CSC420: Intro to Image Understanding Introduction

Sanja Fidler

January 3, 2017

Sanja Fidler

The Team

Instructor:

Sanja Fidler (fidler@cs.toronto.edu)

- Office: DH 3094
- Office hours: Monday 1-2pm, or by appointment
- TAs:

Shenlong Wang (slwang@cs.toronto.edu)

Hang Chu (chuhang11220gmail.com)

Course Information

- Class time: Monday at 2-4pm
- Location: DH 2010
- **Tutorials**: Monday at 4-5pm in DH 2010, demos and Q&A, we'll do it on demand
- Class Website:

http://www.cs.toronto.edu/~fidler/teaching/2017/CSC420.html

- The class will use Piazza for **announcements** and **discussions**: https://piazza.com/utoronto.ca/winter2017/csc420
- Your grade will **not depend on your participation on Piazza**. It's just a good way for asking questions, discussing with your instructor, TAs and your peers

Course Information

- Class time: Monday at 2-4pm
- Location: DH 2010
- Tutorials: Monday at 4-5pm in DH 2010, demos and Q&A, we'll do it on demand
- Class Website:

http://www.cs.toronto.edu/~fidler/teaching/2017/CSC420.html

- The class will use Piazza for announcements and discussions: https://piazza.com/utoronto.ca/winter2017/csc420
- Your grade will **not depend on your participation on Piazza**. It's just a good way for asking questions, discussing with your instructor, TAs and your peers

• **Textbook**: We won't directly follow any book, but extra reading in this textbook will be useful:

Rick Szeliski

Computer Vision: Algorithms and Applications available free online:

http://szeliski.org/Book/

• Links to other material (papers, code, etc) will be posted on the class webpage

Course Prerequisites:

- Data structures
- Linear Algebra
- Vector calculus

Without this you'll need some serious catching up to do!

Knowing some basics in this is a plus:

- Matlab, Python, C++
- Machine Learning
- Neural Networks
- Solving assignments sooner rather than later

Requirements

• Each student expected to complete 4 assignments and a project

• Assignments:

- Short theoretical questions and programming exercises
- Will be given roughly every two weeks (starting second week of class)
- You will have a week to hand in the solution to each assignment
- You need to solve the assignment alone

• Each student expected to complete 4 assignments and a project

Assignments:

- Short theoretical questions and programming exercises
- Will be given roughly every two weeks (starting second week of class)
- You will have a week to hand in the solution to each assignment
- You need to solve the assignment alone
- Project:
 - You will be able to choose from a list of projects or come up with your own project (discussed prior with your instructor)
 - Need to hand in a **report** and do an oral **presentation**
 - Can work individually or in pairs

• Each student expected to complete 4 assignments and a project

Assignments:

- Short theoretical questions and programming exercises
- Will be given roughly every two weeks (starting second week of class)
- You will have a week to hand in the solution to each assignment
- You need to solve the assignment alone

Project:

- You will be able to choose from a list of projects or come up with your own project (discussed prior with your instructor)
- Need to hand in a **report** and do an oral **presentation**
- Can work individually or in pairs

Grading

Grade breakdown

- Assignments: 60% (15% each)
- **Project**: 40%
- For the project you will need to hand in a:
 - Short project proposal
 - Project report
 - Project presentation (oral)
- I will be asking questions about relevant part of the material during project presentations

Term Work	Post Date	Due Date
Assignment 1	Jan 10	Jan 17
Assignment 2	Jan 24	Jan 31
Assignment 3	Feb 7	Feb 14
Assignment 4	Feb 28	March 7
Project Report		First week of April
Project Presentation		First week of April

- All dates are for 2017. ;)
- Dates are approximate

- \bullet Your assignments / project can be in Matlab, Python, C++
- As long as it compiles, runs, and you know how to defend it, we're happy
- HOWEVER, most code and examples we will provide during the class will be in Matlab and Python
- Choose wisely

Deadline The solutions to the assignments / project should be submitted **by 11.59pm on the date they are due**. Anything from 1 minute late to 24 hours will count as **one late day**.

Lateness Each student will be given a total of **3 free late days**. This means that you can hand in three of the assignments one day late, or one assignment three days late. It is up to the you to make a good planning of your work. After you have used the **3 day budget**, the late assignments will not be accepted.

Syllabus

Tentative syllabus

_	Week nb.	Date	Торіс
	1	Jan 2	Intro
	2	Jan 9	Linear filters, edges
	3	Jan 16	Image features
	4	Jan 23	Keypoint detection
	5	Jan 30	Matching
	6	Feb 6	Segmentation
	7	Feb 13	Grouping
	8	Feb 20	Object recognition
	9	Feb 27	Object detection
	10	March 6	Object detection, Neural Networks
	11	March 13	Stereo, multi-view
	12	March 20	Stereo, multi-view
	12	March 27	Recognition in 3D
	13	April ?	Project Presentations

Introduction

Introduction to Intro to Image Understanding

- What is Computer Vision?
- Why study Computer Vision?
- Which cool applications can we do with it?
- Is vision a hard problem?

• A field trying to develop automatic algorithms that would "see"

• What does it mean to see?

[text adopted from A. Torralba]

• To know what is where by looking – Marr, 1982

• What does it mean to see?

[text adopted from A. Torralba]

- To know what is where by looking Marr, 1982
- Understand where things are in the world

• What does it mean to see?

- [text adopted from A. Torralba]
- To know what is where by looking Marr, 1982
- Understand where things are in the world
- What are their 3D/material properties?

• What does it mean to see?

- [text adopted from A. Torralba]
- To know what is where by looking Marr, 1982
- Understand where things are in the world
- What are their 3D/material properties?

• What does it mean to see?

[text adopted from A. Torralba]

- To know what is where by looking Marr, 1982
- Understand where things are in the world
- What are their 3D/material properties?
- What actions are taking place?

boy scaring girl

• Full understanding of an image?

• Full understanding of an image? You can answer any question about it

[M. Malinowski, M. Fritz, A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input, NIPS, 2014]

Sanja Fidler

• Full understanding of an image? You can answer any question about it

Q: What is behind the table? A: window

Q: What is in front of the toilet? A: door

Q: What is on the counter in the corner? A: microwave

• Full understanding of an image? You can answer any question about it

Q: What is behind the table? A: window

Q: What is in front of the toilet? A: door

Q: What is on the counter in the corner? A: microwave

Q: What is the shape of the green chair? A: horse shaped

Sanja Fidler

• Full understanding of an image? You can answer any question about it

Q: What is behind the table? A: window

Q: What is in front of the toilet? A: door

Q: What is on the counter in the corner? A: microwave

Q: What is the shape of the green chair? A: horse shaped

Q: Where is the oven? A: on the right side of the fridge

Sanja Fidler

Intro to Image Understanding

• Full understanding of an image? You can answer any question about it

Q: What is behind the table? A: window

Q: What is in front of the toilet? A: door

Q: What is on the counter in the corner? A: microwave

Q: What is the shape of the green chair? A: horse shaped

Q: Where is the oven? A: on the right side of the fridge

Q: What is the largest object? A: bed

Sanja Fidler

Intro to Image Understanding

• Full understanding of an image? You can answer any question about it

Q: Which object is red? A: toaster

• Full understanding of an image? You can answer any question about it

Q: Which object is red? A: toaster

Q: How many drawers are there? A: 6

Q: How many doors are open A: 1

Q: How many lights are on? A: 6

• Full understanding of an image? You can answer any question about it

Q: Which object is red? A: toaster

Q: How many drawers are there? A: 6

Q: How many doors are open A: 1

Q: How many lights are on? A: 6

Q: Can you make pizza in this room? A: yes

Q: Where can you sit? A: chairs, table, floor

Sanja Fidler

• Because it is challenging and fun

Jialiang Wang's (4th undergraduate year, UofT) video about his summer research in computer vision

Video: http://www.cs.toronto.edu/~fidler/vcompvideos/Research_Video_JW.mp4

Sanja Fidler

• You are curious how to one day make the robot walk your dog

http://www.cs.toronto.edu/~fidler/videos/robotsmovies.mov

• ... and fold your laundry

https://www.youtube.com/watch?v=gy5g33S0Gzo

https://www.youtube.com/watch?v=KKUaVzf30qw
• ... and drive you to work

Amnon Shashua's Mobileye autonomous driving system

https://www.youtube.com/watch?v=4fxFDypHZLs

• Allows you to manipulate your images

• Allows you to manipulate your images

• Allows you to manipulate your images

• Allows you to manipulate your images

• Allows you to manipulate your images

• Allows you to manipulate your images

• Change style of images

[Gatys, Ecker, Bethge. A Neural Algorithm of Artistic Style. Arxiv'15.]

• ... and make cool videos using a single image

http://www.cs.cmu.edu/~om3d/

3D Object Manipulation in a Single Photograph using Stock 3D Models, Kholgade, Simon, Efros, Sheikh, SIGGRAPH 2014

Sanja Fidler

Intro to Image Understanding

• Fancy visualization and game analysis in sports

• Fancy visualization and special effects in movies

[Source: http://cvfxbook.com and http://vimeo.com/100095868]

• Reconstruct the world in 3D from online photos!

https://www.youtube.com/watch?v=IgBQCoEfiMs

Photosynth, https://photosynth.net/ (try it!)

• Figure out what people are wearing

• How Fashionable Are You?

LOS ANGELES, CA 466 FANS 288 VOTES 62 FAVOURITES

TAGS CHIC EVERDAY FALL

COLOURS WHITE-BOOTS

NOVEMBER 10, 2014 GARMENTS

White Cheap Monday Boots Chilli Beans Sunglasses Missguided Romper Daniel Wellington Watch

COMMENTS

Nice!! Love the top! cute

Figure: An example of a post on http://www.chictopia.com. We crawled the site for 180K posts.

• How Fashionable Can You Become?

Current Outfit: Pink Outfit (3)

Recommendations: Heels (8) Pastel Shirts/Skirts (8) Black/Gray Tights/Sweater (5)

Current Outfit: Blue with Scarf (3)

Recommendations: Heels (8) Pastel Shirts/Skirts (8) Black Casual (8)

Black Casual (5) Black Boots/Tights (5) Current Outfit:

Pink/Blue Shoes/Dress Shorts (3)

Recommendations: Black Casual (7) Black Heavy (3) Navy and Bags (3)

Current Outfit: Pink/Black Misc. (5)

Recommendations: Pastel Dress (8) Black/Blue Going out (8) Black Casual (8)

Current Outfit: Formal Blue/Brown (5)

Recommendations: Pastel Shirts/Skirts (9) Black/Blue Going out (8) Black Boots/Tights (8)

Figure: Examples of recommendations provided by our model. The parenthesis we show the fashionability scores.

[E. Simo-Serra, S. Fidler, F. Moreno, R. Urtasun, CVPR'15.]

[S. Zhu, C.C Loy, D. Lin, R. Urtasun, S. Fidler. In submission.]

The lady's upper-clothes contain the pattern of flowers

[S. Zhu, C.C Loy, D. Lin, R. Urtasun, S. Fidler. In submission.]

The woman is wearing a blue short-sleeved T-shirt and blue jeans

[S. Zhu, C.C Loy, D. Lin, R. Urtasun, S. Fidler. In submission.]

A woman wearing a black overcoat and white shorts

[S. Zhu, C.C Loy, D. Lin, R. Urtasun, S. Fidler. In submission.]

• Crazy media attention!!!

NewScientist New Scientist	QUARTZ Quartz	TECH TIMES Tech Times	WIRED.CO.UK	Mashable Mashable
AOL News (video)	THE HUFFINGTON POST	HUPFPOST STYLE	MSN, Canada	Protein Protein
YAHOO! News Yahoo, Canada	ScienceDaily Science Daily	Mail Online Daily Mail, UK	psfk PSFK	thestar.com (Toronto Star
gizmag Gizmag	The Record.com	iDigitalTimes	Scientific Computing	BUSTLE
BAZAAR Harper's Bazaar	Glamour	JR ELLE	COSMOPOLITAN Cosmopolitan, UK	marie claire Marie Claire
EASHION Fashion Magazine	YAHOO! Yahoo style	Red Magazine, UK	The Pasl	FashionNotes

Sanja Fidler

Intro to Image Understanding

• Detect and analyze faces

http://www.rekognition.com (try it!)

confidence : true (value : 1) pose :rol(0.9) , yaw(3.59) , pitch(8.63) race : white(0.28) emotion : calm:68%, happy:28% age : 29.52 (value : 29.52) smile : true (value : 0.65) glasses : no glass (value : 0) sunglasses : false (value : 0) eye_closed : open (value : 0) mouth_open_wide : 3% (value : 0.03) beauty : 99.42 (value : 0.9422) gender : female (value : 0)

Detect and analyze faces

http://www.rekognition.com (try it!)

confidence : true (value : 1) pose :rol(0.9) ,yaw(3.59) ,pitch(8.63) race : white(0.28) emotion : calm:68%,happy:28% age : 29.52 (value : 29.52) smile : true (value : 0.65) glasses : no glass (value : 0) sunglasses : false (value : 0) eve_closed : open (value : 0) peatry : 99.42 (value : 0.99422) beatry : 99.42 (value : 0) gender : female (value : 0)

• Detect and analyze faces

http://www.rekognition.com

confidence : true (value : 1) pose : roll(4.3) ,yav(10.36) ,pitch(-5.4) race : white(0.73) emotion : happy:99%,calm:3% age : 29.12 (value : 29.12) smile : true (value : 0.86) glasses : no glass (value : 0) sunglasses : false (value : 0) eye_closed : open (value : 0) mouth_open_wide : 0% (value : 0) beauty : 53.67 (value : 0.53674) oender : female (value : 0.3)

Sanja Fidler

34 / 65

• Detect and analyze faces

http://www.rekognition.com

confidence : true (value : 1) pose : roll(-6.26) , yaw(-6.81) , pitch(1.66) race : white(0.99) emotion : happy:925%, confused:1% age : 60.9 (value : 60.9) smile : true (value : 0.87) glasses : no glass (value : 0.01) sunglasses : false (value : 0.03) beauty: 78.62 (value : 0.78628) gender : male (value : 1)

• You can make yourself look better (and others worse)

[Khosla, Bainbridge, Oliva, Torralba, Modifying the Memorability of Face Photographs, ICCV 2013]

• Generate image captions automatically

A small plane parked in a field with trees in the background.

[Source: L. Zitnick, NIPS'14 Workshop on Learning Semantics]

• Generate image captions automatically

A man with a colorful umbrella walking down a street.

[Source: L. Zitnick, NIPS'14 Workshop on Learning Semantics]

• Generate image captions automatically

[Source: L. Zitnick, NIPS'14 Workshop on Learning Semantics]

• Generate image captions automatically

[Kiros, Salakhutdinov, Zemel. Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models. 2014]

• Have a computer do math for you

Figure: Photomath: https://photomath.net/, http://www.youtube.com/watch?v=XlbVB50mIh4

• Fingerprint recognition

[Source: S. Lazebnik]

• You can do some movie-like Forensics

Figure: Source: Nayar and Nishino, Eyes for Relighting

[Source: N. Snavely] Sanja Fidler

[Source: N. Snavely]

Figure: Source: Nayar and Nishino, Eyes for Relighting

[Source: N. Snavely]

Some more CSI

- a) Input (occluder present) b) Reference (occluder absent)
- Can you see something on the wall?

Torralba & Freeman, CVPR'12

Some more CSI

c) Difference image (b-a) d) Crop upside down
• Object recognition (in mobile phones)

[Source: S. Seitz]

- Recognizing movie posters (in mobile phones)
 - iPhone Apps: kooaba (www.kooaba.com)

• Games, games & games: 3D Pose Estimation with Depth Sensors

[Source: Microsoft Kinect]

Sanja Fidler

• There is opportunity for fame & glory, and of course serious \$\$\$

How It All Began...

How It All Began...

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo, No. 100, July 7, 1966

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

50 years and thousands of PhDs later...

Popular benchmarks:

	Method	Setting	Code	Moderate	Easy	Hard	Runtime	Environment	Compare					
1	DuExe			92.65 %	91,43.5	86.18 %	4.6	GPU @ 2.5 Ghz (C/C↔)	0					
2	RY-GNN			91.67 %	91.28 %	85.43 %	3.5 s	GPU # 2.5 Ghz (Python + C/C++)	0					
3	easte	1		91.28 %	91.06 %	85.66 %	45	GPU @ 2.5 Ghz (C/C→)	0					
4	Genome			90.63 %	90.85 %	85.82 %	4.5	GPU @ 2.5 Ghz (C/C++)	0					

Cyclist

Car

	Method	Setting	Code	Moderate	Easy	Hard	Runtime	Environment	Company	
1	Els	1		76.25 %	84,62 %	67.57 %	1.2.5	1 core @ 2.5 Ghz (C/C++)	0	
2	SAIT			76.13 %	83.88 %	86.60 %	0.15 s	GPU @ >3.5 Ghz (Python + C/C++)	0	
3	TICNN			75.83 %	84.28 %	66.50 %	0.5 s	GPU ⊕ 2.5 Ghz (Matlab + C/C++)	0	
4	Tudimple		1	75.59 %	84.15.5	66.35 %	1.6 5	GPU @ 2.5 Ghz (Python + C/C++)	0	

		mean	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor	person	potted	sheep	sofa	train	tv/ monitor	submission date
		-	\bigtriangledown																				
	Fast R-CNN + YOLO [?]	70.8	82.7	77.7	74.3	59.1	47.1	78.0	73.1	89.2	49.6	74.3	55.9	87.4	79.8	82.2	75.3	43.1	71.4	67.8	81.9	65.6	05-Jun-2015
	Fast R-CNN VGG16 extra data [7]	68.8	82.0	77.8	71.6	55.3	42.4	77.3	71.7	89.3	44.5	72.1	53.7	87.7	80.0	82.5	72.7	36.6	68.7	65.4	81.1	62.7	18-Apr-2015
Þ	segDeepM [7]	67.2	82.3	75.2	67.1	\$0.7	49.8	71.1	69.6	88.2	42.5	71.2	50.0	85.7	76.6	81.8	69.3	41.5	71.9	62.2	73.2	64.6	29-Jan-2015
D	BabyLearning [7]	63.8	77.7	73.8	62.3	48.8	45.4	67.3	67.0	80.3	41.3	70.8	49.7	79.5	74.7	78.6	64.5	36.0	69.9	55.7	70.4	61.7	12-Nov-2014

50 years and thousands of PhDs later...

- Algorithms work pretty well
- Still some embarrassing mistakes...
- The general vision problem is not yet solved

Where pink means "person"

[This pic is from 2014]

Sanja Fidler

• Half of the cerebral cortex in primates is devoted to processing visual information. This is a lot. Means that vision has to be pretty hard!

All this is dog...

[slide adopted from: R. Urtasun]

Lots of data to process:

- Thousands to millions of pixels in an image
- 100 hours of video added to YouTube per minute [source: YouTube]
- Over 6 billion hours of video are watched each month on YouTube – almost an hour for every person on Earth [source: YouTube]

Lots of data to process:

- $\bullet \sim$ 5000 new tagged photos added to Flickr per minute (7M per day)
- $\bullet \sim 60 {
 m M}$ photos uploaded to Instagram every day [source: Instagram]

How many photos are uploaded to Flickr every day, month, year?

Exploit so Much Data!

Figure: Vemodalen: The Fear That Everything Has Already Been Done, https://www.youtube.com/watch?v=8ftDjebw8aA

[Source: L. Zitnick, NIPS'14 Workshop on Learning Semantics]

- Human vision seems to work quite well.
- How well does it really work?
- Let's play some games!

• Which square is lighter, A or B?

Edward H. Adelson

• Which square is lighter, A or B?

Figure: 2006 Walt Anthony

• Which red line is longer?

Figure: 2006 Walt Anthony

• Which red line is longer?

[Slide credit: A. Torralba]

Sanja Fidler

Figure: Ames room

• Assumptions can be wrong

Figure: Chabris & Simons, https://www.youtube.com/watch?v=vJG698U2Mvo

- Count the number of times the white team pass the ball
- Concentrate, it's difficult!

Figure: Simons et al., http://www.perceptionweb.com/perception/perc1000/a_d_ex1.mov (more videos here: http://www.perceptionweb.com/misc.cgi?id=p3104)

• Is something happening in the picture?

Sanja Fidler

Figure: Torralba et al., http://people.csail.mit.edu/torralba/courses/6.870/slides/blur.avi

• Can you describe what's going on in the video?

Sanja Fidler

Figure: Torralba et al., http://people.csail.mit.edu/torralba/courses/6.870/slides/highres.avi

• Can you describe what's going on in the video?

What do I need...

What do I need to become a good Computer Vision researcher?

- Technical capabilities
- Good programming skills
- Imagination
- Even better intuition
- Lots of persistence
- Some luck always helps