
Object Detection

Sliding Windows
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized

into three main types:

Find interest points, followed by Hough voting

Sliding windows: “slide” a box around image and classify each image crop

inside a box (contains object or not?) ← Let’s look at a few methods

for this

Generate region (object) proposals, and classify each region
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Sliding Window Approaches

There are many... We will look at two in more detail:

Dalal and Triggs (2005): HOG (Person) Detector (12,855 citations)

Felzenswalb et al. (2010): Deformable Part-based Model (3,461 citations)

The last detector (DPM) is an extension of Dalal & Triggs. If we have time we’ll

also talk about the following approach (if not, I suggest you read it since it has

some fantastic ideas):

Viola and Jones (2001): (Face) Detector (9,576 citations)
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Sliding Window Approaches

There are many... We will look at three in more detail:

Dalal and Triggs (2005): HOG (Person) Detector → This first

Felzenswalb et al. (2010): Deformable Part-based Model
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The HOG Detector

N. Dalal and B. Triggs

Histograms of oriented gradients for human detection

CVPR, 2005
Paper: http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
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The HOG Detector

We want to find all people in this image. Preferably our detections should
not include trees, lamp posts and umbrellas.
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The HOG Detector

Sliding window detectors find objects in 4 very simple steps: (1.) inspect
every window, (2.) extract features in window, (3.) classify & accept wind.
if score above threshold, (4.) clean-up the mess (called post-processing)
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The HOG Detector – Sliding the Window

First step: inspect every window. Typically the size of window is fixed.
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The HOG Detector – Sliding the Window

Since window size is fixed, how can we find people at different sizes?
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The HOG Detector – Sliding the Window

Shrink (down-scale) the image and slide again
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The HOG Detector – Sliding the Window

Keep shrinking and sliding
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The HOG Detector – Sliding the Window

In fact, do a full image pyramid, and slide your detector at each scale. Make
sure the scale differences across levels are small (do lots of re-scaled images)
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The HOG Detector – Sliding the Window?

What if the object is in a weird pose (window is of different aspect ratio)?
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The HOG Detector – Limitations

Stop thinking too hard. In 2005 people were only in upright position.

We will re-visit this question a little later (when we talk about DPM)

Figure: Main pedestrian detection datasets prior to PASCAL VOC.
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The HOG Detector – Features (HOG)

Famous feature descriptor called HOG that replaced SIFT (at least for
object detection). There are three steps to compute it.
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The HOG Detector – Features (HOG)

First compute gradients
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The HOG Detector – Features (HOG)

There are many ways how to compute the gradients. The HOG detector
guys tried a lot of them and picked the best one.
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The HOG Detector – Features (HOG)

One can also smooth image before computing the gradients. The HOG
detector guys tested that as well. This is great science, analyze every step!
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The HOG Detector – Features (HOG)

Divide the image into cells of 8× 8 pixels.
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The HOG Detector – Features (HOG)

Compute a histogram of orientations in each cell (similar to SIFT)
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The HOG Detector – Features (HOG)

Again, check how many bins is best to use. Turns out: 9 with orient 0-180.
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The HOG Detector – Features (HOG)

So each cell now has a 9-dimensional feature vector
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The HOG Detector – Features (HOG)

In literature you will see this kind of visualization for HOG. In each cell
people plot all the orientations that are present in the cell. Do not confuse
this visualization with the actual feature (composed of 9 matrices).
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The HOG Detector – Features (HOG)

We’re not finished. We now take blocks, where each block has 2× 2 cells.
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The HOG Detector – Features (HOG)

We normalize each feature vector, such that each block has unit norm. This
step doesn’t change the dimension of the feature, just the strength. Why are
we doing this?
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The HOG Detector – Features (HOG)

Since each cell is in 4 blocks, we have 4 different normalizations, and we
make each one into separate features.
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The HOG Detector – Features (HOG)

For person class, window is 15× 7 HOG cells (what’s the size in pixels?)

We vectorize each the feature matrix in each window.
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The HOG Detector – Classification

Features done, we are ready for classification. We first need to train our
classifier, and only after we can do detection (prediction).

Sanja Fidler CSC420: Intro to Image Understanding 28 / 49



The HOG Detector – Training

Several simple steps. Plus a few useful additional tricks (remember, some
hacking is part of a Vision Researcher’s life).
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The HOG Detector – Training

Take a dataset with annotations. If nothing exists, collect and label yourself.
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The HOG Detector – Training

Scale positive and negative examples to the size of detection window.
Compute HOG.
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The HOG Detector – Training

Train a classifier (with e.g. LibSVM).
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The HOG Detector – Training

Additional tricks: Bootstrapping. A fancy name for running your classifier
on training images (with full detection pipeline), and finding mis-classified
windows. Add those to training examples, and re-train classifier.
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The HOG Detector – Detection

Take a window, crop out a feature matrix, vectorize and classify
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The HOG Detector – Detection

Computing the score wT · x + b in every location is the same as performing
cross-correlation with template w (and add b to result).

[Pic from: R. Girshik]
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The HOG Detector – Training

Threshold the scores (e.g., score > −1)
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The HOG Detector – Post-processing

Perform Non-Maxima Supression (NMS)
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The HOG Detector – Post-processing

Perform Non-Maxima Supression (NMS)
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The HOG Detector – Post-processing

Perform Non-Maxima Supression (NMS)
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The HOG Detector – Post-processing

Perform Non-Maxima Supression (NMS)
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The HOG Detector – Post-processing

Done!
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Results

Some results
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How Should We Evaluate Object Detection Approaches?

How can we tell if our approach is doing well?

What should be our evaluation?
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What’s a Correct Detection

Evaluation criteria:

Detection is correct if the intersection of the bounding boxes, divided by
their union, is > 50%.

a0 =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)

[Source: K. Grauman, slide credit: R. Urtasun]
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Multiple Detections are Considered Wrong

Below both detections have more than 50% overlap with ground-truth
annotation. But only one will count as correct, the other(s) will count as
false positive (wrong).
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Precision and Recall

We sort all the predicted boxes (for all images) according to scores, in
descending order

Then for each k we compute precision and recall obtained when using top k
boxes in the list

Recall:

recall =
#correct boxes

#ground-truth boxes

Precision:

precision =
#correct boxes

#all predicted boxes

What’s the min/max value of recall/precision?
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Precision and Recall Curve

Then you can plot a precision-recall curve

Which curve in the plot below is better, A or B?

[Pic: http://pmtk3.googlecode.com/svn-history/r785/trunk/docs/demos/Decision_theory/PRhand_01.png]
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Average Precision

Average Precision (AP): Compute the area under the precision-recall curve

What’s the best AP one can get? What’s the worst?

AP is the standard measure for evaluating object detection performance

Sometimes you may encounter notation mAP. This is mean Average
Precision, and it’s just an average of APs across different classes.

[Pic from: R. Girshik]
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Performance of the HOG Detector (back in 2005)

PR curve for the HOG detector

Interesting: Look at the curve for PCA-SIFT (improved SIFT). Way down
there...

[Pic from: R. Girshik]
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