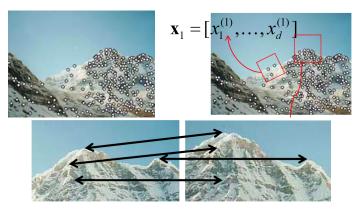
Image Features: Local Descriptors

Local Features

- Detection: Identify the interest points.
- Description: Extract a feature descriptor around each interest point.
- Matching: Determine correspondence between descriptors in two views.



[Source: K. Grauman]

The Ideal Feature Descriptor

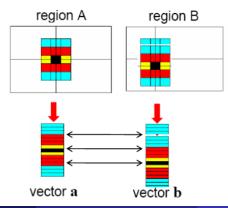
- Repeatable: Invariant to rotation, scale, photometric variations
- Distinctive: We will need to match it to lots of images/objects!
- **Compact**: Should capture rich information yet not be too high-dimensional (otherwise matching will be slow)
- Efficient: We would like to compute it (close-to) real-time

[Source: T. Tuytelaars]

[Source: T. Tuytelaars]

What If We Just Took Pixels?

- The simplest way is to write down the list of intensities to form a feature vector, and normalize them (i.e., mean 0, variance 1).
- Why normalization?
- But this is very sensitive to even small shifts, rotations and any affine transformation.



Tones Of Better Options

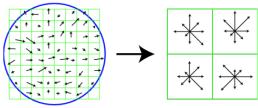
- SIFT
- PCA-SIFT
- GLOH
- HOG
- SURF
- DAISY
- LBP
- Shape Contexts
- Color Histograms

• SIFT TODAY

- PCA-SIFT
- GLOH
- HOG
- SURF
- DAISY
- LBP
- Shape Contexts
- Color Histograms

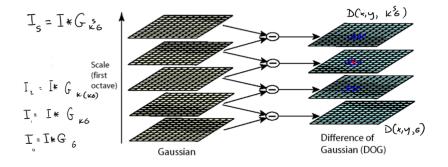
SIFT Descriptor [Lowe 2004]

- SIFT stands for Scale Invariant Feature Transform
- Invented by David Lowe, who also did DoG scale invariant interest points
- Actually in the same paper, which you should read:

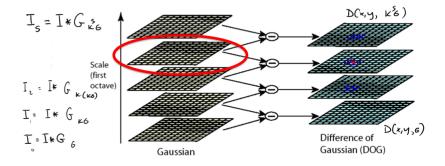


(a) image gradients

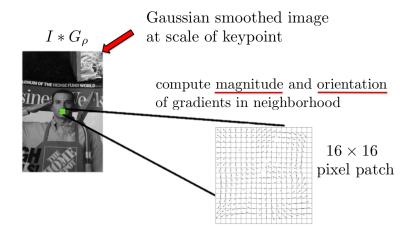
(b) keypoint descriptor



O For each keypoint, we take the Gaussian-blurred image at corresponding scale ρ



Compute the gradient magnitude and orientation in neighborhood of each keypoint



[Adopted from: F. Flores-Mangas]

Compute the gradient magnitude and orientation in neighborhood of each keypoint

magnitude of gradient:

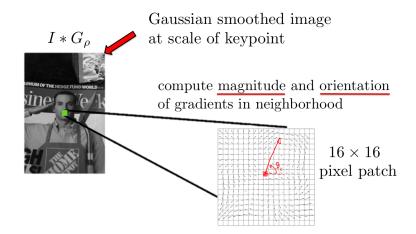
$$|\nabla I(x,y)| = \sqrt{\left(\frac{\partial (I(x,y) * G_{\rho})}{\partial x}\right)^2 + \left(\frac{\partial (I(x,y) * G_{\rho})}{\partial y}\right)^2}$$

gradient orientation:

$$\theta(x,y) = \arctan\left(\frac{\partial I * G_{\rho}}{\partial y} / \frac{\partial I * G_{\rho}}{\partial x}\right)$$

(in case you forgot ;))

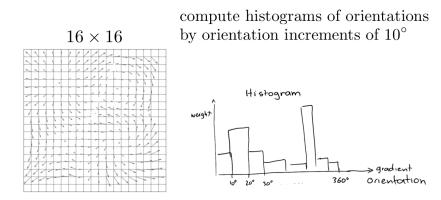
Ompute dominant orientation of each keypoint. How?



[Adopted from: F. Flores-Mangas]

SIFT Descriptor: Computing Dominant Orientation

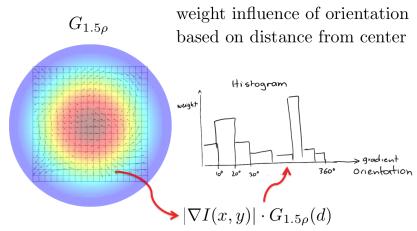
 $\bullet\,$ Compute a histogram of gradient orientations, each bin covers $10^\circ\,$



[Adopted from: F. Flores-Mangas]

SIFT Descriptor: Computing Dominant Orientation

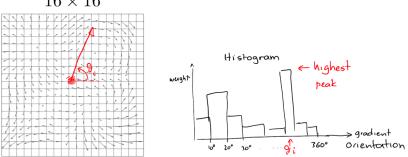
- $\bullet\,$ Compute a histogram of gradient orientations, each bin covers $10^\circ\,$
- Orientations closer to the keypoint center should contribute more



[Adopted from: F. Flores-Mangas]

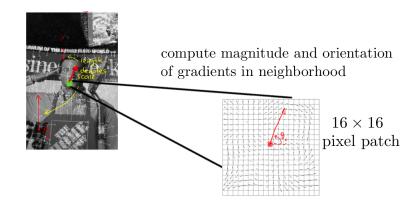
SIFT Descriptor: Computing Dominant Orientation

- Compute a histogram of gradient orientations, each bin covers 10°
- Orientations closer to the keypoint center should contribute more
- Orientation giving the peak in the histogram is the keypoint's orientation

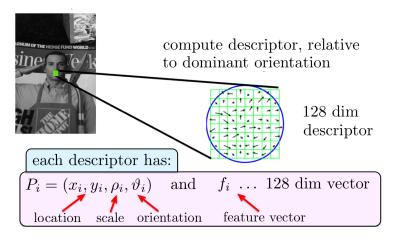


 16×16

Ompute dominant orientation



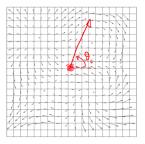
Ompute a 128 dimensional descriptor: 4 × 4 grid, each cell is a histogram of 8 orientation bins relative to dominant orientation

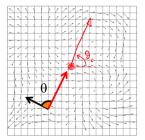


[Adopted from: F. Flores-Mangas]

• Compute the orientations relative to the dominant orientation

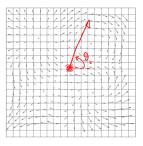
 16×16 patch centered in (x_i, y_i)

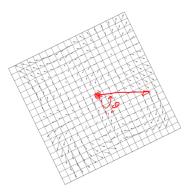




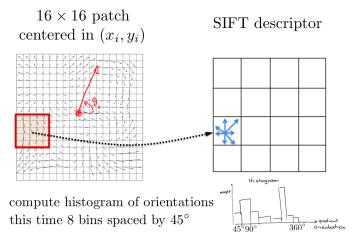
• Compute the orientations relative to the dominant orientation

 16×16 patch centered in (x_i, y_i)

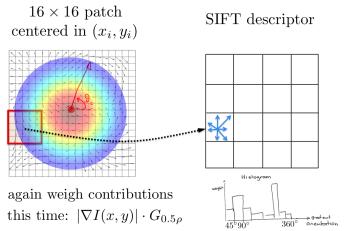




- Compute the orientations relative to the dominant orientation
- $\bullet\,$ Form a 4 $\times\,$ 4 grid. For each grid cell compute a histogram of orientations for 8 orientation bins spaced apart by 45°



- Compute the orientations relative to the dominant orientation
- Form a 4 \times 4 grid. For each grid cell compute a histogram of orientations for 8 orientation bins spaced apart by 45°



[Adopted from: F. Flores-Mangas]

Sanja Fidler

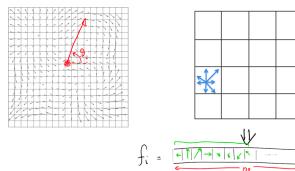
12 / 57

- Compute the orientations relative to the dominant orientation
- Form a 4 \times 4 grid. For each grid cell compute a histogram of orientations for 8 orientation bins spaced apart by 45°

SIFT descriptor

• Form the 128 dimensional feature vector

 16×16 patch centered in (x_i, y_i)



[Adopted from: F. Flores-Mangas]

SIFT Descriptor: Post-processing

- The resulting 128 non-negative values form a **raw version** of the SIFT descriptor vector.
- To reduce the **effects of contrast or gain** (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length: $f_i = f_i/||f_i||$

SIFT Descriptor: Post-processing

- The resulting 128 non-negative values form a **raw version** of the SIFT descriptor vector.
- To reduce the **effects of contrast or gain** (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length: $f_i = f_i/||f_i||$
- To further make the descriptor robust to other **photometric variations**, values are clipped to 0.2 and the resulting vector is once again renormalized to unit length.

- The resulting 128 non-negative values form a **raw version** of the SIFT descriptor vector.
- To reduce the **effects of contrast or gain** (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length: $f_i = f_i/||f_i||$
- To further make the descriptor robust to other **photometric variations**, values are clipped to 0.2 and the resulting vector is once again renormalized to unit length.

• Great engineering effort!

- The resulting 128 non-negative values form a **raw version** of the SIFT descriptor vector.
- To reduce the effects of contrast or gain (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length: $f_i = f_i/||f_i||$
- To further make the descriptor robust to other **photometric variations**, values are clipped to 0.2 and the resulting vector is once again renormalized to unit length.
- Great engineering effort!
- What is SIFT invariant to?

- The resulting 128 non-negative values form a **raw version** of the SIFT descriptor vector.
- To reduce the **effects of contrast or gain** (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length: $f_i = f_i/||f_i||$
- To further make the descriptor robust to other **photometric variations**, values are clipped to 0.2 and the resulting vector is once again renormalized to unit length.
- Great engineering effort!
- What is SIFT invariant to?

Invariant to:

- Scale
- Rotation

Partially invariant to:

- Illumination changes (sometimes even day vs. night)
- Camera viewpoint (up to about 60 degrees of out-of-plane rotation)
- Occlusion, clutter (why?)

Also important:

- Fast and efficient can run in real time
- Lots of code available

Examples

Figure: Matching in day / night under viewpoint change

Example

Figure: NASA Mars Rover images with SIFT feature matches

[Source: N. Snavely]

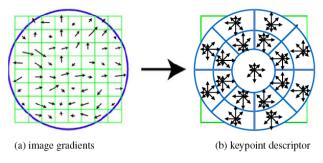
PCA-SIFT

- The dimensionality of SIFT is pretty high, i.e., 128D for each keypoint
- Reduce the dimensionality using linear dimensionality reduction
- In this case, principal component analysis (PCA)
- Use 10D or so descriptor

[Source: R. Urtasun]

Gradient location-orientation histogram (GLOH)

- Developed by Mikolajczyk and Schmid (2005): variant of SIFT that uses a log-polar binning structure instead of the four quadrants.
- The spatial bins are 11, and 15, with eight angular bins (except for the central region), for a total of 17 spatial bins and 16 orientation bins.
- The 272D histogram is then projected onto a 128D descriptor using PCA trained on a large database.



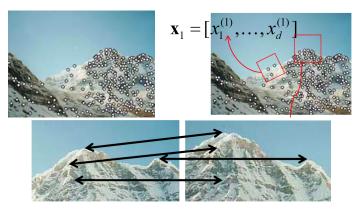
[Source: R. Szeliski]

Other Descriptors

- SURF
- DAISY
- LBP
- HOG
- Shape Contexts
- Color Histograms

Local Features

- Detection: Identify the interest points.
- Description: Extract feature descriptor around each interest point.
- Matching: Determine correspondence between descriptors in two views.



[Source: K. Grauman]

Image Features: Matching the Local Descriptors

Once we have extracted keypoints and their descriptors, we want to match the features between pairs of images.

- Ideally a match is a correspondence between a local part of the object on one image to the same local part of the object in another image
- How should we compute a match?

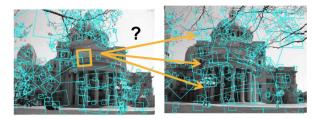
Figure: Images from K. Grauman

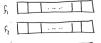
Once we have extracted keypoints and their descriptors, we want to match the features between pairs of images.

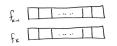
- Ideally a match is a correspondence between a local part of the object on one image to the same local part of the object in another image
- How should we compute a match?

Figure: Images from K. Grauman

• Simple: Compare them all, compute Euclidean distance

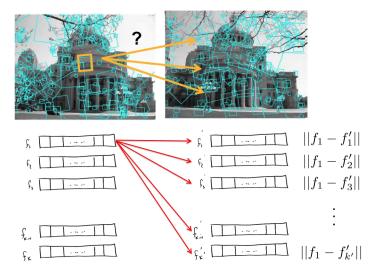




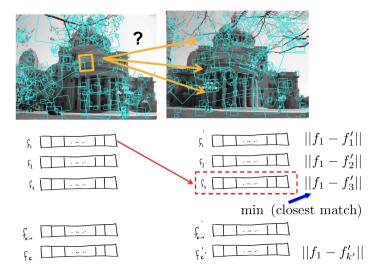




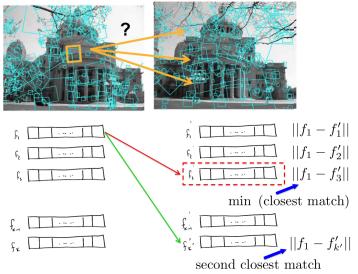
• Simple: Compare them all, compute Euclidean distance



• Find closest match (min distance). How do we know if match is reliable?



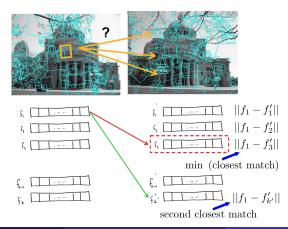
 Find also the second closest match. Match reliable if first distance "much" smaller than second distance



• Compute the ratio:

$$\phi_i = \frac{||f_i - f'_i^*||}{||f_i - f'_i^{**}||}$$

where f'_{i}^{*} is the closest and f'_{i}^{**} second closest match to f_{i} .



Which Threshold to Use?

- Setting the threshold too high results in too many false positives, i.e., incorrect matches being returned.
- Setting the threshold too low results in too many false negatives, i.e., too many correct matches being missed

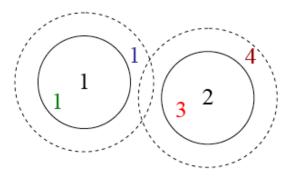


Figure: Images from R. Szeliski

Which Threshold to Use?

- Threshold ratio of nearest to 2nd nearest descriptor
- Typically: $\phi_i < 0.8$

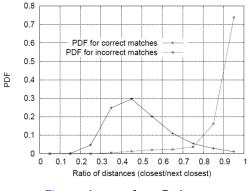


Figure: Images from D. Lowe

[Source: K. Grauman]

Applications of Local Invariant Features

- Wide baseline stereo
- Motion tracking
- Panorama stitching
- Mobile robot navigation
- 3D reconstruction
- Recognition
- Retrieval

[Source: K. Grauman]

Wide Baseline Stereo

[Source: T. Tuytelaars]

Recognizing the Same Object

Schmid and Mohr 1997

Sivic and Zisserman, 2003

Rothganger et al. 2003

Lowe 2002

[Source: K. Grauman] Sanja Fidler

Motion Tracking

Figure: Images from J. Pilet

- Now we know how to extract scale and rotation invariant features
- We even know how to match features across images
- Can we use this to find Waldo in an even more sneaky scenario?

- Now we know how to extract scale and rotation invariant features
- We even know how to match features across images
- Can we use this to find Waldo in an even more sneaky scenario?

Waldo on the road

Sanja Fidler

- Now we know how to extract scale and rotation invariant features
- We even know how to match features across images
- Can we use this to find Waldo in an even more sneaky scenario?

He comes closer... We know how to solve this

- Now we know how to extract scale and rotation invariant features
- We even know how to match features across images
- Can we use this to find Waldo in an even more sneaky scenario?

Someone takes a (weird) picture of him!

Find My DVD!

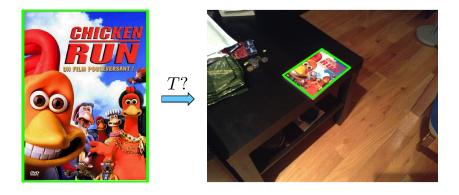
• More interesting: If we have DVD covers (e.g., from Amazon), can we match them to DVDs in real scenes?

Matching Planar Objects In New Viewpoints

What Kind of Transformation Happened To My DVD?

What Kind of Transformation Happened To My DVD?

 Rectangle goes to a parallelogram (almost but not really, but let's believe that for now)



Linear transformations are combinations of

- Scale,
- Rotation
- Shear
- Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

[Source: N. Snavely]

- Origin maps to origin
- Lines map to lines

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} a & b\\ c & d \end{bmatrix} \begin{bmatrix} e & f\\ g & h \end{bmatrix} \begin{bmatrix} i & j\\ k & l \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What about the translation?

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} a & b\\ c & d \end{bmatrix} \begin{bmatrix} e & f\\ g & h \end{bmatrix} \begin{bmatrix} i & j\\ k & l \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$

What about the translation?

[Source: N. Snavely]

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} e \\ f \end{bmatrix}$$

same as:

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b & e\\c & d & f\end{bmatrix} \begin{bmatrix} x\\y\\1\end{bmatrix}$$

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} e \\ f \end{bmatrix}$$

same as:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & e \\ c & d & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & e \\ c & d & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Properties of affine transformations:

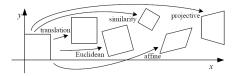
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
- Rectangles go to parallelograms

[Source: N. Snavely]

Sanja Fidler

2D Image Tranformations

.

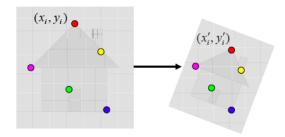


Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} I & t \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{2 imes 3}$	3	lengths	\Diamond
similarity	$\left[\begin{array}{c} s oldsymbol{R} \mid t \end{array} ight]_{2 imes 3}$	4	angles	\diamond
affine	$\left[egin{array}{c} A \end{array} ight]_{2 imes 3}$	6	parallelism	\square
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

- These transformations are a nested set of groups
- Closed under composition and inverse is a member

What Transformation Happened to My DVD?

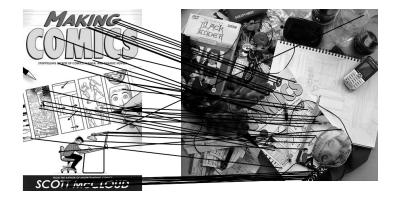
- Affine transformation approximates viewpoint changes for roughly planar objects and roughly orthographic cameras (more about these later in class)
- DVD went affine!



Computing the (Affine) Transformation

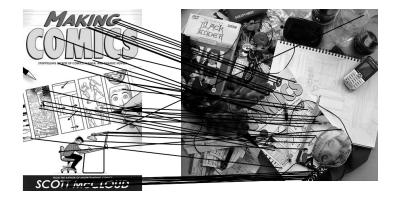
Given a set of matches between images I and J $% \left({{J_{\rm{s}}} \right) = 0} \right)$

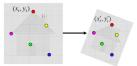
- How can we compute the affine transformation A from I to J?
- Find transform A that best agrees with the matches



Given a set of matches between images I and J $% \left({{J_{\rm{s}}} \right) = 0} \right)$

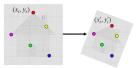
- How can we compute the affine transformation A from I to J?
- Find transform A that best agrees with the matches





- Let (x_i, y_i) be a point on the reference (model) image, and (x'_i, y'_i) its match in the test image
- An affine transformation A maps (x_i, y_i) to (x'_i, y'_i) :

$$\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \begin{bmatrix} a & b & e \\ c & d & f \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$



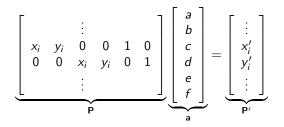
- Let (x_i, y_i) be a point on the reference (model) image, and (x'_i, y'_i) its match in the test image
- An affine transformation A maps (x_i, y_i) to (x'_i, y'_i) :

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} a & b & e \\ c & d & f \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

• We can rewrite this into a simple linear system:

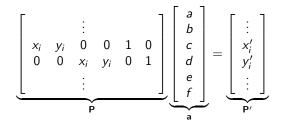
$$\begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x'_i \\ y'_i \end{bmatrix}$$

• But we have many matches:



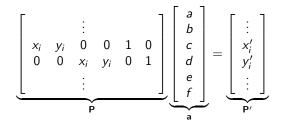
• For each match we have two more equations

• But we have many matches:



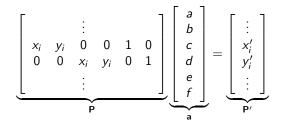
- For each match we have two more equations
- How many matches do we need to compute A?

• But we have many matches:

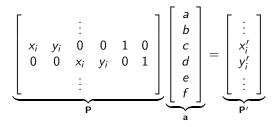


- For each match we have two more equations
- How many matches do we need to compute A?

• But we have many matches:

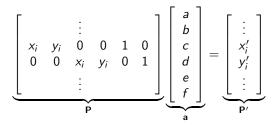


- For each match we have two more equations
- How many matches do we need to compute A?
- 6 parameters \rightarrow 3 matches
- But the more, the better (more reliable)
- How do we compute A?



• If we have 3 matches, then computing A is really easy:

 $\mathbf{a} = \mathbf{P}^{-1}\mathbf{P}'$

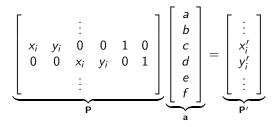


• If we have 3 matches, then computing A is really easy:

 $\mathbf{a} = \mathbf{P}^{-1}\mathbf{P}'$

• If we have more than 3, then we do least-squares estimation:

 $\min_{a,b,\cdots,f} ||\mathbf{P}a - \mathbf{P}'||_2^2$



• If we have 3 matches, then computing A is really easy:

 $\mathbf{a} = \mathbf{P}^{-1}\mathbf{P}'$

• If we have more than 3, then we do least-squares estimation:

$$\min_{a,b,\cdots,f} ||\mathbf{P}\mathbf{a} - \mathbf{P}'||_2^2$$

Which has a closed form solution:

$$\mathbf{a} = (\mathbf{P}^T \mathbf{P})^{-1} \mathbf{P}^T \mathbf{P}'$$

Image Alignment Algorithm: Affine Case

Given images I and J

- Compute image features for I and J
- 2 Match features between I and J
- Compute affine transformation A between I and J using least squares on the set of matches

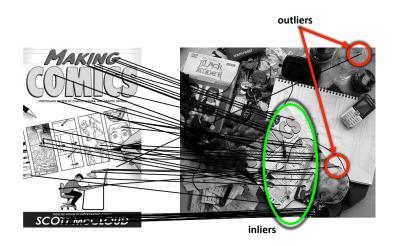
Image Alignment Algorithm: Affine Case

Given images I and J

- Compute image features for I and J
- 2 Match features between I and J
- Compute affine transformation A between I and J using least squares on the set of matches

Is there a problem with this?

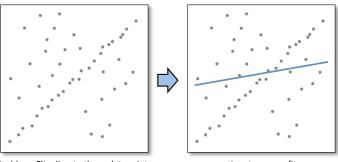
[Source: N. Snavely]



[Source: N. Snavely]

Simple Case

• Lets consider a simpler example ... Fit a line to the points below!

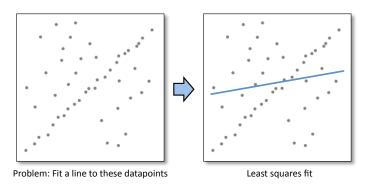


Problem: Fit a line to these datapoints

Least squares fit

Simple Case

• Lets consider a simpler example ... Fit a line to the points below!



• How can we fix this?

[Source: N. Snavely]

• Take the minimal number of points to compute what we want. In the line example, two points (in our affine example, three matches)

- Take the minimal number of points to compute what we want. In the line example, two points (in our affine example, three matches)
- By "take" we mean choose at random from all points

- Take the minimal number of points to compute what we want. In the line example, two points (in our affine example, three matches)
- By "take" we mean choose at random from all points
- Fit a line to the selected pair of points

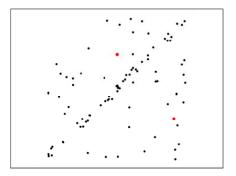
- Take the minimal number of points to compute what we want. In the line example, two points (in our affine example, three matches)
- By "take" we mean choose at random from all points
- Fit a line to the selected pair of points
- Count the number of all points that "agree" with the line: We call the agreeing points **inliers**

- Take the minimal number of points to compute what we want. In the line example, two points (in our affine example, three matches)
- By "take" we mean choose at random from all points
- Fit a line to the selected pair of points
- Count the number of all points that "agree" with the line: We call the agreeing points **inliers**
- "Agree" = within a small distance of the line

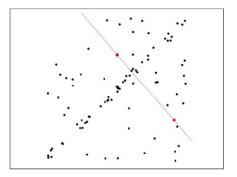
- Take the minimal number of points to compute what we want. In the line example, two points (in our affine example, three matches)
- By "take" we mean choose at random from all points
- Fit a line to the selected pair of points
- Count the number of all points that "agree" with the line: We call the agreeing points **inliers**
- "Agree" = within a small distance of the line
- Repeat this many times, remember the number of inliers for each trial
- Among several trials, select the one with the largest number of inliers

This procedure is called RAndom SAmple Consensus

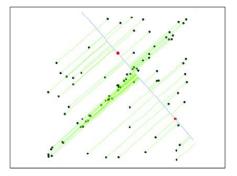
Randomly select minimal subset of points



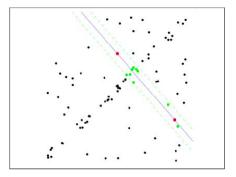
- Randomly select minimal subset of points
- Output A Hypothesize a model



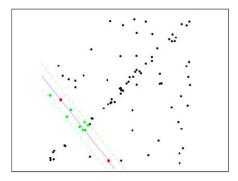
- Randomly select minimal subset of points
- Ø Hypothesize a model
- 3 Compute error function



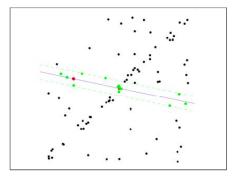
- Randomly select minimal subset of points
- Ø Hypothesize a model
- 3 Compute error function
- Select points consistent with model



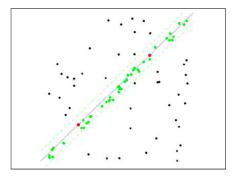
- Randomly select minimal subset of points
- Ø Hypothesize a model
- 3 Compute error function
- Select points consistent with model
- Sepeat hypothesize and verify loop

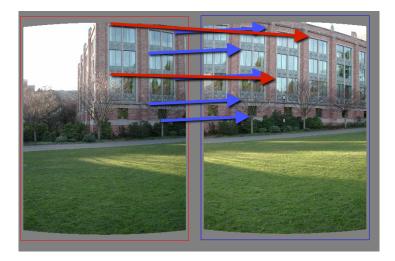


- Randomly select minimal subset of points
- Ø Hypothesize a model
- 3 Compute error function
- Select points consistent with model
- Sepeat hypothesize and verify loop



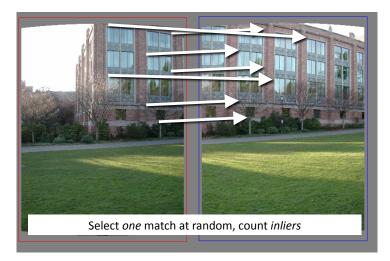
- Randomly select minimal subset of points
- Output A Hypothesize a model
- Ompute error function
- Select points consistent with model
- Sepeat hypothesize and verify loop
- Choose model with largest set of inliers





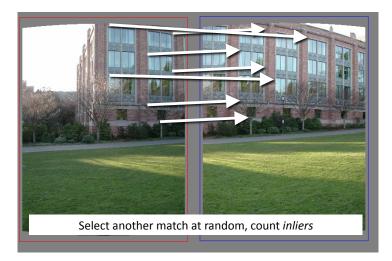
[Source: N. Snavely]

RAndom SAmple Consensus



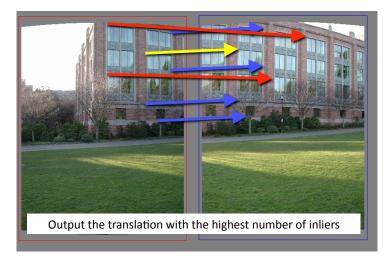
[Source: N. Snavely]

RAndom SAmple Consensus



[Source: N. Snavely]

RAndom SAmple Consensus



[Source: N. Snavely]

 All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other

- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are < 50% outliers

- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are < 50% outliers
- "All good matches are alike; every bad match is bad in its own way." [Tolstoy via Alyosha Efros]

[Source: N. Snavely]

• Inlier threshold related to the amount of noise we expect in inliers

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99% probability

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
- How many rounds do we need?

[Source: R. Urtasun]

• Sufficient number of trials *S* must be tried.

- Sufficient number of trials S must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.

- Sufficient number of trials S must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.
- The likelihood in one trial that all k random samples are inliers is p^k

- Sufficient number of trials S must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.
- The likelihood in one trial that all k random samples are inliers is p^k
- The likelihood that S such trials will all fail is

$$1-P=(1-p^k)^S$$

- Sufficient number of trials S must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.
- The likelihood in one trial that all k random samples are inliers is p^k
- The likelihood that S such trials will all fail is

$$1-P=(1-p^k)^S$$

• The required minimum number of trials is

$$S = rac{\log(1-P)}{\log(1-p^k)}$$

- Sufficient number of trials S must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.
- The likelihood in one trial that all k random samples are inliers is p^k
- The likelihood that S such trials will all fail is

$$1-P=(1-p^k)^S$$

• The required minimum number of trials is

$$S = rac{\log(1-P)}{\log(1-p^k)}$$

• The number of trials grows quickly with the number of sample points used.

- Sufficient number of trials S must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.
- The likelihood in one trial that all k random samples are inliers is p^k
- The likelihood that S such trials will all fail is

$$1-P=(1-p^k)^S$$

• The required minimum number of trials is

$$S = rac{\log(1-P)}{\log(1-p^k)}$$

• The number of trials grows quickly with the number of sample points used.

[Source: R. Urtasun]

Sanja Fidler

 Pros

• Simple and general

Pros

- Simple and general
- Applicable to many different problems

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

Parameters to tune

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios

Pros

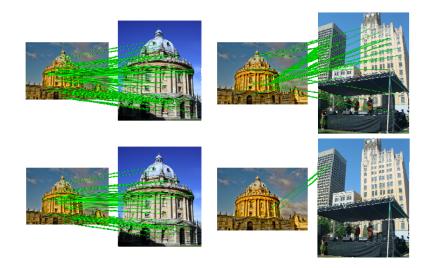
- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

[Source: N. Snavely, slide credit: R. Urtasun]

Ransac Verification



[Source: K. Grauman, slide credit: R. Urtasun]

Sanja Fidler

CSC420: Intro to Image Understanding

Summary – Stuff You Need To Know

To match image I and J under affine transformation:

- Compute scale and rotation invariant keypoints in both images
- Compute a (rotation invariant) feature vector in each keypoint (e.g., SIFT)
- Match all features in I to all features in J
- For each feature in reference image I find closest match in J
- If ratio between closest and second closest match is < 0.8, keep match
- Do RANSAC to compute affine transformation A:
 - Select 3 matches at random
 - Compute A
 - Compute the number of inliers
 - Repeat
 - Find A that gave the most inliers