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The HOG Detector

The HOG detector models an object class as a single rigid template

Figure: Single HOG template models people in upright pose.
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But Objects Are Composed of Parts
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Even Rigid Objects Are Composed of Parts
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Objects Are Composed of Deformable Parts

Revisit the old idea by Fischler & Elschlager 1973

Objects are composed of parts at specific relative locations. Our model
should probably also model object parts.

Different instances of the same object class have parts in slightly different
locations. Our object model should thus allow slight slack in part position.

Figure: Objects are a collection of deformable parts
[Pic from: R. Girshik]
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The DPM Model

The DPM model starts by borrowing the idea of the HOG detector. It takes
a HOG template for the full object. (If you take something that works,
things can only get better, right?)
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The DPM Model

DPM now wants to add parts. It wants to add them at locations relative to
the location of the root filter. Relative makes sense: if we move, we take our
parts with us.
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The DPM Model

Add a part at a relative location and scale.
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The DPM Model

Each part has an appearance, which is modeled with a HOG template

Each part’s template is at twice the resolution as the root filter
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The DPM Model

Give some slack to the location of the part. Why is this a good idea?
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The DPM Model

People are of different heights, thus have feet at different locations relative
to the head. And we want to detect all people, not just the average ones.
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The DPM Model

We will, however, trust less detections where parts are not exactly in their
expected location. DPM penalizes part shifts with a quadratic function:

a(x − vx)2 + b(x − vx) + c(y − vy )2 + d(y − vy )

(here a, b, c , d are weights that are used to penalize different terms)
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The DPM Model

And finally, DPM has a few parts. Typically 6 (but it’s a parameter you can
play with). How many weights does a 6-part DPM model have?

How shall we score this part-model guy in an image (how to do detection)?
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Remember the HOG Detector

The HOG detector computes image pyramid, HOG features, and scores each
window with a learned linear classifier

[Pic from: R. Girshik]
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DPM Detector

For DPM the story is quite similar (pyramid, HOG, score window with a
learned linear classifier), but now we also need to score the parts.

[Pic from: R. Girshik]
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Scoring

[Pic from: R. Girshik]
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Scoring

More specifically, we will score a location (window) in the image as follows:

score(l , p0) = max
p1,...,pn

( n∑
i=0

Fi · HOG (l , pi ) −
n∑

i=1

wdef
i · (dx , dy , dx2, dy2)

)
where

F0 is the (learned) HOG template for root filter

Fi is the (learned) HOG template for part i

HOG (l , pi ) means a HOG feature cropped in window defined by part

location pi at level l of the HOG pyramid

wdef
i are (learned) weights for the deformation penalty

(dx , dy , dx2, dy2) with (dx , dy) = (xi , yi ) − ((x0, y0) + vi) tell us how

far the part i is from its expected position (x0, y0) + vi)

Main question: How shall we compute that nasty maxp1,...,pn?
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Scoring

Push the max inside (why can we do that?):

score(l , p0) = F0 ·HOG (l , p0)+
n∑

i=1

max
pi

(
Fi ·HOG (l , pi )−wdef

i ·φdef (xi , yi )
)
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Scoring

Push the max inside:

score(l , p0) = F0 ·HOG (l , p0)+
n∑

i=1

max
pi

(
Fi ·HOG (l , pi )−wdef

i ·φdef (xi , yi )
)

We can compute this with dynamic programming. Any idea how?
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Computing the Score with Dynamic Programming

Figure: We can compute Fi · HOG (l , pi ) for the full level l via cross-correlation of
the HOG feature matrix at level l with the template (filter) Fi
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Computing the Score with Dynamic Programming
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Computing the Score with Dynamic Programming

Figure: We can compute these scores efficiently with something called distance transforms
(this is exact). But works equally well: Simply limit the scope of where each part could be to a
small area, e.g., a few HOG cells up,down,left,right relative to yellow spot (this is approx).
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Computing the Score with Dynamic Programming
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Computing the Score with Dynamic Programming
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Detection

[Pic from: Felzenswalb et al., 2010]
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Training

You can’t train this model as simple as the HOG detector, via SVM. For
those taking CSC411: Why not?
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Training

You can’t train this model as simple as the HOG detector, via SVM. For
those taking CSC411: Why not?

Because the part positions are not annotated (we don’t have ground-truth,
and SVM needs ground-truth). We say that the parts are latent.

You can train the model with something called latent SVM. For ML buffs:

Check the Felzenswalb paper
For those with even stronger ML stomach: Yu, Joachims, Learning
Structural SVMs with Latent Variables, ICML’09.
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Results

Figure: Performance of the HOG detector on person class on PASCAL VOC

[Pic from: R. Girshik]
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Results

Figure: DPM version 1: adds the parts

[Pic from: R. Girshik]
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Results

Figure: DPM version 2: adds another template (called mixture or component).
Supposed to detect also people sitting down (e.g., occluded by desk).

[Pic from: R. Girshik]
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Results

Figure: DPM version 3: adds multiple mixtures (components)

[Pic from: R. Girshik]
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Results

[Pic from: R. Girshik]
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Learned Models

[Pic from: Felzenswalb et al., 2010]
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Learned Models

[Pic from: Felzenswalb et al., 2010]
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Learned Models

(Takes some imagination to see a cat...)
[Pic from: Felzenswalb et al., 2010]
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Results

[Pic from: Felzenswalb et al., 2010]
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Results

[Pic from: Felzenswalb et al., 2010]
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DPM

As you already know, the code is available:

http://www.cs.berkeley.edu/~rbg/latent/

Trivia:

Takes about 20-30 seconds per image per class. Speed-ups exist.

Depending on the size of the dataset, training takes around 12 hours

(for most PASCAL classes).

Has some cool post-processing tricks: bounding box prediction and

context re-scoring. Each typically results in around 2% improvement in

AP.

In the code, if you switch off the parts, you get the Dalal & Triggs’

HOG detector.
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Results
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Object Class Detection

Pre 2014

HOG detector

Deformable Part-based Model

Post 2014 (neural networks)

R-CNN

Fast(er) R-CNN

Yolo, SSD

[Credit for the slides to follow: Bin Yang]
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The CNN Era

[Slide credit: Renjie Liao]
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RCNN: Regions with CNN Features

[Slide credit: Ross Girshick]

Sanja Fidler CSC420: Intro to Image Understanding 41 / 53



Training
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Training
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Training
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RCNN: Performance
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RCNN: Performance
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Faster R-CNN
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Region Proposal Network (RPN)
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Region Proposal Network (RPN)
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Faster R-CNN: Performance
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Car Example

[Slide credit: Joseph Chet Redmon]
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Car Example

[Slide credit: Joseph Chet Redmon]
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Real Time Object Detection?
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YOLO: You Only Look Once

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR’16]
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YOLO: Output Parametrization

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR’16]
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SSD: Single Shot MultiBox Detector

[Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV’16]
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That’s It For CSC420... But There Is Much More of
Computer Vision For Those Interested!
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