Depth from Stereo

• All points on the projective line to P map to p

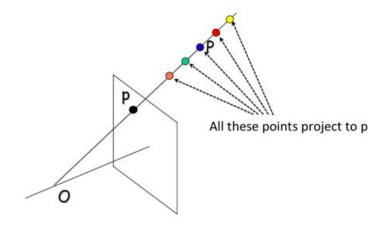
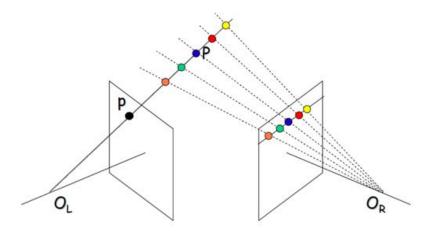


Figure: One camera

 All points on projective line to P in left camera map to a line in the image plane of the right camera



• If I search this line to find correspondences...

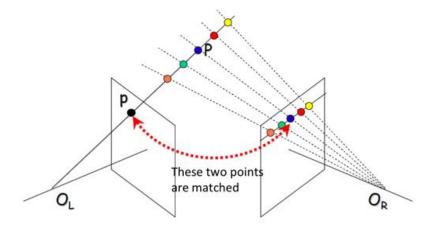


Figure: If I am able to find corresponding points in two images...

• I can get 3D!

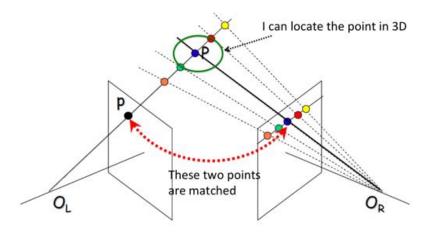


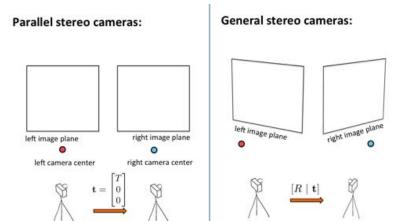
Figure: I can get a point in 3D by triangulation!

Sanja Fidler

Stereo

Epipolar geometry

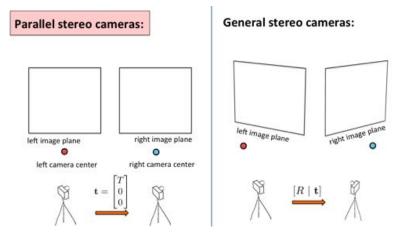
- Case with two cameras with parallel optical axes
- General case



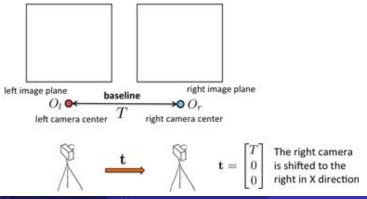
Stereo

Epipolar geometry

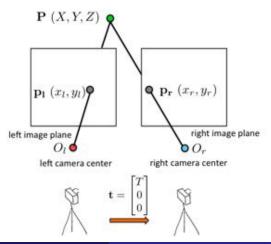
- Case with two cameras with parallel optical axes \leftarrow First this
- General case



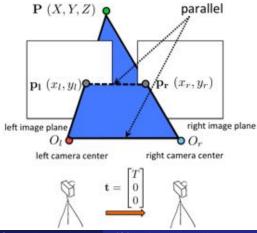
• We assume that the two calibrated cameras (we know intrinsics and extrinsics) are parallel, i.e. the right camera is just some distance to the right of left camera. We assume we know this distance. We call it the **baseline**.



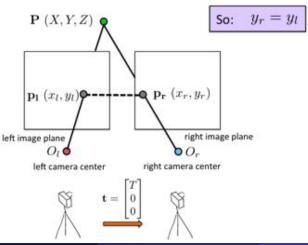
• Pick a point P in the world



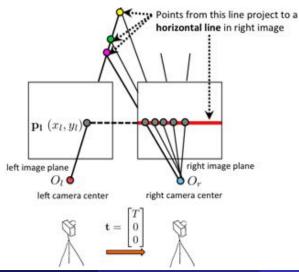
Points O₁, O_r and P (and p₁ and p_r) lie on a plane. Since two image planes lie on the same plane (distance f from each camera), the lines O₁O_r and p₁p_r are parallel.



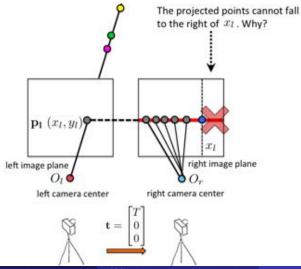
• Since lines O_iO_r and p_ip_r are parallel, and O_i and O_r have the same y, then also p_i and p_r have the same y: $y_r = y_i!$



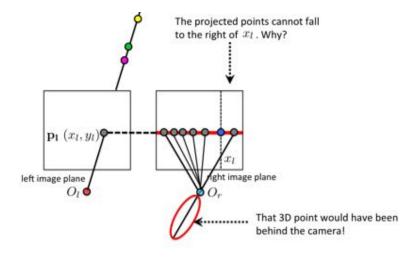
• So all points on the projective line O_1p_1 project to a horizontal line with $y = y_1$ on the right image. This is nice, let's remember this.



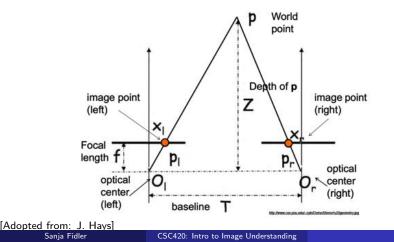
• Another observation: No point from **O**₁**p**₁ can project to the right of *x*₁ in the right image. **Why**?



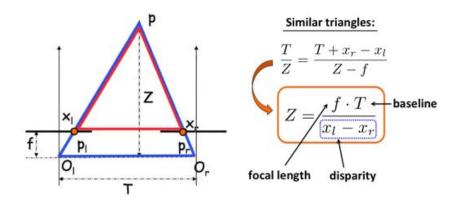
• Because that would mean our image can see behind the camera...



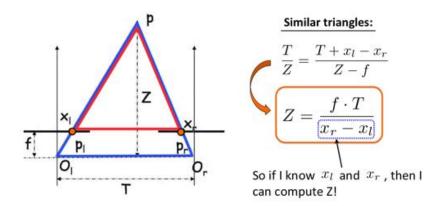
 Since our points p_l and p_r lie on a horizontal line, we can forget about y_l for a moment (it doesn't seem important). Let's look at the camera situation from the birdseye perspective instead. Let's see if we can find a connection between x_l, x_r and Z (because Z is what we want).



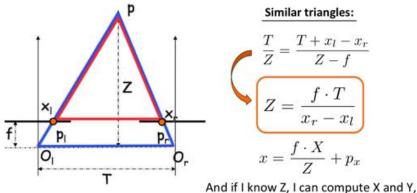
• We can then use similar triangles to compute the depth of the point P



• We can then use similar triangles to compute the depth of the point P



• We can then use similar triangles to compute the depth of the point P



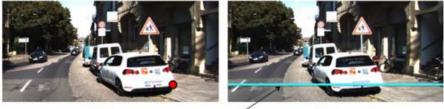
which gives me the point in 3D

• For each point $\mathbf{p}_{\mathbf{l}} = (x_l, y_l)$, how do I get $\mathbf{p}_{\mathbf{r}} = (x_r, y_r)$?

left image

right image

• For each point $\mathbf{p}_{\mathbf{l}} = (x_l, y_l)$, how do I get $\mathbf{p}_{\mathbf{r}} = (x_r, y_r)$? By matching on line $y_r = y_l$.



left image

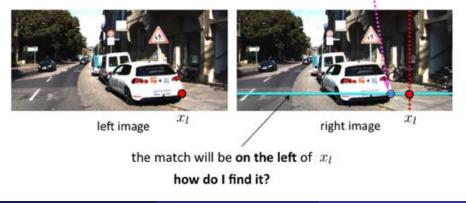
right image

the match will be on this line (same y)

(CAREFUL: this is only true for parallel cameras. Generally, line not horizontal)

• For each point $\mathbf{p}_{\mathbf{l}} = (x_l, y_l)$, how do I get $\mathbf{p}_{\mathbf{r}} = (x_r, y_r)$? By matching on line $y_r = y_l$.

We are looking for this point



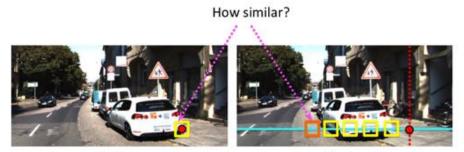
• For each point $\mathbf{p}_{\mathbf{l}} = (x_l, y_l)$, how do I get $\mathbf{p}_{\mathbf{r}} = (x_r, y_r)$? By matching. Patch around (x_r, y_r)) should look similar to the patch around (x_l, y_l) .

We call this line a scanline

left image

right image

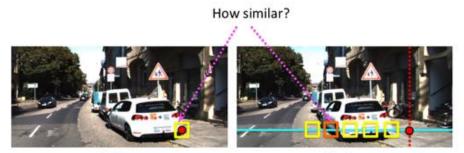
• For each point $\mathbf{p}_{\mathbf{l}} = (x_l, y_l)$, how do I get $\mathbf{p}_{\mathbf{r}} = (x_r, y_r)$? By matching. Patch around (x_r, y_r)) should look similar to the patch around (x_l, y_l) .



left image

right image

• For each point $\mathbf{p}_{\mathbf{l}} = (x_l, y_l)$, how do I get $\mathbf{p}_{\mathbf{r}} = (x_r, y_r)$? By matching. Patch around (x_r, y_r)) should look similar to the patch around (x_l, y_l) .



left image

right image

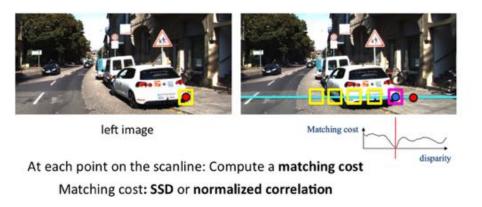
• For each point $\mathbf{p}_{\mathbf{l}} = (x_l, y_l)$, how do I get $\mathbf{p}_{\mathbf{r}} = (x_r, y_r)$? By matching. Patch around (x_r, y_r)) should look similar to the patch around (x_l, y_l) .

Most similar. A match!

left image

right image

• For each point $\mathbf{p}_{\mathbf{l}} = (x_l, y_l)$, how do I get $\mathbf{p}_{\mathbf{r}} = (x_r, y_r)$? By matching. Patch around (x_r, y_r)) should look similar to the patch around (x_l, y_l) .



Sanja Fidler

• For each point $\mathbf{p}_{\mathbf{l}} = (x_l, y_l)$, how do I get $\mathbf{p}_{\mathbf{r}} = (x_r, y_r)$? By matching. Patch around (x_r, y_r)) should look similar to the patch around (x_l, y_l) .

$$SSD(\text{patch}_l, \text{patch}_r) = \sum_x \sum_y (I_{\text{patch}_l}(x, y) - I_{\text{patch}_r}(x, y))^2$$

left image

SSD disparity

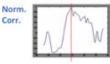
Matching cost: SSD (look for minima)

Compute a matching cost

• For each point $\mathbf{p}_{\mathbf{l}} = (x_l, y_l)$, how do I get $\mathbf{p}_{\mathbf{r}} = (x_r, y_r)$? By matching. Patch around (x_r, y_r)) should look similar to the patch around (x_l, y_l) .

$$NC(\text{patch}_l, \text{patch}_r) = \frac{\sum_x \sum_y (I_{\text{patch}_l}(x, y) \cdot I_{\text{patch}_r}(x, y))}{||I_{\text{patch}_l}|| \cdot ||I_{\text{patch}_r}||}$$

left image



Compute a matching cost

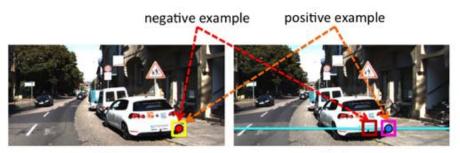
Matching cost: Normalized Corr. (look for maxima)

disparity

Sanja Fidler

• Version'2015: Can I do this task even better?

• Version'2015: Train a classifier! How can I get ground-truth?

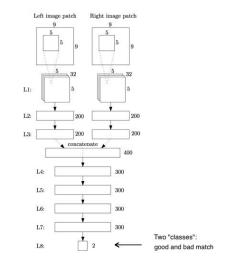


left image

right image

Training examples: get positive and negative matches

Version'2015: Train a Neural Network classifier!



[J. Zbontar and Y. LeCun: Computing the Stereo Matching Cost with a Convolutional Neural CV/DD'15 Sanja Fidler

CSC420: Intro to Image Understanding

- Version'2015: Train a Neural Network classifier!
- To get the most amazing performance

	Method	Setting	Code	Out-Noc	Out-All	Avg-Noc	Avg-All	Density	Runtime	Environment	Compare
1	MC-CNN-acrt	-	code	2.43 %	3.63 %	0.7 px	0.9 px	100.00 %	67 s	Nvidia GTX Titan X (CUDA, Lua/Torch7)	0
. Iber	star and Y. LeCurc	Stereo Mat	ching by	Training a Co	involutional	Neural Netwo	ork to Comp	sare image Par	shes. Submittee	6 to JMLR .	11
2	Displets		code	2.47 %	3.27 %	0.7 px	0.9 px	100.00 %	265 s	>8 cores @ 3.0 Ghz (Matlab + C/C++)	0
, Gun	ey and A. Geiger:	Displets: Re	soliving S	tereo Ambigi	ities using (bject Knowle	tige, Confe	rence on Com	puter Vision and	Pattern Recognition (CVPR) 2015.	
3	MC-CNN			2.61 %	3.84 %	0.8 px	1.0 px	100.00 %	100 s	Nvidia GTX Titan (CUDA, Lua/Torch7)	
. Zbor	star and Y. LeCus:	Computing	the Ster	eq Matching	Cost with a l	Convolutional	Neural Net	work. Confiere	ince on Computs	er Vision and Pattern Recognition (CVPR) 2015.	
4	PRSM	20	code	2.78 %	3.00 %	0.7 рх	0.7 px	100.00 %	300 s	1 core @ 2.5 Ghz (C/C++)	0
C. Vog	el, K. Schindler an	d S. Roth: 3	0 Scene	Flow Estimat	ion with a P	ecewise Right	d Scene Hod	H. Gov 2015.	2		
5	SPS-StF1	11月1月		2.83 %	3.64 %	0.8 px	0.9 px	100.00 %	35 s	1 core @ 3.5 Ghz (C/C++)	0
C. Yarr	aguchi, D. McAlles	ster and R. I	Urtasurc	Efficient Join	s Segmenta	tion, Occlusio	n Labeling.	Steres and Pi	ow Estimation-	ECCV 2014.	
6	VC-SE	30		3.05 %	3.31 %	0.8 px	0.8 px	100.00 %	300 s	1 core @ 2.5 Ghz (C/C++)	
C. Vog	el, S. Roth and K.	Schindler: y	New Core	sistent 30 Scr	ene Flow Est	mation over	Multiple Fra	THES. Proceed	lings of Europea	n Conference on Computer Vision. Lecture Notes in, Cor	nputer Science 2
7	Deep Embed			3.10 %	4.24 %	0.9 px	1.1 px	100.00 %	3 5	1 core @ 2.5 Ghz (C/C++)	0
L. Che	n, X. Sun, Y. Yu, L	. Wang and	C, Huang	F A.Deta,Yis	uel Correspo	ndence Embe	dding Mode	6 for Stereo M	atching Costs. II	CCV 2015.	
8	JSOSM			3.15 %	3.94 %	0.8 px	0.9 px	100.00 %	105 s	8 cores @ 2.5 Ghz (C/C++)	9
Anonyt	nous submission								Contract of the		
9	OSE	3-	code	3.28 %	4.07 %	0.8 px	0.9 px	99.98 %	50 min	1 core @ 3.0 Ghz (Matlab + C/C++)	
M, Mer	ore and A. Gelger:	Object.Scer	e Flow f	or Autonomo	us Vehicles-	Conference of	on Compute	r Vision and P	attern Recogniti	lan (CVPR) 2015.	
10	CoR		code	3.30 %	4.10 %	0.8 px	0.9 px	100.00 %	6.5	6 cores @ 3.3 Ghz (Matlab + C/C++)	0
	kreberti, Y. Xiong.	5. Gortler									

Figure: Performance on KITTI (metrics is error, so lower is better)

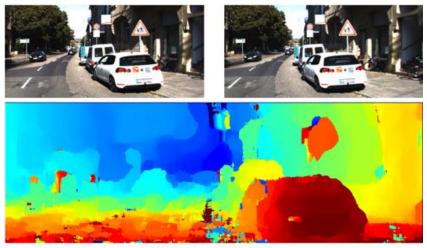
• For each point $\mathbf{p}_{\mathbf{l}} = (x_l, y_l)$, how do I get $\mathbf{p}_{\mathbf{r}} = (x_r, y_r)$? By matching. Patch around (x_r, y_r)) should look similar to the patch around (x_l, y_l) .

left image

Do this for all the points in the left image!

Sanja Fidler

• We get a disparity map as a result



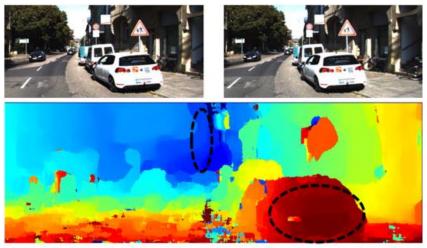
Result: Disparity map

(red values large disp., blue small disp.)

Sanja Fidler

CSC420: Intro to Image Understanding

• We get a disparity map as a result

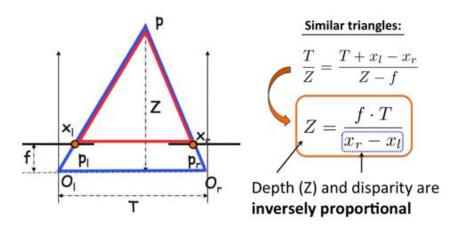


Things that are closer have **larger disparity** than those that are far away from camera. Why?

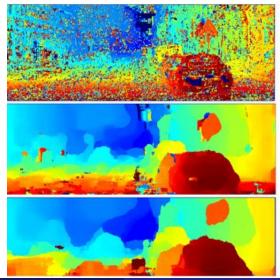
Sanja Fidler

CSC420: Intro to Image Understanding

• Depth and disparity are inversely proportional



• Smaller patches: more detail, but noisy. Bigger: less detail, but smooth



patch size = 5

patch size = 35

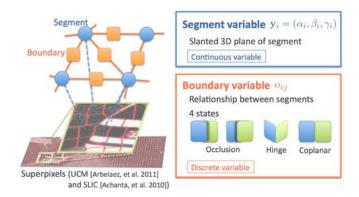
patch size = 85

Sanja Fidler

CSC420: Intro to Image Understanding

You Can Do It Much Better...

• With Energy Minimization on top, e.g., a Markov Random Field (MRF)

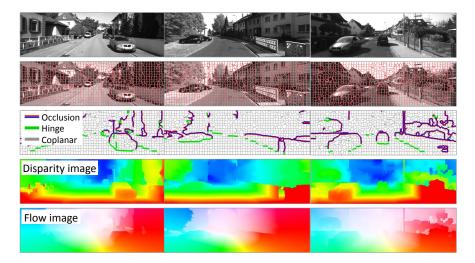


K. Yamaguchi, D. McAllester, R. Urtasun, *Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation*, ECCV 2014

Paper: http://www.cs.toronto.edu/~urtasun/publications/yamaguchi_et_al_eccv14.pdf Code: http://ttic.uchicago.edu/~dmcallester/SPS/index.html

You Can Do It Much Better...

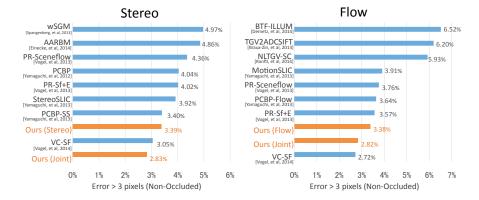
[K. Yamaguchi, D. McAllester and R. Urtasun, ECCV 2014]



Look at State-of-the-art on KITTI

Where "Ours" means: [K. Yamaguchi, D. McAllester and R. Urtasun, ECCV 2014]

• How can we evaluate the performance of a stereo algorithm?



Autonomous driving dataset KITTI: http://www.cvlibs.net/datasets/kitti/

From Disparity We Get...

• Depth: Once you have disparity, you have 3D

Figure: K. Yamaguchi, D. McAllester and R. Urtasun, ECCV 2014

Sanja Fidler

CSC420: Intro to Image Understanding

From Disparity We Get...

• Money ;)

Stereo

Epipolar geometry

- Case with two cameras with parallel optical axes
- General case \leftarrow **Next time**

