The DPM Detector
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Object Detection with Discriminatively Trained Part Based Models
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The HOG Detector

@ The HOG detector models an object class as a single rigid template

Figure: Single HOG template models people in upright pose.
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But Objects Are Composed of Parts
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Even Rigid Objects Are Composed of Parts
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Objects Are Composed of Deformable Parts

@ Revisit the old idea by Fischler & Elschlager 1973

@ Objects are composed of parts at specific relative locations. Our model
should probably also model object parts.

@ Different instances of the same object class have parts in slightly different
locations. Our object model should thus allow slight slack in part position.

root part

part

Figure: Objects are a collection of deformable parts

n: R hik
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The DPM Model

@ The DPM model starts by borrowing the idea of the HOG detector. It takes
a HOG template for the full object. (If you take something that works,
things can only get better, right?)

root part

root part (or root filter)
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DPM Model

@ DPM now wants to add parts. It wants to add them at locations relative to
the location of the root filter. Relative makes sense: if we move, we take our

parts with us.
We add parts at locations relative to this point
(upper left corner of the root filter)

springs
root part

root part (or root filter)
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DPM Model

@ Add a part at a relative location and scale.

springs
root part

part location: v} = (v} 4, V1)
andsize: 6 x 6 (in HOG cells)

root part (or root filter)
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The DPM Model

@ Each part has an appearance, which is modeled with a HOG template

@ Each part's template is at twice the resolution as the root filter

part

springs
root part

*“Each part also has its own
appearance (a HOG template of 6x6
cells, each cell with 31 dimensions)

root part (or root filter)
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DPM Model

@ Give some slack to the location of the part. Why is this a good idea?

springs

root part A part also has deformation: it can

slightly “"move” around expected
location

This deformation is modeled with a
quadratic function

root part (or root filter)

Sanja Fidler
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The DPM Model

@ People are of different heights, thus have feet at different locations relative
to the head. And we want to detect all people, not just the average ones.

Lebron James: Too big for the box

springs

—~

root part

If no deformation:
Feet part will ""see”
knees instead of feet!

pl— ‘* - .
. N — e R - .
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The DPM Model

@ People are of different heights, thus have feet at different locations relative
to the head. And we want to detect all people, not just the average ones.

Lebron James: Too big for the box

springs
root part

. Allow the feet part to
be a bit off its
expected position and
actually “'see” feet
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The DPM Model

@ People are of different heights, thus have feet at different locations relative
to the head. And we want to detect all people, not just the average ones.

Danny de Vito: Too small for the box

springs

root part
Allow the feet part to
be a bit off its
expected position and
actually “'see’ feet
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The DPM Model

@ People are of different heights, thus have feet at different locations relative
to the head. And we want to detect all people, not just the average ones.

Brad Pitt: Fits perfectly

springs
root part
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DPM Model

@ We will, however, trust less detections where parts are not exactly in their
expected location. DPM penalizes part shifts with a quadratic function:

a(x = vx)? 4 b(x = vie) + c(y = w)?* +d(y — v)

(here a, b, c, d are weights that are used to penalize different terms)

For example, a very tall person may
have feet way lower. We want our
model to detect also tall people.

But since there are less really tall
people, we want to penalize such

. S | [l detections a little bit (we will trust it
v = (U, _l,) ......... less — how many images do actually
have NBA players, afterall?).

penalize this shift By
quadratic function
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The DPM Model

@ And finally, DPM has a few parts. Typically 6 (but it's a parameter you can
play with). How many weights does a 6-part DPM model have?

@ How shall we score this part-model guy in an image (how to do detection)?

Full model:
* Root filter (HOG template)
part + Parts:
' » Location
springs » Deformation

root part » HOG template

part

root part (or root filter)
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Remember the HOG Detector

@ The HOG detector computes image pyramid, HOG features, and scores each
window with a learned linear classifier

Detection Phase The HOG Detector
p 33
f Al > Score(l,p)=w-¢(l,p)
*
> correlation with template
Image pyramid HOG feature pyramid

[Pic from: R. Girshik]
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DPM Detector

@ For DPM the story is quite similar (pyramid, HOG, score window with a
learned linear classifier), but now we also need to score the parts.

Detection Phase The DPM Detector

po

E] |

xxxxx
it

Image pyramid HOG feature pyramid [FMR CVPR'08]
[FGMR PAMI'10]

Pic from: R. Girshik
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z=(p1,---,Pn)

score(, po) = max > mi(lp) = di(po, pi)
P =0 i=1

Filter scores Spring costs
0 =
BT P
s, BSses:
z R
Image pyramid HOG feature pyramid [FMR CVPR'08]

[FGMR PAMI'10]
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@ More specifically, we will score a location (window) in the image as follows:

score(/, po) max (ZF HOG(!, pi) —ZWdef - (dx, dy,dx2,dy2))

Ply

where

Fo is the (learned) HOG template for root filter

F; is the (learned) HOG template for part i

HOG(!, p;) means a HOG feature cropped in window defined by part
location p; at level / of the HOG pyramid

wyes' are (learned) weights for the deformation penalty
(dx, dy, dx?, dy?) with (dx, dy) = (x;,y:) — ((x0, ¥0) + vi) tell us how
far the part / is from its expected position (xg, o) + Vi)
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@ More specifically, we will score a location (window) in the image as follows:

score(/, po) max (ZF HOG(!, pi) —ZWdef - (dx, dy,dx2,dy2))

Ply

where

Fo is the (learned) HOG template for root filter

F; is the (learned) HOG template for part i

HOG(!, p;) means a HOG feature cropped in window defined by part
location p; at level / of the HOG pyramid

wyes' are (learned) weights for the deformation penalty
(dx, dy, dx?, dy?) with (dx, dy) = (x;,y:) — ((x0, ¥0) + vi) tell us how
far the part / is from its expected position (xg, o) + Vi)

@ Main question: How shall we compute that nasty max,,, . .7
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@ Push the max inside (why can we do that?):

score(l, po) = Fo- HOG(I. po) + Y max (- HOG(1. py) — Waer' - (x1,) )
i=1
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@ Push the max inside:

score(/, po) = Fo- HOG(I, po) + | max (Fi -HOG(I, Pi)*Wdef"'cbdef(Xf’yi))
i=1

@ We can compute this with dynamic programming. Any idea how?
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Computing the Score with Dynamic Programming

score(l,po) = Fo - HOG(L, po) + E max (F, -HOG(l. p;) — Waer' - c’),,,.,(.r,.y,))
i
iw ]

Compute cross-correlation
P r with filter F

T332

' 4

Image pyramid HOG feature pyramid

Figure: We can compute F; - HOG(/, p;) for the full level / via cross-correlation of
the HOG feature matrix at level / with the template (filter) F;
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Computing the Score with Dynamic Programming

n

score(l,pg) = Fy - HOG(L, po) + Z max (F, -HOG(l.p;) — Waer" - O,z,~/(.1',.y,))
pi

il

Compute cross-correlation

P /with filter F{

I3
33

» Compute cross-correlation
K~ with filter F;
3313 i 111
e : '

! T

Image pyramid HOG feature pyramid
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Computing the Score with Dynamic Programming

n

score(l,pg) = Fy - HOG(L, po) + Z max (F, -HOG(l.p;) — Waer" - O,z,~/(.1',.y,))
pi

il

P = let's say we want to
: compute score in this

location

434
babe
bt
3

! T

Image pyramid HOG feature pyramid
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Computing the Score

with Dynamic Programming

n

score(l, po) = Fo - HOG(I,po) + Y _ max (F, -HOG(l, pi) — Waer' - $aes(xi, y,))
Pi

iml T

This is 0 in yellow point, because
P : (dzx. dy,dxz?, dy*) = (0.0.0.0)

There is no penalty for

= placing the part in the
yellow location (the part is
at expected location
relative to the location of
the root filter)

e
2

Image pyramid

! T

HOG feature pyramid
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Computing the Score with Dynamic Programming

n

score(l,pg) = Fy - HOG(L, po) + Z max (F, -HOG(l.p;) — Waer' - O,z,~/(.1',.y,))
pi

=]
p ;
Tt
» But at this location we pay
-
g
Image pyramid HOG feature pyramid
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Computing Score with Dynamic Programming

We are computing this: max (F, -HOG(l, p;) — Wder' * @des(xi, y.))
Pi

We need to loop over all

T P 3 possible placements of the
4 | g part. For each placement
- L / we need to:

* Compute deformation

e

B
p , |
] l I > it cost
: TH * Read out the correlation
P, cfteeen : value

|4

* Subtract deformation
from corr value

Find the max of these

scores across all

: & | placements. Store the max

Image pyramid HOG feature pyramid | in the yellow spot.

Figure: We can compute these scores efficiently with something called distance transforms
(this is exact). But works equally well: Simply limit the scope of where each part could be to a
small area, e.g., a few HOG cells up,down,left,right relative to yellow spot (this is approx).
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Computing the Score with Dynamic Programming

n

i ]

3 max (F, . HOG(l, i) — Waet" * Pdes (i, y,))
i

Do this for each part. Sum
all the max part scores in
the yellow spot

(RS

143

Image pyramid

! T

HOG feature pyramid
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Computing the Score

with Dynamic Programming

n

score(l, po) = Fo - HOG(l,po) + Y _ max (F, - HOG(l,p;) — Waes' * Gaes(is y.))
Pi

i ]
P : Add the value in the yellow
> location to the value in the
2 : red location.
» Done!
3111 i
j33sss] :
:

Image pyramid

! T

HOG feature pyramid
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Detection

feature map at twice the resolution

feature map

color encoding of filter

response values
| combined scoro of
value high value root locations

low
[Pic from: Felzenswalb et al., 2010]
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@ You can't train this model as simple as the HOG detector, via SVM. For
those taking CSC411: Why not?
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@ You can't train this model as simple as the HOG detector, via SVM. For
those taking CSC411: Why not?

@ Because the part positions are not annotated (we don't have ground-truth,
and SVM needs ground-truth). We say that the parts are latent.

@ You can train the model with something called latent SVM. For ML buffs:

o Check the Felzenswalb paper
o For those with even stronger ML stomach: Yu, Joachims, Learning
Structural SVMs with Latent Variables, ICML'09.
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[DT08)
AP0.12

Figure: Performance of the HOG detector on person class on PASCAL VOC

[Pic from: R. Girshik]
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[DT'05)
AP0.12

Figure: DPM version 1: adds the parts

[Pic from: R. Girshik]
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[DT05) -
AP0.12 [FGMR'10)
AP 0.36

Figure: DPM version 2: adds another template (called mixture or component).
Supposed to detect also people sitting down (e.g., occluded by desk).

[Pic from: R. Girshik]
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[DT'05) [FMR'08])

AP0.12 AP 0.27 [FGMR'10)

AP 0.36 [GFM voc-release5]
AP 0.45

Figure: DPM version 3: adds multiple mixtures (components)

[Pic from: R. Girshik]
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[DT'05)
AP0.12

[FGMR'10)
AP 0.36 [GFM voc-release5]

AP 0.45

[Pic from: R. Girshik]
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Learned Models

car

[Pic from: Felzenswalb et al., 2010]
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Learned Models

cat

(Takes some imagination to see a cat...)
[Pic from: Felzenswalb et al., 2010]
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[Pic from: Felzenswalb et al., 2010]
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[Pic from: Felzenswalb et al., 2010]

Sanja Fidler CSC420: Intro to Image Understanding 36 /53



DPM

@ As you already know, the code is available:
http://www.cs.berkeley.edu/~rbg/latent/

@ Trivia:

o Takes about 20-30 seconds per image per class. Speed-ups exist.

e Depending on the size of the dataset, training takes around 12 hours
(for most PASCAL classes).

e Has some cool post-processing tricks: bounding box prediction and
context re-scoring. Each typically results in around 2% improvement in
AP.

e In the code, if you switch off the parts, you get the Dalal & Triggs'
HOG detector.
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Results

DPM on PASCAL VOC

70
60
50 Pl & ing complexity
4% 41%
- 40
PhMes,  Select S
< 28% OPYEes qu. g S;:r:: Ross Girshick
3 b 2% D?M Selective DPM++, °gwm
o . Search  MKL
20 O opw, M e results (2007 -
pPM  HOG+BOW 2012) Lifetime Achievement Award
10 by PASCAL VOC

VOC'o7 VOC08 VOC09 VOC'10 voC'il voC'12

PASCAL VOC challenge dataset
[Seurce: hitp:/pascallin.ecs.solon.ac. uk/chalenges/VOCNoc20{07,08,09,10,11,12)results/index_htmi]
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Object Class Detection

@ Pre 2014

e HOG detector
e Deformable Part-based Model

@ Post 2014 (neural networks)

o R-CNN
o Fast(er) R-CNN
e Yolo, SSD

[Credit for the slides to follow: Bin Yang]
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The CNN Era

80% PASCAL VOC

>

70%

60% Before deep convnets R-CNNv1

A
50% {

p» —

40% 4
A Using deep convnets
30%

20%

mean Average Precision (mAP)

10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

year

[Slide credit: Renjie Liao]
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RCNN: Regions with CNN Features

1. Input 2. Extract region 3. Compute
image proposals (~2k) CNN features

[Slide credit: Ross Girshick]
Sanja Fidler CSC420: Intro to Image Understanding
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Training
1. Pre-train

dataset (ImageNet)
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Training

1. Pre-train CNN for image classification

EREN

large auxiliary
dataset (ImageNet)

2. Fine-tune CNN on target dataset
and task

fine-tune CN] (optional)

small target
dataset (PASCAL VOC)
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Training

1. Pre-train CNN for image classification

train CNN

large auxiliary
dataset (ImageNet)

2. Fine-tune CNN on target dataset
and task

fine-tune CN V (optional)

small target
dataset (PASCAL VOC)

small target
dataset (PASCAL VOC)
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VOC2007

DPM v5 (Girshick et al. 2011) 33.7%
Regionlets (Wang et al. 2013) 41.7%

R-CNN (AlexNet) 54.2%
R-CNN (AlexNet) + BB 58.5%

R-CNN (VGGNet) 62.2%
R-CNN (VGGNet) + BB 66.0%
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VOC2007

DPM v5 (Girshick et al. 2011) 33.7%
Regionlets (Wang et al. 2013) 41.7%

R-CNN (AlexNet) 54.2%
R-CNN (AlexNet) + BB 58.5%
R-CNN (VGGNet) 62.2%
R-CNN (VGGNet) + BB 66.0%
R-CNN (VGGNet) Time
Train 84 hours
Test 47 sfim
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Faster R-CNN

classifier

Rol pooling

Region Proposal Network,

feature maps

conv layers /

——rr

Ren S, et al. Faster r-cnn: Towards real-time object detection with region proposal networks. NIPS2015
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Region Proposal Network (RPN)

4 coordunates hor baxes .
t reg layer
.
? ‘ -
ve field of CNN features)
O NN (cls+bbox)

window

conv feature map
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Region Proposal Network (RPN)

300 proposals 1000 proposals

£8 2 €8
2| —RPNZF 02— RPNZF
— RPN VGG — RPN VGG
2
06 0.7 0 0.9 06 07

loU loU

2000 proposals

EB
RPN ZF
~==RPN VGG

06

Figure 2: Recall vs. IoU overlap ratio on the PASCAL VOC 2007 test set.
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Faster R-CNN: Performance

» Fewer and better proposals not only bring speed-
up, but also detection performance boost.

method # proposals data mAP (%) | time (ms)

SS 2k [ 07 T 669 | 1830

SS 2k 07+12 70.0 1830
RPN+VGG, unshared 300 [T07 | 685 | 342
RPN+VGG, shared 300 07 69.9 196
RPN+VGG, shared 300 07+12 732 196
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Car Example

! Pascal 2007 mAP  Speed
DPM v5 1337 | O7FPS | 14sfimg
R-CNN 6.0 05 FPS | 20 sfimg

/M ‘ Y5 Mile, 1760 feet >
0_0

[Slide credit: Joseph Chet Redmon]
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Car Example

'Pascal 2007 mAP | Speed

DPMv5 1337 |07FPS | 14sfimg
R-CNN 1 66.0 |.05FPS | 20s/img
Fast R-CNN 70.0 |.5FPS | 2s/img

/Q\w 176 feet -
o O

[Slide credit: Joseph Chet Redmon]
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Car Example

Pascal 2007 mAP Speed

DPM V5 337 07 FPS | 14 s/img

R-CNN 66.0 | .05FPS | 20s/img

Fast R-CNN 70.0 SFPS | 2s/img

Faster RCNN | 7322 |7FPS | 140 msfimg
8 feet

/@ 12 feet

[Slide credit: Joseph Chet Redmon]
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Real Time Object Detection?

SSD512
80 80% mAP [ 19 fps

$SD300
— 77% AP / 46 fps
o
< Faster R-CNN, Ren 2015
£ 73% mAP / 7 fps e
8 5\0‘3 e
'é 7M&FaslP “NQ ga\*
% o' é
o Mt L Single Shot
O
>

R-CNN, Girshick 2014
6% MAP /0.02 fps

YOLO, Redmon 2016
6% mAP /21 Ips

| o

Y

10 20 30 40 50
Speed (fps)
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class prob.

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR'16]
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YOLO: Output Parametrization

Each cell predicts:

- For each bounding box: X
- 4 coordinates (x,y, w, h)
1 confidence value 7

- Some number of class
probabilities

-, + ok 4 A $ > A A -
For Pascal VOC: Y %% e 5,7, %

"» v “s v ‘V
; : € T <
- 7x7 grid ey
b dina b M 1st - 5th éth - 10th 11th - 30th
- 2bounding boxes / ce Box #1 Box #2 Class Probabilities

- 20 classes

7x7x(2x5+20)=7x7x30tensor = 1470 outputs

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR'16]
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SSD: Single Shot MultiBox Detector

_- rson:

/
P : 'I'
- 3 I

[Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV'16]
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file:///Users/sanja/science/class/2017/CSC420/figs/nextai/merge3-5543.mov

That's It For CSC420... But There Is Much More of
Computer Vision For Those Interested!
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