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The HOG Detector

The HOG detector models an object class as a single rigid template

Figure: Single HOG template models people in upright pose.
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But Objects Are Composed of Parts
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Even Rigid Objects Are Composed of Parts
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Objects Are Composed of Deformable Parts

Revisit the old idea by Fischler & Elschlager 1973

Objects are composed of parts at specific relative locations. Our model
should probably also model object parts.

Di↵erent instances of the same object class have parts in slightly di↵erent
locations. Our object model should thus allow slight slack in part position.

Figure: Objects are a collection of deformable parts
[Pic from: R. Girshik]
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The DPM Model

The DPM model starts by borrowing the idea of the HOG detector. It takes
a HOG template for the full object. (If you take something that works,
things can only get better, right?)
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The DPM Model

DPM now wants to add parts. It wants to add them at locations relative to
the location of the root filter. Relative makes sense: if we move, we take our
parts with us.
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The DPM Model

Add a part at a relative location and scale.
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The DPM Model

Each part has an appearance, which is modeled with a HOG template

Each part’s template is at twice the resolution as the root filter
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The DPM Model

Give some slack to the location of the part. Why is this a good idea?
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The DPM Model

People are of di↵erent heights, thus have feet at di↵erent locations relative
to the head. And we want to detect all people, not just the average ones.
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The DPM Model

We will, however, trust less detections where parts are not exactly in their
expected location. DPM penalizes part shifts with a quadratic function:

a(x � v
x

)2 + b(x � v
x

) + c(y � v
y

)2 + d(y � v
y

)

(here a, b, c , d are weights that are used to penalize di↵erent terms)
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The DPM Model

And finally, DPM has a few parts. Typically 6 (but it’s a parameter you can
play with). How many weights does a 6-part DPM model have?

How shall we score this part-model guy in an image (how to do detection)?
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Remember the HOG Detector

The HOG detector computes image pyramid, HOG features, and scores each
window with a learned linear classifier

[Pic from: R. Girshik]
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DPM Detector

For DPM the story is quite similar (pyramid, HOG, score window with a
learned linear classifier), but now we also need to score the parts.

[Pic from: R. Girshik]
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Scoring

[Pic from: R. Girshik]
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Scoring

More specifically, we will score a location (window) in the image as follows:

score(l , p0) = max
p1,...,pn
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where

F0 is the (learned) HOG template for root filter
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is the (learned) HOG template for part i

HOG (l , p
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) means a HOG feature cropped in window defined by part
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at level l of the HOG pyramid
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(dx , dy , dx2, dy2) with (dx , dy) = (x
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Main question: How shall we compute that nasty max
p1,...,pn?
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Scoring

Push the max inside (why can we do that?):

score(l , p0) = F0 ·HOG (l , p0)+
nX
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We can compute this with dynamic programming. Any idea how?
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Computing the Score with Dynamic Programming

Figure: We can compute F
i

· HOG (l , p
i

) for the full level l via cross-correlation of
the HOG feature matrix at level l with the template (filter) F

i
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Computing the Score with Dynamic Programming
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Computing the Score with Dynamic Programming
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Computing the Score with Dynamic Programming

Figure: We can compute these scores e�ciently with something called distance transforms

(this is exact). But works equally well: Simply limit the scope of where each part could be to a
small area, e.g., a few HOG cells up,down,left,right relative to yellow spot (this is approx).
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Computing the Score with Dynamic Programming
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Computing the Score with Dynamic Programming
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Detection

[Pic from: Felzenswalb et al., 2010]
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Training

You can’t train this model as simple as the HOG detector, via SVM. For
those taking CSC411: Why not?
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Training

You can’t train this model as simple as the HOG detector, via SVM. For
those taking CSC411: Why not?

Because the part positions are not annotated (we don’t have ground-truth,
and SVM needs ground-truth). We say that the parts are latent.

You can train the model with something called latent SVM. For ML bu↵s:

Check the Felzenswalb paper
For those with even stronger ML stomach: Yu, Joachims, Learning
Structural SVMs with Latent Variables, ICML’09.
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Results

Figure: Performance of the HOG detector on person class on PASCAL VOC

[Pic from: R. Girshik]
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Results

Figure: DPM version 1: adds the parts

[Pic from: R. Girshik]
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Results

Figure: DPM version 2: adds another template (called mixture or component).
Supposed to detect also people sitting down (e.g., occluded by desk).

[Pic from: R. Girshik]
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Results

Figure: DPM version 3: adds multiple mixtures (components)

[Pic from: R. Girshik]
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Results

[Pic from: R. Girshik]
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Learned Models

[Pic from: Felzenswalb et al., 2010]
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Learned Models

[Pic from: Felzenswalb et al., 2010]
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Learned Models

(Takes some imagination to see a cat...)
[Pic from: Felzenswalb et al., 2010]
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Results

[Pic from: Felzenswalb et al., 2010]
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Results

[Pic from: Felzenswalb et al., 2010]
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DPM

As you already know, the code is available:

http://www.cs.berkeley.edu/~rbg/latent/

Trivia:

Takes about 20-30 seconds per image per class. Speed-ups exist.

Depending on the size of the dataset, training takes around 12 hours

(for most PASCAL classes).

Has some cool post-processing tricks: bounding box prediction and

context re-scoring. Each typically results in around 2% improvement in

AP.

In the code, if you switch o↵ the parts, you get the Dalal & Triggs’

HOG detector.
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Results
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Object Class Detection

Pre 2014

HOG detector
Deformable Part-based Model

Post 2014 (neural networks)

R-CNN
Fast(er) R-CNN
Yolo, SSD

[Credit for the slides to follow: Bin Yang]
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The CNN Era

[Slide credit: Renjie Liao]
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RCNN: Regions with CNN Features

[Slide credit: Ross Girshick]
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Training
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Training
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Training
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RCNN: Performance
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RCNN: Performance
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Faster R-CNN
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Region Proposal Network (RPN)
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Region Proposal Network (RPN)
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Faster R-CNN: Performance
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Car Example

[Slide credit: Joseph Chet Redmon]
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[Slide credit: Joseph Chet Redmon]
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Car Example

[Slide credit: Joseph Chet Redmon]
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Real Time Object Detection?
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YOLO: You Only Look Once

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR’16]
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YOLO: Output Parametrization

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR’16]
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SSD: Single Shot MultiBox Detector

[Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV’16]
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That’s It For CSC420... But There Is Much More of
Computer Vision For Those Interested!
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