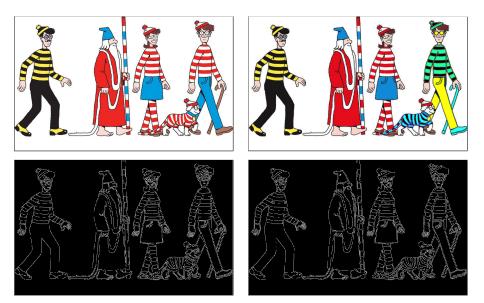


normalized cross-correlation (using the edge maps)



Waldo detection (putting box around max response)

#### Waldo and Edges



- Map image to a set of curves or line segments or contours.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition

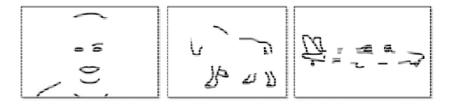


Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]

- Map image to a set of curves or line segments or contours.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications



Figure: Parse basketball court (left) to figure out how far the guy is from net

- Map image to a set of curves or line segments or contours.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications

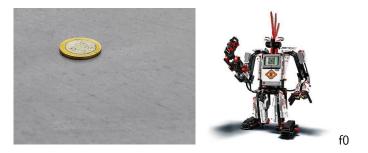


Figure: How can a robot pick up or grasp objects?

Sanja Fidler

- Map image to a set of curves or line segments or contours.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications

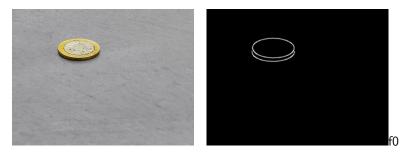
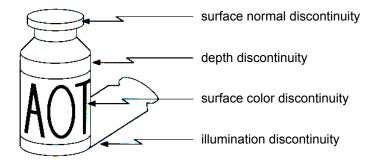


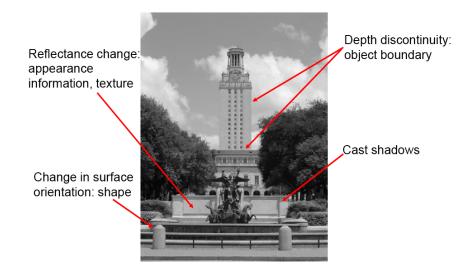
Figure: How can a robot pick up or grasp objects?

• Edges are caused by a variety of factors



[Source: N. Snavely]

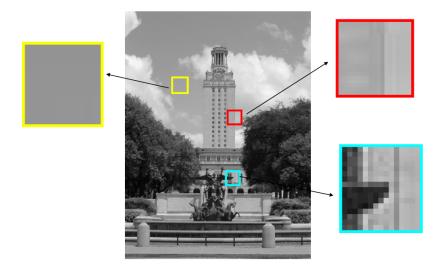
## What Causes an Edge?



#### [Source: K. Grauman]

Sanja Fidler

## Looking More Locally...

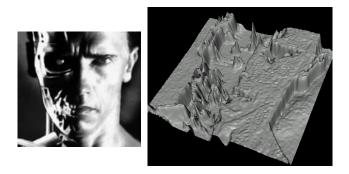


#### [Source: K. Grauman]

Sanja Fidler

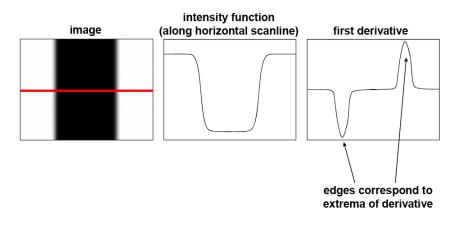
#### Images as Functions

• Edges look like steep cliffs



[Source: N. Snavely]

• An edge is a place of rapid change in the image intensity function.



[Source: S. Lazebnik]

Sanja Fidler

How can we differentiate a digital image f[x, y]?

• If image f was continuous, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

How can we differentiate a digital image f[x, y]?

• If image f was continuous, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

• Since it's discrete, take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x]}{1}$$

How can we differentiate a digital image f[x, y]?

• If image f was continuous, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

• Since it's discrete, take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x]}{1}$$

• What would be the filter to implement this using correlation/convolution?

How can we differentiate a digital image f[x, y]?

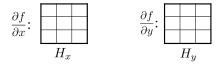
• If image f was continuous, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

• Since it's discrete, take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x]}{1}$$

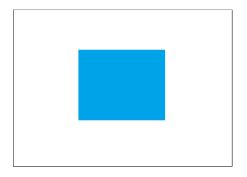
• What would be the filter to implement this using correlation/convolution?



[Source: S. Seitz]

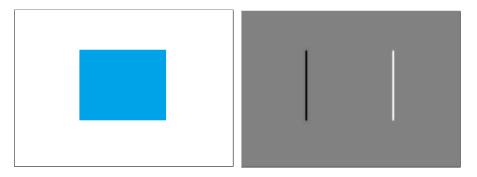
Sanja Fidler

• How does the horizontal derivative using the filter [-1,1] look like?



Image

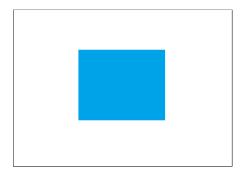
• How does the horizontal derivative using the filter [-1,1] look like?



Image

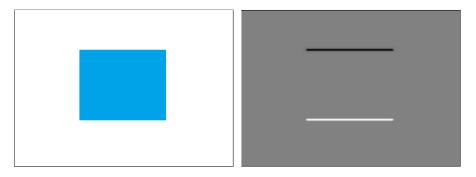
 $rac{\partial f(x,y)}{\partial x}$  with [-1,1] and correlation

• How about the vertical derivative using filter  $[-1, 1]^T$ ?



#### Image

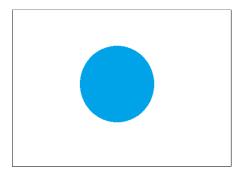
• How about the vertical derivative using filter  $[-1,1]^T$ ?



Image

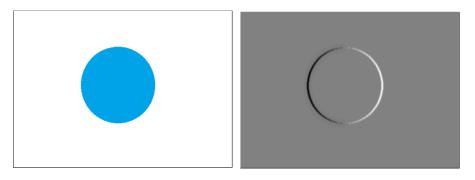
 $\frac{\partial f(x,y)}{\partial y}$  with  $[-1,1]^T$  and correlation

• How does the horizontal derivative using the filter [-1,1] look like?



Image

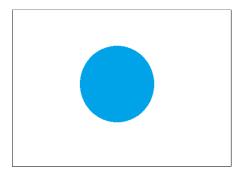
• How does the horizontal derivative using the filter [-1,1] look like?



Image

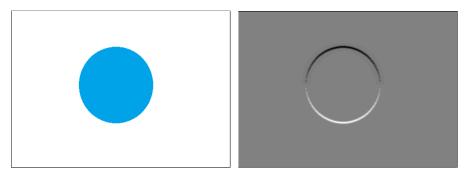
 $rac{\partial f(x,y)}{\partial x}$  with [-1,1] and correlation

• How about the vertical derivative using filter  $[-1, 1]^T$ ?



Image

• How about the vertical derivative using filter  $[-1, 1]^T$ ?



Image

 $\frac{\partial f(x,y)}{\partial y}$  with  $[-1,1]^T$  and correlation

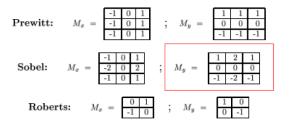


Figure: Using correlation filters

[Source: K. Grauman]

Sanja Fidler

#### Finite Difference Filters





[Source: K. Grauman]

• The gradient of an image  $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ 

- The gradient of an image  $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

- The gradient of an image  $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

• The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left( \frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

- The gradient of an image  $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

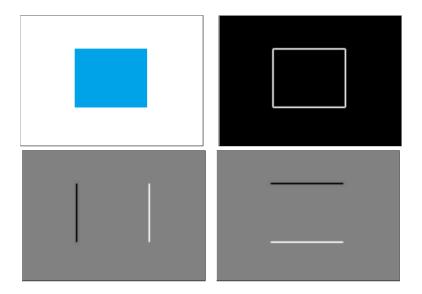
• The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left( \frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

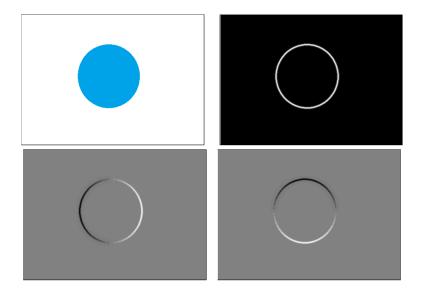
• The edge strength is given by the magnitude  $||\nabla f|| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2}$ 

[Source: S. Seitz]

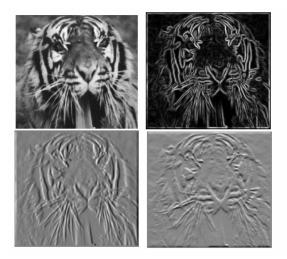
#### Example: Image Gradient



#### Example: Image Gradient



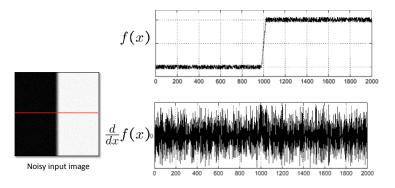
#### Example: Image Gradient



#### [Source: S. Lazebnik]

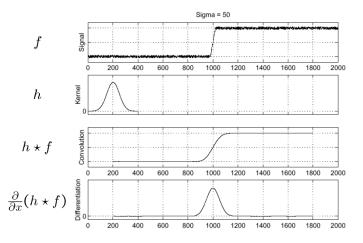
## Effects of noise

- What if our image is noisy? What can we do?
- Consider a single row or column of the image.
- Plotting intensity as a function of position gives a signal.



[Source: S. Seitz]

• Smooth first with h (e.g. Gaussian), and look for peaks in  $\frac{\partial}{\partial x}(h * f)$ .



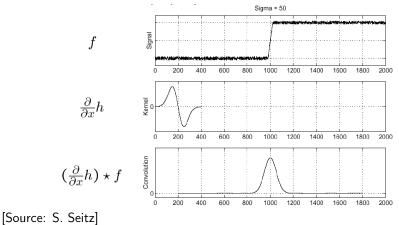
[Source: S. Seitz]

## Derivative theorem of convolution

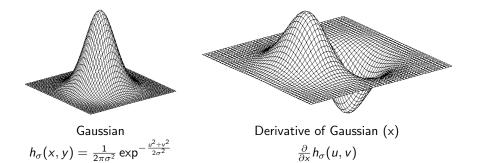
• Differentiation property of convolution

$$\frac{\partial}{\partial x}(h*f) = \left(\frac{\partial h}{\partial x}\right)*f = h*\left(\frac{\partial f}{\partial x}\right)$$

It saves one operation



## 2D Edge Detection Filters



[Source: N. Snavely]

#### Derivative of Gaussians



#### [Source: K. Grauman]



• Applying the Gaussian derivatives to image





• Applying the Gaussian derivatives to image

#### Properties:

- Zero at a long distance from the edge
- Positive on both sides of the edge
- Highest value at some point in between, on the edge itself

# Effect of $\sigma$ on derivatives

The detected structures differ depending on the Gaussian's scale parameter:

- Larger values: detects edges of larger scale
- Smaller values: detects finer structures



σ = 1 pixel

 $\sigma$  = 3 pixels

[Source: K. Grauman]

Let's take the most popular picture in computer vision: Lena (appeared in November 1972 issue of Playboy magazine)



[Source: N. Snavely]



Figure: Canny's approach takes gradient magnitude

[Source: N. Snavely]



Figure: Thresholding

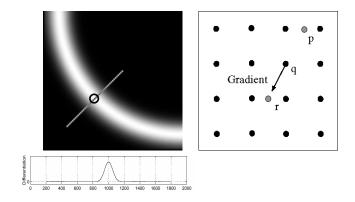
[Source: N. Snavely]



Figure: Gradient magnitude

[Source: N. Snavely]

#### Non-Maxima Suppression



#### Figure: Gradient magnitude

- Check if pixel is local maximum along gradient direction
- If yes, take it
- [Source: N. Snavely]

# Finding Edges



Problem: pixels along this edge didn't survive the thresholding

Figure: Problem with thresholding

[Source: K. Grauman]

## Hysteresis thresholding

• Use a high threshold to start edge curves, and a low threshold to continue them



[Source: K. Grauman]

## Hysteresis thresholding



#### original image



high threshold (strong edges)



low threshold (weak edges)



hysteresis threshold

[Source: L. Fei Fei]

## Located Edges!



Figure: Thinning: Non-maxima suppression

[Source: N. Snavely]

# Canny Edge Detector

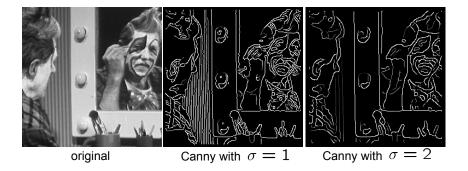
Matlab: edge(image, 'canny')

- I Filter image with derivative of Gaussian (horizontal and vertical directions)
- Pind magnitude and orientation of gradient
- On-maximum suppression
- Linking and thresholding (hysteresis):
  - Define two thresholds: low and high
  - Use the high threshold to start edge curves and the low threshold to continue them

[Source: D. Lowe and L. Fei-Fei]

# Canny Edge Detector

- large  $\sigma$  (in step 1) detects "large-scale" edges
- small  $\sigma$  detects fine edges



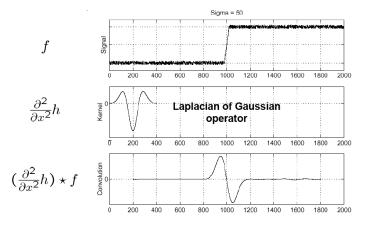
# Canny edge detector

- Still one of the most widely used edge detectors in computer vision
- J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
- Depends on several parameters:  $\sigma$  of the **blur** and the **thresholds**

[Adopted by: R. Urtasun]

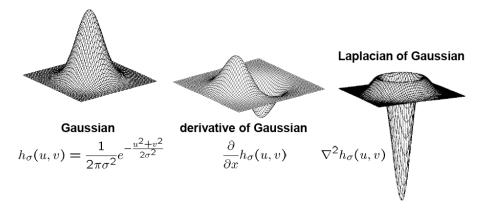
## Another Way of Finding Edges: Laplacian of Gaussians

• Edge by detecting zero-crossings of bottom graph



[Source: S. Seitz]

# 2D Edge Filtering



with  $\nabla^2$  the Laplacian operator  $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$ 

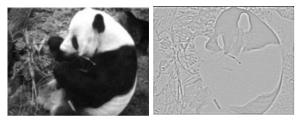
[Source: S. Seitz]

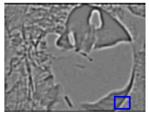


 $\sigma = 1 \,\, {\rm pixels}$ 

 $\sigma={\rm 3\ pixels}$ 

• Applying the Laplacian operator to image





 $\sigma = 1 \text{ pixels}$ 

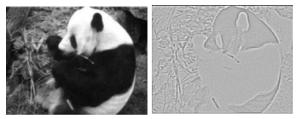
 $\sigma = 3$  pixels

• Applying the Laplacian operator to image

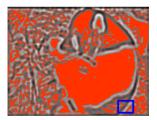
#### Properties:

- Zero at a long distance from the edge
- Positive on the darker side of edge
- Negative on the lighter side
- Zero at some point in between, on edge itself





 $\sigma = 1$  pixels



 $\sigma=3~{\rm pixels}$ 

• Applying the Laplacian operator to image

#### Properties:

- Zero at a long distance from the edge
- Positive on the darker side of edge
- Negative on the lighter side
- Zero at some point in between, on edge itself



# But Sanja, we are in 2017

This is "old-style" Computer Vision. We are now in the era of successful Machine Learning techniques.

Question: Can we use ML to do a better job at finding edges?

# Summary – Stuff You Should Know

Not so good:

- Horizontal image gradient: Subtract intensity of left neighbor from pixel's intensity (filtering with [-1, 1])
- Vertical image gradient: Subtract intensity of bottom neighbor from pixel's intensity (filtering with  $[-1, 1]^T$ )

Much better (more robust to noise):

- **Horizontal image gradient**: Apply derivative of Gaussian with respect to x to image (filtering!)
- Vertical image gradient: Apply derivative of Gaussian with respect to y to image
- Magnitude of gradient: compute the horizontal and vertical image gradients, square them, sum them, and  $\sqrt{}$  the sum
- Edges: Locations in image where magnitude of gradient is high
- Phenomena that **causes** edges: rapid change in surface's normals, depth discontinuity, rapid changes in color, change in illumination

# Summary – Stuff You Should Know

#### • Properties of gradient's magnitude:

- Zero far away from edge
- Positive on both sides of the edge
- Highest value directly on the edge
- Higher  $\sigma$  emphasizes larger structures

#### • Canny's edge detector:

- Compute gradient's direction and magnitude
- Non-maxima suppression
- Thresholding at two levels and linking

#### Matlab functions:

- FSPECIAL: gives a few gradients filters (PREWITT, SOBEL, ROBERTS)
- SMOOTHGRADIENT: function to compute gradients with derivatives of Gaussians. Find it in Lecture's 3 code (check class webpage)
- EDGE: use  ${\rm EDGE}(I, {\rm `CANNY'})$  to detect edges with Canny's method, and  ${\rm EDGE}(I, {\rm `LOG'})$  for Laplacian method