Recognition

Topics that we will try to cover:

- Indexing for fast retrieval (we still owe this one)
- Object classification (we did this one already)
 - Neural Networks
- Object class detection
 - Hough-voting techniques
 - Support Vector Machines (SVM) detector on HOG features
 - Deformable part-based model (DPM)
 - R-CNN (detector with Neural Networks)
- Segmentation
 - Unsupervised segmentation ("bottom-up" techniques)
 - Supervised segmentation ("top-down" techniques)
Recognition:
Indexing for Fast Retrieval
Recognizing or Retrieving Specific Objects

- Example: Visual search in feature films

Visually defined query

“Find this clock”

“Find this place”

“Groundhog Day” [Rammis, 1993]

Demo: http://www.robots.ox.ac.uk/~vgg/research/vgoogle/

[Source: J. Sivic, slide credit: R. Urtasun]
Recognizing or Retrieving Specific Objects

- Example: Search photos on the web for particular places

Find these landmarks ...in these images and 1M more

[Source: J. Sivic, slide credit: R. Urtasun]
Why is it Difficult?

- Objects can have possibly large changes in scale, viewpoint, lighting and partial occlusion.

[Source: J. Sivic, slide credit: R. Urtasun]
Why is it Difficult?

- There is tones of data.
Our Case: Matching with Local Features

For each image in our database we extracted local descriptors (e.g., SIFT)

Database of images

image 1

image 2

image 3

... image hugeN

frames

each has: (x, y, scale, orientation)

and: a descriptor (e.g., SIFT which is 128-dim)
For each image in our database we extracted local descriptors (e.g., SIFT).
Our Case: Matching with Local Features

- Let’s focus on descriptors only (vectors of e.g. 128 dim for SIFT)

Database of images

<table>
<thead>
<tr>
<th>Image</th>
<th>Descriptors (vectors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image 1</td>
<td>(f_1^1 = [0.1, 0.2, \ldots, 0.15]^T)</td>
</tr>
<tr>
<td>Image 2</td>
<td>(f_2^1 = [0.05, 0.11, \ldots, 0.2]^T)</td>
</tr>
<tr>
<td>Image 3</td>
<td>(f_3^1 = [0.12, 0.15, \ldots, 0.05]^T)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(f_n^1 = [0.05, 0.18, \ldots, 0.09]^T)</td>
</tr>
<tr>
<td>Image hugeN</td>
<td>(f_{hugeN}^1 = [0.12, 0.15, \ldots, 0.19]^T)</td>
</tr>
<tr>
<td></td>
<td>(f_{hugeN}^2 = [0.09, 0.11, \ldots, 0.18]^T)</td>
</tr>
<tr>
<td></td>
<td>(f_{hugeN}^3 = [0.01, 0.08, \ldots, 0.1]^T)</td>
</tr>
<tr>
<td></td>
<td>(f_{hugeN}^4 = [0.02, 0.22, \ldots, 0.18]^T)</td>
</tr>
<tr>
<td></td>
<td>(f_{hugeN}^5 = [0.15, 0.02, \ldots, 0.08]^T)</td>
</tr>
</tbody>
</table>
Our Case: Matching with Local Features

Database of images

- *image 1*
 \[f_1 = [0.1, 0.2, \ldots, 0.15]^T \]
 \[f_2 = [0.05, 0.11, \ldots, 0.2]^T \]
 \[f_3 = [0.23, 0.12, \ldots, 0.1]^T \]
 \[f_4 = [0.12, 0.15, \ldots, 0.05]^T \]
 \[\vdots \]
 \[f_n = [0.05, 0.18, \ldots, 0.09]^T \]

- *image 2*
 \[f_2 = [0.09, 0.01, \ldots, 0.18]^T \]
 \[f_3 = [0.0, 0.08, \ldots, 0.1]^T \]
 \[\vdots \]
 \[f_m = [0.1, 0.15, \ldots, 0.14]^T \]

- *image 3*

- *image hugeN*
 \[f_{1\text{hugeN}} = [0.12, 0.15, \ldots, 0.19]^T \]
 \[f_{2\text{hugeN}} = [0.1, 0.2, \ldots, 0.2]^T \]
 \[f_{3\text{hugeN}} = [0.12, 0.22, \ldots, 0.18]^T \]
 \[\vdots \]
 \[f_{k\text{hugeN}} = [0.15, 0.02, \ldots, 0.08]^T \]

Descriptors (vectors)

Now I get a reference (query) image of an object. I want to retrieve all images from the database that contain the object. **How?**
Our Case: Matching with Local Features

Database of images

\[
\begin{align*}
\mathbf{f}_1^1 &= [0.1, 0.2, \ldots, 0.15]^T \\
\mathbf{f}_2^1 &= [0.23, 0.12, \ldots, 0.1]^T \\
\mathbf{f}_3^1 &= [0.12, 0.15, \ldots, 0.05]^T \\
&\vdots \\
\mathbf{f}_n^1 &= [0.05, 0.18, \ldots, 0.09]^T
\end{align*}
\]

\[
\begin{align*}
\mathbf{f}_1^2 &= [0.05, 0.11, \ldots, 0.2]^T \\
\mathbf{f}_2^2 &= [0.09, 0.01, \ldots, 0.18]^T \\
\mathbf{f}_3^2 &= [0.0, 0.08, \ldots, 0.1]^T \\
&\vdots \\
\mathbf{f}_m^2 &= [0.1, 0.15, \ldots, 0.14]^T
\end{align*}
\]

descriptors (vectors)

\[
\begin{align*}
\mathbf{f}_1^{hugeN} &= [0.12, 0.15, \ldots, 0.19]^T \\
\mathbf{f}_2^{hugeN} &= [0.1, 0.2, \ldots, 0.2]^T \\
\mathbf{f}_3^{hugeN} &= [0.12, 0.22, \ldots, 0.18]^T \\
&\vdots \\
\mathbf{f}_k^{hugeN} &= [0.15, 0.02, \ldots, 0.08]^T
\end{align*}
\]

\[
\begin{align*}
\mathbf{f}_1^{ref} &= [0.1, 0.2, \ldots, 0.16]^T \\
\mathbf{f}_2^{ref} &= [0.15, 0.02, \ldots, 0.06]^T \\
\mathbf{f}_3^{ref} &= [0.14, 0.22, \ldots, 0.09]^T \\
&\vdots \\
\mathbf{f}_p^{ref} &= [0.17, 0.18, \ldots, 0.2]^T
\end{align*}
\]

SLOW

Before (Assignment 3) we were matching all reference descriptors to all descriptors in each database image. Not very efficient.
Our Case: Matching with Local Features

Database of images

image 1

\[f_1^1 = [0.1, 0.2, \ldots, 0.15]^T \]
\[f_2^1 = [0.23, 0.12, \ldots, 0.1]^T \]
\[f_3^1 = [0.12, 0.15, \ldots, 0.05]^T \]
\[f_n^1 = [0.05, 0.18, \ldots, 0.09]^T \]

image 2

\[f_1^2 = [0.05, 0.11, \ldots, 0.2]^T \]
\[f_2^2 = [0.09, 0.01, \ldots, 0.18]^T \]
\[f_3^2 = [0.0, 0.08, \ldots, 0.1]^T \]
\[f_n^2 = [0.1, 0.15, \ldots, 0.14]^T \]

image 3

\[f_1^3 = [0.12, 0.15, \ldots, 0.19]^T \]
\[f_2^3 = [0.1, 0.2, \ldots, 0.2]^T \]
\[f_3^3 = [0.12, 0.22, \ldots, 0.18]^T \]
\[f_n^3 = [0.15, 0.02, \ldots, 0.08]^T \]

image hugeN

\[f_1^{hugeN} = [0.12, 0.15, \ldots, 0.19]^T \]
\[f_2^{hugeN} = [0.1, 0.2, \ldots, 0.2]^T \]
\[f_3^{hugeN} = [0.12, 0.22, \ldots, 0.18]^T \]
\[f_n^{hugeN} = [0.15, 0.02, \ldots, 0.08]^T \]

\textbf{What can we do to speed-up?}

Before (Assignment 3) we were matching all reference descriptors to all descriptors in each database image. Not very efficient.
Indexing!

A Word Index!

Ch*

Where ???????!
Indexing Local Features: Inverted File Index

- For text documents, an efficient way to find all pages on which a word occurs is to use an index.
- We want to find all images in which a feature occurs.
- To use this idea, we need to map our features to “visual words”.
- Why?

[Source: K. Grauman, slide credit: R. Urtasun]
How would “visual words” help us?

Imagine that I am somehow able to “name” my descriptors with a set of “words”.
How can this help me?
How would “visual words” help us?

Database of images

image 1
- W1
- W5
- W4
- ...
- W1

image 2
- W2
- W3
- W6
- ...
- W7

image 3
- W7
- W9
- W1
- ...
- W9

image hugeN
- W6
- W2
- W7
- ...
- W8

words

We can now build an **inverted file index**
This is like an Index of a book
How would “visual words” help us?

We can also assign the descriptors in the reference image to the visual words.
How would “visual words” help us?

Database of images

<table>
<thead>
<tr>
<th>Visual word</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>2</td>
<td>2, hugeN</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2, hugeN</td>
</tr>
<tr>
<td>7</td>
<td>2,3, hugeN</td>
</tr>
</tbody>
</table>

And for each word in the reference image, we lookup our inverted file and check which images contain it.

We only need to match our reference image to the retrieved set of images.
But What Are Our Visual “Words”?

Database of images

image 1
$f_1^1 = [0.1, 0.2, \ldots, 0.15]^T$
$f_2^1 = [0.23, 0.12, \ldots, 0.1]^T$
$f_3^1 = [0.12, 0.15, \ldots, 0.05]^T$
\vdots
$f_n^1 = [0.05, 0.18, \ldots, 0.09]^T$

image 2
$f_1^2 = [0.05, 0.11, \ldots, 0.2]^T$
$f_2^2 = [0.09, 0.01, \ldots, 0.18]^T$
$f_3^2 = [0.0, 0.08, \ldots, 0.1]^T$
\vdots
$f_m^2 = [0.1, 0.15, \ldots, 0.14]^T$

image 3

image hugeN
$f_1^{hugeN} = [0.12, 0.15, \ldots, 0.19]^T$
$f_2^{hugeN} = [0.1, 0.2, \ldots, 0.2]^T$
$f_3^{hugeN} = [0.12, 0.22, \ldots, 0.18]^T$
\vdots
$f_k^{hugeN} = [0.15, 0.02, \ldots, 0.08]^T$

descriptors (vectors)

What are our visual “words”?

reference (query) image

$f_1^{ref} = [0.1, 0.2, \ldots, 0.16]^T$
$f_2^{ref} = [0.15, 0.02, \ldots, 0.06]^T$
$f_3^{ref} = [0.14, 0.22, \ldots, 0.09]^T$
\vdots
$f_p^{ref} = [0.17, 0.18, \ldots, 0.2]^T$
But What Are Our Visual “Words”?

Database of images

<table>
<thead>
<tr>
<th>Image</th>
<th>Descriptors (vectors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>image 1</td>
<td>$f_1^1 = [0.1, 0.2, \ldots, 0.15]^T, f_2^1 = [0.05, 0.11, \ldots, 0.2]^T, f_3^1 = [0.12, 0.15, \ldots, 0.05]^T, \ldots, f_n^1 = [0.05, 0.18, \ldots, 0.09]^T$</td>
</tr>
<tr>
<td>image 2</td>
<td>$f_1^2 = [0.23, 0.12, \ldots, 0.11]^T, f_2^2 = [0.09, 0.01, \ldots, 0.18]^T, f_3^2 = [0.0, 0.08, \ldots, 0.1]^T, \ldots, f_m^2 = [0.1, 0.15, \ldots, 0.14]^T$</td>
</tr>
<tr>
<td>image 3</td>
<td>$f_1^3 = [0.12, 0.15, \ldots, 0.05]^T, f_2^3 = [0.0, 0.08, \ldots, 0.1]^T, f_3^3 = [0.12, 0.22, \ldots, 0.18]^T, \ldots, f_k^3 = [0.15, 0.02, \ldots, 0.08]^T$</td>
</tr>
<tr>
<td>image hugeN</td>
<td>$f_1^{hugeN} = [0.12, 0.15, \ldots, 0.19]^T, f_2^{hugeN} = [0.1, 0.2, \ldots, 0.2]^T, f_3^{hugeN} = [0.12, 0.22, \ldots, 0.18]^T, \ldots, f_k^{hugeN} = [0.15, 0.02, \ldots, 0.08]^T$</td>
</tr>
</tbody>
</table>

The quest for visual words

We could do something like:

If all coordinates of vector smaller than 0.1, then call this vector word 1
If first n-1 coordinates < 0.1, but last coordinate is > 0.1, call this vector word 2
If first n-2 and last coordinate < 0.1, but n-1 coordinate > 0.1, call this vector word 3
...

Why is this not a very good choice? How can we do this better?
But What Are Our Visual "Words"?

Database of images

image 1

image 2

image 3

image hugeN

\[f_1^1 = [0.1, 0.2, \ldots, 0.15]^T \]
\[f_2^1 = [0.23, 0.12, \ldots, 0.1]^T \]
\[f_3^1 = [0.12, 0.15, \ldots, 0.05]^T \]
\[\vdots \]
\[f_n^1 = [0.05, 0.18, \ldots, 0.09]^T \]

\[f_1^2 = [0.05, 0.11, \ldots, 0.2]^T \]
\[f_2^2 = [0.09, 0.01, \ldots, 0.18]^T \]
\[f_3^2 = [0.0, 0.08, \ldots, 0.1]^T \]
\[\vdots \]
\[f_m^2 = [0.1, 0.15, \ldots, 0.14]^T \]

\[f_1^{hugeN} = [0.12, 0.15, \ldots, 0.19]^T \]
\[f_2^{hugeN} = [0.1, 0.2, \ldots, 0.2]^T \]
\[f_3^{hugeN} = [0.12, 0.22, \ldots, 0.18]^T \]
\[\vdots \]
\[f_k^{hugeN} = [0.15, 0.02, \ldots, 0.08]^T \]

descriptors (vectors)

The quest for visual words

You can imagine each descriptor vector as a point in a high-dimensional space (128-dim for SIFT).

Disclaimer: This is only for the purpose of easier visualization of the solution.
But What Are Our Visual “Words”?

Database of images

image 1

\[f_1^1 = [0.1, 0.2, \ldots, 0.15]^T \]
\[f_2^1 = [0.23, 0.12, \ldots, 0.1]^T \]
\[f_3^1 = [0.12, 0.15, \ldots, 0.05]^T \]
\[\vdots \]
\[f_n^1 = [0.05, 0.18, \ldots, 0.09]^T \]

image 2

\[f_1^2 = [0.05, 0.11, \ldots, 0.2]^T \]
\[f_2^2 = [0.09, 0.01, \ldots, 0.18]^T \]
\[f_3^2 = [0.0, 0.08, \ldots, 0.1]^T \]
\[\vdots \]
\[f_m^2 = [0.1, 0.15, \ldots, 0.14]^T \]

image 3

\[\vdots \]

image hugeN

\[f_1^{hugeN} = [0.12, 0.15, \ldots, 0.19]^T \]
\[f_2^{hugeN} = [0.1, 0.2, \ldots, 0.2]^T \]
\[f_3^{hugeN} = [0.12, 0.22, \ldots, 0.18]^T \]
\[\vdots \]
\[f_k^{hugeN} = [0.15, 0.02, \ldots, 0.08]^T \]

descriptors (vectors)

The quest for visual words

- We can choose our visual words as “representative” vectors in this space
- We can perform **clustering** (for example **k-means**)
But What Are Our Visual “Words”?

Database of images

image 1

$\mathbf{f}_1 = [0.1, 0.2, \ldots, 0.15]^T$

$\mathbf{f}_2 = [0.23, 0.12, \ldots, 0.1]^T$

$\mathbf{f}_3 = [0.12, 0.15, \ldots, 0.05]^T$

\vdots

$\mathbf{f}_n = [0.05, 0.18, \ldots, 0.09]^T$

image 2

$\mathbf{f}_1^2 = [0.05, 0.11, \ldots, 0.2]^T$

$\mathbf{f}_2^2 = [0.09, 0.01, \ldots, 0.18]^T$

$\mathbf{f}_3^2 = [0.0, 0.08, \ldots, 0.1]^T$

\vdots

$\mathbf{f}_m^2 = [0.1, 0.15, \ldots, 0.14]^T$

image 3

\cdots

image hugeN

$\mathbf{f}_1^{hugeN} = [0.12, 0.15, \ldots, 0.19]^T$

$\mathbf{f}_2^{hugeN} = [0.1, 0.2, \ldots, 0.2]^T$

$\mathbf{f}_3^{hugeN} = [0.12, 0.22, \ldots, 0.18]^T$

\vdots

$\mathbf{f}_k^{hugeN} = [0.15, 0.02, \ldots, 0.08]^T$

Visual words: cluster centers

- $W_1 = [0.1, 0.15, \ldots, 0.8]^T$
- $W_2 = [0.15, 0.01, \ldots, 0.09]^T$
- $W_3 = [0.01, 0.09, \ldots, 0.1]^T$
- $W_4 = [0.2, 0.02, \ldots, 0.14]^T$
- \vdots
But What Are Our Visual “Words”?

Database of images

image 1

image 2

image 3

image hugeN

\[
\begin{align*}
 f_1^1 &= [0.1, 0.1, \ldots, 0.15]^T \\
 f_1^2 &= [0.05, 0.11, \ldots, 0.2]^T \\
 f_1^3 &= [0.32, 0.12, \ldots, 0.1]^T \\
 f_1^4 &= [0.05, 0.18, \ldots, 0.09]^T \\
 \vdots \\
 f_m^1 &= [0.1, 0.15, \ldots, 0.14]^T \\
 f_m^2 &= [0.12, 0.15, \ldots, 0.19]^T \\
 f_m^3 &= [0.1, 0.2, \ldots, 0.2]^T \\
 f_m^4 &= [0.12, 0.22, \ldots, 0.18]^T \\
 \vdots \\
 f_k^1 &= [0.15, 0.02, \ldots, 0.08]^T \\
 \vdots \\
 \end{align*}
\]

descriptors (vectors)

Visual words

× $W1 = [0.1, 0.15, \ldots, 0.8]^T$
× $W2 = [0.15, 0.01, \ldots, 0.09]^T$
× $W3 = [0.01, 0.09, \ldots, 0.1]^T$
× $W4 = [0.2, 0.02, \ldots, 0.14]^T$
× $W5 = \ldots$

How do we map this vector to a visual word?
But What Are Our Visual “Words”?

Database of images

\[
\begin{align*}
W_1 &= [0.1, 0.15, \ldots, 0.8]^T \\
W_2 &= [0.15, 0.01, \ldots, 0.09]^T \\
W_3 &= [0.01, 0.09, \ldots, 0.1]^T \\
W_4 &= [0.2, 0.02, \ldots, 0.14]^T \\
\vdots
\end{align*}
\]

\[
\begin{align*}
f_1 &= [0.05, 0.11, \ldots, 0.2]^T \\
f_2 &= [0.09, 0.01, \ldots, 0.18]^T \\
f_3 &= [0.0, 0.08, \ldots, 0.1]^T \\
f_m &= [0.1, 0.15, \ldots, 0.14]^T \\
\vdots
\end{align*}
\]

descriptors (vectors)

\[
\begin{align*}
f_{1}\text{huge}^N &= [0.12, 0.15, \ldots, 0.19]^T \\
f_{2}\text{huge}^N &= [0.1, 0.2, \ldots, 0.2]^T \\
f_{3}\text{huge}^N &= [0.12, 0.22, \ldots, 0.18]^T \\
\vdots
\end{align*}
\]

Visual words

- \(W_1 = [0.1, 0.15, \ldots, 0.8]^T \)
- \(W_2 = [0.15, 0.01, \ldots, 0.09]^T \)
- \(W_3 = [0.01, 0.09, \ldots, 0.1]^T \)
- \(W_4 = [0.2, 0.02, \ldots, 0.14]^T \)
- \(\vdots \)

We find the closest visual word (Euclidean distance)

\[
\text{arg min}_i ||f - W_i||
\]
Visual Words

- All example patches on the right belong to the same visual word.

[Source: R. Urtasun]
Now We Can do Our Fast Matching

Database of images

image 1
W1
W5
W4
...
W2

image 2
W2
W3
W6
...
W7

image 3
W7
W1
W9
...
W91

image hugeN
W6
W2
W7
...
W8

And for each word in the reference image, we lookup our inverted file and check which images contain it. **We only need to match our reference image to the retrieved set of images.**
Inverted File Index

- Now we found all images in the database that have at least one visual word in common with the query image
- But this can still give us lots of images... What can we do?
Inverted File Index

- Now we found all images in the database that have at least one visual word in common with the query image.
- But this can still give us lots of images... What can we do?
- Idea: Compute meaningful similarity (efficiently) between query image and retrieved images. Then just match query to top K most similar images and forget about the rest.
Now we found all images in the database that have at least one visual word in common with the query image.

But this can still give us lots of images... What can we do?

Idea: Compute meaningful similarity (efficiently) between query image and retrieved images. Then just match query to top K most similar images and forget about the rest.

How can we do compute a meaningful similarity, and do it fast?
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach us through our eyes. For a long time, the visual image was considered to be the most important of the five senses, but we now know that perception is more complex and involves the whole brain. Following the discovery of the visual perception centers in the brain, Hubel and Wiesel demonstrated that the message about the image falling on the retina undergoes a column-wise analysis in a system of nerve cells stored in columns. In this system each column has its specific function and is responsible for a specific detail in the pattern of the retinal image.

China is forecasting a trade surplus of $90bn (£51bn) to $100bn this year, a threefold increase on 2004's $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% expansion of China's $750bn, compared with $660bn. To annoy the US, China's leaders also need to let the yuan is also needed. China's trade surplus, which has been growing steadily, has already created discontent in the US, and permitted it to trade within a narrower band but the US wants the yuan to be allowed to rise freely. However, Beijing has made it clear that it will take its time and tread carefully before allowing the yuan to rise further in value.

[Slide credit: R. Urtasun]
Bags of Visual Words

- Summarize entire image based on its distribution (histogram) of word occurrences.
- Analogous to bag of words representation commonly used for documents.
Compute a Bag-of-Words Description

Database of images

image 1

W1
W5
W4
: W1

image 2

W2
W3
W6
: W7

image 3

W7
W9
W1
: W9

image hugeN

W6
W2
W7
: W8

words

How many times a word repeats in image (frequency)

<table>
<thead>
<tr>
<th>Word 1</th>
<th>Word 2</th>
<th>Word 3</th>
<th>Word 4</th>
<th>Word 5</th>
<th>Word 6</th>
<th>Word 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

image 1 representation

\[
\begin{bmatrix}
2 & 6 & 3 & 1 & 5 & 2 & 1 & \ldots
\end{bmatrix}
\]
Compute a Bag-of-Words Description

Database of images

image 1
W1
W5
W4
:
W1

image 2
W2
W3
W6
:
W7

image 3
W7
W9
W1
:
W9

image huge N
W6
W2
W7
:
W8

words

We can do the same for the reference image

image 1 representation

[2 6 3 1 5 2 1 ...]

reference image representation

[1 2 4 5 1 2 2 ...]
Compute a Bag-of-Words Description

Database of images

image 1

W1
W5
W4
:
W1

image 2

W2
W3
W6
:
W7

image 3

W7
W9
W1
:
W7

image hugeN

W6
W2
W7
:
W8

words

How do we compare?

\[
\begin{bmatrix}
2 & 6 & 3 & 1 & 5 & 2 & 1 & \ldots
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 4 & 5 & 1 & 2 & 2 & \ldots
\end{bmatrix}
\]
Comparing Images

- Compute the similarity by normalized dot product between their representations (vectors)

\[
sim(t_j, q) = \frac{\langle t_j, q \rangle}{||t_j|| \cdot ||q||}
\]

- Rank images in database based on the similarity score (the higher the better)
- Take top K best ranked images and do spatial verification (compute transformation and count inliers)
Comparing Images

- Compute the similarity by normalized dot product between their representations (vectors)

\[
\text{sim}(t_j, q) = \frac{\langle t_j, q \rangle}{||t_j|| \cdot ||q||}
\]

- Rank images in database based on the similarity score (the higher the better)
- Take top K best ranked images and do spatial verification (compute transformation and count inliers)
Problem can quickly occur if one word appears in many many images and has a big count in each image (it dominates the vector)

This way any similarity based on this vector will be dominated with this very frequent, non-discriminative word.

Our similarity will not have much sense.
Intuition:
Re-weigh the entries such that words that appear in many images (documents) are down-weighted
This re-weighting is called tf-idf
Instead of a histogram, for retrieval it’s better to re-weight the image description vector $\mathbf{t} = [t_1, t_2, \ldots, t_i, \ldots]$ with term frequency-inverse document frequency (tf-idf), a standard trick in document retrieval:

$$
 t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}
$$

where:

- n_{id} is the number of occurrences of word i in image d
- n_d is the total number of words in image d
- n_i is the number of occurrences of word i in the whole database
- N is the number of documents in the whole database
Instead of a histogram, for retrieval it’s better to re-weight the image description vector \(\mathbf{t} = [t_1, t_2, \ldots, t_i, \ldots] \) with term frequency-inverse document frequency (tf-idf), a standard trick in document retrieval:

\[
t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}
\]

where:
- \(n_{id} \ldots \) is the number of occurrences of word \(i \) in image \(d \)
- \(n_d \ldots \) is the total number of words in image \(d \)
- \(n_i \ldots \) is the number of occurrences of word \(i \) in the whole database
- \(N \ldots \) is the number of documents in the whole database

The weighting is a product of two terms: the word frequency \(\frac{n_{id}}{n_d} \), and the inverse document frequency \(\log \frac{N}{n_i} \)
Compute a Better Bag-of-Words Description

- Instead of a histogram, for retrieval it’s better to re-weight the image description vector \(\mathbf{t} = [t_1, t_2, \ldots, t_i, \ldots] \) with term frequency-inverse document frequency (tf-idf), a standard trick in document retrieval:

\[
t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}
\]

where:
- \(n_{id} \) is the number of occurrences of word \(i \) in image \(d \)
- \(n_d \) is the total number of words in image \(d \)
- \(n_i \) is the number of occurrences of word \(i \) in the whole database
- \(N \) is the number of documents in the whole database

- The weighting is a product of two terms: the word frequency \(\frac{n_{id}}{n_d} \), and the inverse document frequency \(\log \frac{N}{n_i} \)

- Intuition behind this: word frequency weights words occurring often in a particular document, and thus describe it well, while the inverse document frequency downweights the words that occur often in the full dataset
Comparing Images

- Compute the similarity by normalized dot product between their tf-idf representations (vectors)
 \[
 \text{sim}(t_j, q) = \frac{\langle t_j, q \rangle}{||t_j|| \cdot ||q||}
 \]

- Rank images in database based on the similarity score (the higher the better)
- Take top K best ranked images and do spatial verification (compute transformation and count inliers)
Spatial Verification

- Both image pairs have many visual words in common
- Only some of the matches are mutually consistent

[Source: O. Chum]
Visual Words/Bags of Words

Good

- flexible to geometry / deformations / viewpoint
- compact summary of image content
- provides vector representation for sets
- good results in practice

Bad

- background and foreground mixed when bag covers whole image
- optimal vocabulary formation remains unclear
- basic model ignores geometry must verify afterwards, or encode via features
Summary – Stuff You Need To Know

Fast image retrieval:

- Compute features in all images from database, and query image.
- Cluster the descriptors from the images in the database (e.g., k-means) to get \(k \) clusters. These clusters are vectors that live in the same dimensional space as the descriptors. We call them **visual words**.
- Assign each descriptor in database and query image to the closest cluster.
- Build an inverted file index
- For a query image, lookup all the visual words in the inverted file index to get a list of images that share at least one visual word with the query
- Compute a bag-of-words (BoW) vector for each retrieved image and query. This vector just counts the number of occurrences of each word. It has as many dimensions as there are visual words. Weight the vector with tf-idf.
- Compute similarity between query BoW vector and all retrieved image BoW vectors. Sort (highest to lowest). Take top \(K \) most similar images (e.g., 100)
- Do spatial verification on all top \(K \) retrieved images (RANSAC + affine or homography + remove images with too few inliers)
Matlab function:

- \([\text{IDX, W}] = \text{kmeans}([\text{X, k}]);\) where rows of \(\text{X}\) are descriptors, rows of \(\text{W}\) are visual words vectors, and \(\text{IDX}\) are assignments of rows of \(\text{X}\) to visual words

- Once you have \(\text{W}\), you can quickly compute \(\text{IDX}\) via the \text{dist2} function (Assignment 2):
 \[\text{D} = \text{dist2}([\text{X}', \text{W}']); [\sim, \text{IDX}] = \text{MIN}([\text{D}, []], 2); \]

- A much faster way of computing the closest cluster (IDX) is via the FLANN library: http://www.cs.ubc.ca/research/flann/

- Since \(\text{X}\) is typically super large, \text{kmeans} will run for days... A solution is to randomly sample a few descriptors from \(\text{X}\) and cluster those. Another great possibility is to use this:
 http://www.robots.ox.ac.uk/~vgg/software/fastanncluster/
Can we make the retrieval process even more efficient?
Hierarchical clustering for large vocabularies, [Nister et al., 06].

- k defines the branch factor (number of children of each node) of the tree.
Vocabulary Trees

- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- k defines the branch factor (number of children of each node) of the tree.
- First, an initial k-means process is run on the training data, defining k cluster centers (same as we did before).
Vocabulary Trees

- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- k defines the branch factor (number of children of each node) of the tree.
- First, an initial k-means process is run on the training data, defining k cluster centers (same as we did before).
- The same process is then recursively applied to each group.
Vocabulary Trees

- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- \(k \) defines the branch factor (number of children of each node) of the tree.
- First, an initial k-means process is run on the training data, defining \(k \) cluster centers (same as we did before).
- The same process is then recursively applied to each group.
- The tree is determined level by level, up to some maximum number of levels \(L \).
Vocabulary Trees

- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- k defines the branch factor (number of children of each node) of the tree.
- First, an initial k-means process is run on the training data, defining k cluster centers (same as we did before).
- The same process is then recursively applied to each group.
- The tree is determined level by level, up to some maximum number of levels L.
Constructing the tree

- Offline phase: hierarchical clustering (e.g., k-means at each level).
Offline phase: hierarchical clustering (e.g., k-means at each level).
Constructing the tree

- Offline phase: hierarchical clustering (e.g., k-means at each level).
Constructing the tree

- Offline phase: hierarchical clustering (e.g., k-means at each level).
Assigning Descriptors to Words

``Vocabulary'' tree
(visual words in a hierarchy)

The words that I use to form the descriptor are the leaves of the tree
Assigning Descriptors to Words

How do I transform my (eg, SIFT) descriptors into such visual words?

\[f_i^j = [0.23, 0.12, \ldots, 0.1]^T \]
\[f_i^1 = [0.12, 0.15, \ldots, 0.05]^T \]
\[\vdots \]
\[f_i^n = [0.05, 0.18, \ldots, 0.09]^T \]
Assigning Descriptors to Words

- Each descriptor vector is propagated down the tree by at each level comparing the descriptor vector to the k candidate cluster centers (represented by k children in the tree) and choosing the closest one.

Find the closest word at each level for a selected parent, starting from top.
Assigning Descriptors to Words

- Each descriptor vector is propagated down the tree by at each level comparing the descriptor vector to the k candidate cluster centers (represented by k children in the tree) and choosing the closest one.

\[
f'_2 = [0.23, 0.12, \ldots, 0.1]^T \\
f'_3 = [0.12, 0.15, \ldots, 0.05]^T \\
\vdots \\
f'_n = [0.05, 0.18, \ldots, 0.09]^T
\]

Find the closest word at each level for a selected parent, starting from top
Assigning Descriptors to Words

- The tree allows us to efficiently match a descriptor to a very large vocabulary.

Efficiency: At each level we are only comparing to k words (and k is small).
Assigning Descriptors to Words

- **image 1**
 - W1
 - W5
 - W4
 - W3
 - W2
 - W1

- **image 2**
 - W7
 - W6
 - W9
 - W2
 - W1

- **image 3**
 - W7
 - W9
 - W1
 - W2
 - W7

- **image hugeN**
 - W6
 - W2
 - W7
 - W8

Graphs and Trees

- **"Vocabulary" tree**
- **image 1 representation**
 - [2 6 3 1 5 2 1 ...]

As many words as leaves in tree
Vocabulary Size

- Complexity: branching factor and number of levels
- Most important for the retrieval quality is to have a large vocabulary

![Graph showing performance (%) vs. number of leaf nodes with lines for 8, 10, and 16 levels.](image)
Next Time
Object Detection