Object Detection
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Object Detection

@ The goal of object detection is to localize objects in an image and tell their
class

@ Localization: place a tight bounding box around object

@ Most approaches find only objects of one or a few specific classes, e.g. car
or cow
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized
into three main types:

@ Find interest points, followed by Hough voting
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Interest Point Based Approaches

@ Compute interest points (e.g., Harris corner detector is a popular choice)
@ Vote for where the object could be given the content around interest points
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Interest Point Based Approaches

@ Compute interest points (e.g., Harris corner detector is a popular choice)

@ Vote for where the object could be given the content around interest points
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Interest Point Based Approaches

@ Compute interest points (e.g., Harris corner detector is a popular choice)

@ Vote for where the object could be given the content around interest points

* Is this part of cow?
* Where on cow have we
see this?
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Interest Point Based Approaches

@ Compute interest points (e.g., Harris corner detector is a popular choice)

@ Vote for where the object could be given the content around interest points

training image of cow
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Interest Point Based Approaches

@ Compute interest points (e.g., Harris corner detector is a popular choice)

@ Vote for where the object could be given the content around interest points

training image of cow

The object is probably somewhere here
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized
into three main types:

@ Find interest points, followed by Hough voting

@ Sliding windows: “slide” a box around image and classify each image crop
inside a box (contains object or not?)
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Sliding Window Approaches

@ Slide window and ask a classifier: “Is sheep in window or not?”

0.1
confidence
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Sliding Window Approaches

@ Slide window and ask a classifier: “Is sheep in window or not?”

0.1
confidence-
0.2
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized
into three main types:

@ Find interest points, followed by Hough voting

@ Sliding windows: “slide” a box around image and classify each image crop
inside a box (contains object or not?)

@ Generate region (object) proposals, and classify each region
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Region Proposal Based Approaches

@ Group pixels into object-like regions
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Region Proposal Based Approaches

@ Group pixels into object-like regions
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Region Proposal Based Approaches

@ Generate many different regions
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@ Generate many different regions
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Region Proposal Based Approaches

@ Generate many different regions
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Region Proposal Based Approaches

@ The hope is that at least a few will cover real objects
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Region Proposal Based Approaches

@ The hope is that at least a few will cover real objects
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Region Proposal Based Approaches

@ Select a region
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Region Proposal Based Approaches

@ Crop out an image patch around it, throw to classifier (e.g., Neural Net)

W6-684-3000 classifier
“dog” or not?

confidence: -2.5
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Region Proposal Based Approaches

@ Do this for every region
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Region Proposal Based Approaches

@ Do this for every region
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Region Proposal Based Approaches

@ Do this for every region

classifier
“dog” or not?

confidence: 1.5
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Dog!!!
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized
into three main types:

@ Find interest points, followed by Hough voting < Let’s first look at
one example method for this

@ Sliding windows: “slide” a box around image and classify each image crop
inside a box (contains object or not?)

@ Generate region (object) proposals, and classify each region
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Object Detection via Hough Voting:
Implicit Shape Model

B. Leibe, A. Leonardis, B. Schiele
Robust Object Detection with Interleaved Categorization and
Segmentation

[JCV, 2008

Pa PEer: nttp://www.vision.rwth-aachen.de/publications/pdf/leibe-interleaved-ijcv07final.pdf
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Start with Simple: Line Detection

@ How can | find lines in this image?

CSC420: Intro to Image Understanding



Hough Transform

@ ldea: Voting (Hough Transform)

@ Voting is a general technique where we let the features vote for all models
that are compatible with it.

e Cycle through features, cast votes for model parameters.
o Look for model parameters that receive a lot of votes.

[Source: K. Grauman]
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Hough Transform: Line Detection

@ Hough space: parameter space

y 1 b
y = moz + bo
—
bo °
XV my m
image space Hough (parameter) space

@ Connection between image (x,y) and Hough (m, b) spaces

e A line in the image corresponds to a point in Hough space
e What does a point (xg, yo) in the image space map to in Hough space?

[Source: S. Seitz]
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Hough Transform: Line Detection

@ Hough space: parameter space

y b
Yo ° b= —zom + yo
—_—
Xo X m
image space Hough (parameter) space

@ Connection between image (x, y) and Hough (m, b) spaces

e A line in the image corresponds to a point in Hough space
e A point in image space votes for all the lines that go through this
point. This votes are a line in the Hough space.

[Source: S. Seitz]
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Hough Transform: Line Detection

@ Hough space: parameter space

y b
(x4, y1)
Yo ZX | b= —zom +yo
0 Yo —
b=-xym+y,
Xo X m
image space Hough (parameter) space

@ Two points: Each point corresponds to a line in the Hough space
@ A point where these two lines meet defines a line in the image!

[Source: S. Seitz]
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Hough Transform: Line Detection

@ Hough space: parameter space

y 1 b
° @
] ° : r
_— -~
A [~
X‘ m
image space Hough (parameter) space

@ Vote with each image point
@ Find peaks in Hough space. Each peak is a line in the image.

[Source: S. Seitz]
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Hough Transform: Line Detection

@ Issues with usual (m, b) parameter space: undefined for vertical lines

@ A better representation is a polar representation of lines

Image columns

[0,0] X d: perpendicular distance
0) from line to origin
d 0: angle the perpendicular
y makes with the x-axis

Image rows

xcosO — ysinf =d

Point in image space 2> sinusoid segment in Hough space

[Source: S. Seitz]
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Example Hough Transform

With the parameterization xcosf + ysinf = d
@ Points in picture represent sinusoids in parameter space
@ Points in parameter space represent lines in picture

@ Example 0.6x + 0.4y = 2.4, Sinusoids intersect at d = 2.4, § = 0.9273
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[Source: M. Kazhdan, slide credit: R. Urtasun]
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Hough Transform: Line Detection

@ Hough Voting algorithm

Using the polar parameterization:
xcosO — ysinO =d

H: accumulator array
(vates)

Basic Hough transform algorithm d
1. Initialize H[d, 6]=0
2. for each edge point I[x,y] in the image
for 0 = [0, 10 Bmax ] // some quantization

d = xcosf — ysin
H[d, 6] += 1

3. Find the value(s) of (d, 6) where H[d, 6] is maximum
4. The detected line in the image is given by 7 = xcosf - ysin®

[Source: S. Seitz]
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Hough Transform: Circle Detection

@ What about circles? How can | fit circles around these coins?
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Hough Transform: Circle Detection

Assume we are looking for a circle of known radius r
o Circle: (x —a)?+ (y — b)?=r?
@ Hough space (a, b): A point (xp, yo) maps to
(a—x0)%+ (b—y0)>=r?> — acircle around (o, yo) with radius r
@ Each image point votes for a circle in Hough space

A A

A
>

Each point in geometric space (left) generates a circle in parameter space (right). The circles in
parameter space intersect at the (a, b) that is the center in geometric space.

[Source: H. Rhody]
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Hough Transform: Circle Detection

What if we don't know r?
@ Hough space: ?
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Hough space

[Source: K. Grauman]
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Hough Transform: Circle Detection

What if we don't know r?

@ Hough space: conics

A r
M

@) \/

(x,y)

Image space ° Hough space

[Source: K. Grauman]
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Hough Transform: Circle Detection

@ Find the coins

Original Votes: Penny

[Source: K. Grauman]
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Hough Transform: Circle Detection

@ lIris detection

: Yf-‘a o
moL
n M

Gradient+threshold Hough space Max detections
(fixed radius)

[Source: K. Grauman]
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Generalized Hough Voting

@ Hough Voting for general shapes

Offline procedure:

At each boundary point,
compute displacement
vector: r =a - p;.

Store these vectors in a
table indexed by gradient
orientation 0.




Implicit Shape Model

@ Implicit Shape Model adopts the idea of voting
@ Basic idea:

e Find interest points in an image
e Match patch around each interest point to a training patch

e Vote for object center given that training instance
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Implicit Shape Model: Basic Idea

@ Vote for object center

training image of cow
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Implicit Shape Model: Basic Idea

@ Vote for object center

training image of cow
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Implicit Shape Model: Basic Idea

@ Vote for object center

training image of cow
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of course some wrong votes are bound to happen...
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Implicit Shape Model: Basic Idea

@ Vote for object center
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But that’s ok. We want only peaks in voting space.
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Implicit Shape Model: Basic Idea

@ Find the patches that produced the peak
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Find patches that voted for the peaks (back-projection).
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Implicit Shape Model: Basic Idea

@ Place a box around these patches — objects!
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Find full objects based on the back-projected patches.
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Implicit Shape Model:
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Implicit Shape Model: Basic Idea

@ Visual vocabulary (we saw this for retrieval)

@ Compare each patch to a small set of visual words (clusters)

Visual words (visual codebook)!
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Implicit Shape Model: Basic Idea

@ Training: Getting the vocabulary

training image
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Implicit Shape Model: Basic Idea

@ Find interest points in each training image

training image

detect interest points (e.g. Harris)
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Implicit Shape Model: Basic Idea

@ Collect patches around each interest point

training image

extract an image patch around each
interest point

Sanja Fidler CSC420: Intro to Image Understanding 28 /1



Implicit Shape Model: Basic Idea

@ Collect patches across all training examples

training images collect all patches
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Implicit Shape Model: Basic Idea

@ Cluster the patches to get a small set of “representative” patches

training images collect all patches
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visual codebook

* cluster the patches to get a few

“representative’’ patches

* each cluster represented as the
average of all patches that belong to
the cluster
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Implicit Shape Model: Training

@ Represent each training patch with the closest visual word.

@ Record the displacement vectors for each word across all training examples.

- Visual codeword with
Training image displacement vectors

[Leibe et al. 1JCV 2008]
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Implicit Shape Model: Test

@ At test times detect interest points
@ Assign each patch around interest point to closes visual word

@ Vote with all displacement vectors for that word

[Source: B. Leibe]
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Recognition Pipeline

Original Image Interest Points Matched Codebook Probabilistic
Entries

™~

5 R

X
3D Voting Space
Segmentation (continuous)

Refined Hypotheses Backprojected Backprojection
(optional) Hypotheses of Maxima

il /

[Source: B. Leibe]
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Recognition Summary

Apply interest points and extract features around selected locations.
Match those to the codebook.
Collect consistent configurations using Generalized Hough Transform.

Each entry votes for a set of possible positions and scales in continuous
space.

Extract maxima in the continuous space using Mean Shift.

Refinement can be done by sampling more local features.

[Source: R. Urtasun]
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Example

Original image

[Source: B. Leibe, credit: R. Urtasun]
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Example
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[Source: B. Leibe, credit: R. Urtasun]
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Matched patches

[Source: B. Leibe, credit: R. Urtasun]
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Example

Voting space

[Source: B. Leibe, credit: R. Urtasun]
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15t hypothesis

[Source: B. Leibe, credit: R. Urtasun]
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2d hypothesis

[Source: B. Leibe, credit: R. Urtasun]
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3rd hypothesis

[Source: B. Leibe, credit: R. Urtasun]

Sanja Fidler CSC420: Intro to Image Understanding



Scale Invariant Voting

Scale-invariant feature selection

@ Scale-invariant interest points

@ Rescale extracted patches

@ Match to constant-size codebook
Generate scale votes

@ Scale as 3rd dimension in voting space

Xvote = Ximg — Xocc(simg /Socc)
Yvote = yimg - YOCC(Simg /Socc)
Svote = Simg / Socc

@ Search for maxima in 3D voting space

[Source: B. Leibe, credit: R. Urtasun]
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Scale Invariant Voting

] ] " | Search
@ . window
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Slide credit: R. Urtasun
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Scale Voting: Efficient Computation

Continuous Generalized Hough Transform

@ Binned accumulator array similar to standard Gen. Hough Transf.

Quickly identify candidate maxima locations
@ Refine locations by Mean-Shift search only around those points

@ Avoid quantization effects by keeping exact vote locations.

X a )
s| | S0 sH-H— - s /AL s| | -
R - —t I;U—— —
y . A y " . e y -_‘ y -_\J
X X X X
Scale votes Binned Candidate Refinement
accum. array maxima (Mean-Shift)

[Source: B. Leibe, credit: R. Urtasun]
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Extension: Rotation-Invariant Detection

Polar instead of Cartesian voting scheme

@ Recognize objects under image-plane rotations

Possibility to share parts between articulations

But also increases false positive detections

[Source: B. Leibe, credit: R. Urtasun]
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Sometimes it's Necessary

Figure from [Mikolajczyk et al., CVPR’06] B. Leibe

[Source: B. Leibe, credit: R. Urtasun]
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Recognition and Segmentation

Training images
(+reference segmentation)

Appearance codebook

augment each cluster with a figure-ground mask

@ Augment each visual word with meta-deta: for example, segmentation mask
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Recognition and Segmentation

Local Features Matched Codebook Probabilistic
Entries Votin

gl E

Backproject K 1. f‘@&
Meta- y BN
information E u 3D votmg Space
Segmentation (continuous)
.
-
Pixel Backprojected Backprojection
Contributions Hypotheses of Maxima
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(a) detections (b) p(figure) (c) segmentation (a) detections (b) p(figure) (c) segmentation

[Source: B. Leibe]
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: B. Leibe]

[Source




Office chairs

[Source: B. Leibe]
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[Source: B. Leibe]
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Inferring Other Information: Part Labels

Training

[Source: B. Leibe]
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Inferring Other Information: Part Labels

Grab area Wheels Armrests Seat

ocQpBr~ cno-

[Source: B. Leibe]
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Inferring Other Information: Depth

Test image Ground truth Result

[Source: B. Leibe]
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Conclusion

@ Exploits a lot of parts (as many as interest points)
@ Very simple Voting scheme: Generalized Hough Transform

@ Works well, but not as well as Deformable Part-based Models with latent
SVM training (next time)

@ Extensions: train the weights discriminatively.

@ Code, datasets & several pre-trained detectors available at
http://www.vision.ee.ethz.ch/bleibe/code

[Source: B. Leibe, credit: R. Urtasun]
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