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Local Features

Detection: Identify the interest points.

Description: Extract a feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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The Ideal Feature Descriptor

Repeatable: Invariant to rotation, scale, photometric variations

Distinctive: We will need to match it to lots of images/objects!

Compact: Should capture rich information yet not be too

high-dimensional (otherwise matching will be slow)

Efficient: We would like to compute it (close-to) real-time
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Invariances

[Source: T. Tuytelaars]
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Invariances

[Source: T. Tuytelaars]
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What If We Just Took Pixels?

The simplest way is to write down the list of intensities to form a feature
vector, and normalize them (i.e., mean 0, variance 1).

Why normalization?

But this is very sensitive to even small shifts, rotations and any affine
transformation.
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Tones Of Better Options

SIFT

PCA-SIFT

GLOH

HOG

SURF

DAISY

LBP

Shape Contexts

Color Histograms
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SIFT Descriptor [Lowe 2004]

SIFT stands for Scale Invariant Feature Transform
Invented by David Lowe, who also did DoG scale invariant interest
points
Actually in the same paper, which you should read:

David G. Lowe
Distinctive image features from scale-invariant

keypoints
International Journal of Computer Vision, 2004

Paper: http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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SIFT Descriptor

1 Our scale invariant interest point detector gives scale ρ for each
keypoint

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor

2 For each keypoint, we take the Gaussian-blurred image at
corresponding scale ρ

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor

3 Compute the gradient magnitude and orientation in neighborhood of
each keypoint

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor

3 Compute the gradient magnitude and orientation in neighborhood of
each keypoint
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SIFT Descriptor

4 Compute dominant orientation of each keypoint. How?

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing Dominant Orientation

Compute a histogram of gradient orientations, each bin covers 10◦

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing Dominant Orientation

Compute a histogram of gradient orientations, each bin covers 10◦

Orientations closer to the keypoint center should contribute more

Orientation giving the peak in the histogram is the keypoint’s orientation
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SIFT Descriptor

4 Compute dominant orientation

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor

5 Compute a 128 dimensional descriptor: 4× 4 grid, each cell is a
histogram of 8 orientation bins relative to dominant orientation

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing the Feature Vector

Compute the orientations relative to the dominant orientation

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Computing the Feature Vector

Compute the orientations relative to the dominant orientation

Form a 4× 4 grid. For each grid cell compute a histogram of orientations for
8 orientation bins spaced apart by 45◦
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SIFT Descriptor: Computing the Feature Vector

Compute the orientations relative to the dominant orientation

Form a 4× 4 grid. For each grid cell compute a histogram of orientations for
8 orientation bins spaced apart by 45◦

Form the 128 dimensional feature vector

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Post-processing

The resulting 128 non-negative values form a raw version of the
SIFT descriptor vector.

To reduce the effects of contrast or gain (additive variations are
already removed by the gradient), the 128-D vector is normalized to
unit length: fi = fi/||fi ||

To further make the descriptor robust to other photometric
variations, values are clipped to 0.2 and the resulting vector is once
again renormalized to unit length.

Great engineering effort!

What is SIFT invariant to?
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Properties of SIFT

Invariant to:

Scale

Rotation

Partially invariant to:

Illumination changes (sometimes even day vs. night)

Camera viewpoint (up to about 60 degrees of out-of-plane rotation)

Occlusion, clutter (why?)

Also important:

Fast and efficient – can run in real time

Lots of code available
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Examples

Figure: Matching in day / night under viewpoint change

[Source: S. Seitz]
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Example

Figure: NASA Mars Rover images with SIFT feature matches

[Source: N. Snavely]
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PCA-SIFT

The dimensionality of SIFT is pretty high, i.e., 128D for each keypoint

Reduce the dimensionality using linear dimensionality reduction

In this case, principal component analysis (PCA)

Use 10D or so descriptor

[Source: R. Urtasun]
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Gradient location-orientation histogram (GLOH)

Developed by Mikolajczyk and Schmid (2005): variant of SIFT that uses a
log-polar binning structure instead of the four quadrants.

The spatial bins are 11, and 15, with eight angular bins (except for the
central region), for a total of 17 spatial bins and 16 orientation bins.

The 272D histogram is then projected onto a 128D descriptor using PCA
trained on a large database.

[Source: R. Szeliski]
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Other Descriptors

SURF

DAISY

LBP

HOG

Shape Contexts

Color Histograms
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Local Features

Detection: Identify the interest points.

Description: Extract feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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Image Features:

Matching the Local Descriptors

Sanja Fidler CSC420: Intro to Image Understanding 21 / 57



Matching the Local Descriptors

Once we have extracted keypoints and their descriptors, we want to match the
features between pairs of images.

Ideally a match is a correspondence between a local part of the object on
one image to the same local part of the object in another image

How should we compute a match?

Figure: Images from K. Grauman
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Matching the Local Descriptors

Simple: Compare them all, compute Euclidean distance
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Simple: Compare them all, compute Euclidean distance

Sanja Fidler CSC420: Intro to Image Understanding 23 / 57



Matching the Local Descriptors

Find closest match (min distance). How do we know if match is reliable?
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Matching the Local Descriptors

Find also the second closest match. Match reliable if first distance “much”
smaller than second distance
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Matching the Local Descriptors

Compute the ratio:

φi =
||fi − f ′

∗
i ||

||fi − f ′∗∗i ||
where f ′

∗
i is the closest and f ′

∗∗
i second closest match to fi .
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Which Threshold to Use?

Setting the threshold too high results in too many false positives, i.e.,
incorrect matches being returned.

Setting the threshold too low results in too many false negatives, i.e., too
many correct matches being missed

Figure: Images from R. Szeliski

[Source: R. Szeliski]Sanja Fidler CSC420: Intro to Image Understanding 24 / 57



Which Threshold to Use?

Threshold ratio of nearest to 2nd nearest descriptor

Typically: φi < 0.8

Figure: Images from D. Lowe

[Source: K. Grauman]
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Applications of Local Invariant Features

Wide baseline stereo

Motion tracking

Panorama stitching

Mobile robot navigation

3D reconstruction

Recognition

Retrieval

[Source: K. Grauman]
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Wide Baseline Stereo

[Source: T. Tuytelaars]
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Recognizing the Same Object

[Source: K. Grauman]
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Motion Tracking

Figure: Images from J. Pilet
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Now What

Now we know how to extract scale and rotation invariant features

We even know how to match features across images

Can we use this to find Waldo in an even more sneaky scenario?
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We even know how to match features across images

Can we use this to find Waldo in an even more sneaky scenario?
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template
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Now What

Now we know how to extract scale and rotation invariant features

We even know how to match features across images

Can we use this to find Waldo in an even more sneaky scenario?

He comes closer... We know how to solve this

template
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Now What

Now we know how to extract scale and rotation invariant features

We even know how to match features across images

Can we use this to find Waldo in an even more sneaky scenario?

Someone takes a (weird) picture of him!

template
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Find My DVD!

More interesting: If we have DVD covers (e.g., from Amazon), can
we match them to DVDs in real scenes?
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Matching Planar Objects In New

Viewpoints
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What Kind of Transformation Happened To My DVD?
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What Kind of Transformation Happened To My DVD?

Rectangle goes to a parallelogram (almost but not really, but let’s believe
that for now)
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All 2D Linear Transformations

Linear transformations are combinations of

Scale,

Rotation

Shear

Mirror [
x ′

y ′

]
=

[
a b
c d

] [
x
y

]

[Source: N. Snavely]
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All 2D Linear Transformations

Properties of linear transformations:

Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition[
x ′

y ′

]
=

[
a b
c d

] [
e f
g h

] [
i j
k l

] [
x
y

]

What about the translation?

[Source: N. Snavely]
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Affine Transformations

Affine transformations are combinations of

Linear transformations, and

Translations [
x ′

y ′

]
=

[
a b
c d

] [
x
y

]
+

[
e
f

]
same as: [

x ′

y ′

]
=

[
a b e
c d f

]xy
1
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Affine Transformations

Affine transformations are combinations of

Linear transformations, and

Translations [
x ′

y ′

]
=

[
a b e
c d f

]xy
1


Properties of affine transformations:

Origin does not necessarily map to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition

Rectangles go to parallelograms

[Source: N. Snavely]
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2D Image Tranformations

These transformations are a nested set of groups

Closed under composition and inverse is a member
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What Transformation Happened to My DVD?

Affine transformation approximates viewpoint changes for roughly

planar objects and roughly orthographic cameras (more about

these later in class)

DVD went affine!
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Computing the (Affine) Transformation

Given a set of matches between images I and J

How can we compute the affine transformation A from I to J?

Find transform A that best agrees with the matches

[Source: N. Snavely]
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Computing the Affine Transformation

Let (xi , yi ) be a point on the reference (model) image, and (x ′i , y
′
i ) its match

in the test image

An affine transformation A maps (xi , yi ) to (x ′i , y
′
i ):[

x ′i
y ′i

]
=

[
a b e
c d f

]xiyi
1



We can rewrite this into a simple linear system:

[
xi yi 0 0 1 0
0 0 xi yi 0 1

]


a
b
c
d
e
f

 =

[
x ′i
y ′i

]
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Computing the Affine Transformation

But we have many matches:


...

xi yi 0 0 1 0
0 0 xi yi 0 1

...


︸ ︷︷ ︸

P


a
b
c
d
e
f


︸ ︷︷ ︸

a

=


...
x ′i
y ′i
...


︸ ︷︷ ︸

P′

For each match we have two more equations

How many matches do we need to compute A?

6 parameters → 3 matches

But the more, the better (more reliable)

How do we compute A?
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Computing the Affine Transformation


...

xi yi 0 0 1 0
0 0 xi yi 0 1

...


︸ ︷︷ ︸

P


a
b
c
d
e
f


︸ ︷︷ ︸

a

=


...
x ′i
y ′i
...
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P′

If we have 3 matches, then computing A is really easy:

a = P−1P′

If we have more than 3, then we do least-squares estimation:

min
a,b,··· ,f

||Pa− P′||22

Which has a closed form solution:

a = (PTP)−1PTP′
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Image Alignment Algorithm: Affine Case

Given images I and J

1 Compute image features for I and J

2 Match features between I and J

3 Compute affine transformation A between I and J using least squares on the
set of matches

Is there a problem with this?

[Source: N. Snavely]
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Robustness

!"#$%&'()

%*$%&'()

[Source: N. Snavely]

Sanja Fidler CSC420: Intro to Image Understanding 46 / 57



Simple Case

Lets consider a simpler example ... Fit a line to the points below!

!"#$%&'()*+,)-)%+.&),#),/&0&)1-,-2#+.,0) 3&-0,)045-"&0)6,)

How can we fix this?

[Source: N. Snavely]
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Simple Idea: RANSAC

Take the minimal number of points to compute what we want. In the line

example, two points (in our affine example, three matches)

By “take” we mean choose at random from all points

Fit a line to the selected pair of points

Count the number of all points that “agree” with the line: We call the

agreeing points inliers

“Agree” = within a small distance of the line

Repeat this many times, remember the number of inliers for each trial

Among several trials, select the one with the largest number of inliers

This procedure is called RAndom SAmple Consensus
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RANSAC for Line Fitting Example

1 Randomly select minimal
subset of points

2 Hypothesize a model

3 Compute error function

4 Select points consistent
with model

5 Repeat hypothesize and
verify loop

6 Choose model with
largest set of inliers

[Source: R. Raguram]
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Translations

[Source: N. Snavely]
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RAndom SAmple Consensus

!"#"$%&!"#&'(%$)&(%&*(+,-'.&$-/+%&$"%$#&'&

[Source: N. Snavely]
Sanja Fidler CSC420: Intro to Image Understanding 51 / 57



RAndom SAmple Consensus
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RAndom SAmple Consensus
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[Source: N. Snavely]
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RANSAC

All the inliers will agree with each other on the translation vector; the
(hopefully small) number of outliers will (hopefully) disagree with each other

RANSAC only has guarantees if there are < 50% outliers

”All good matches are alike; every bad match is bad in its own way.” –
[Tolstoy via Alyosha Efros]

[Source: N. Snavely]
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RANSAC

Inlier threshold related to the amount of noise we expect in inliers

Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

Number of rounds related to the percentage of outliers we expect, and the
probability of success we’d like to guarantee

Suppose there are 20% outliers, and we want to find the correct answer with
99% probability

How many rounds do we need?

[Source: R. Urtasun]
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How many rounds?

Sufficient number of trials S must be tried.

Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

The likelihood in one trial that all k random samples are inliers is pk

The likelihood that S such trials will all fail is

1− P = (1− pk)S

The required minimum number of trials is

S =
log(1− P)

log(1− pk)

The number of trials grows quickly with the number of sample points used.

[Source: R. Urtasun]
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RANSAC pros and cons

Pros

Simple and general

Applicable to many different problems

Often works well in practice

Cons

Parameters to tune

Sometimes too many iterations are required

Can fail for extremely low inlier ratios

We can often do better than brute-force sampling

[Source: N. Snavely, slide credit: R. Urtasun]
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Ransac Verification

[Source: K. Grauman, slide credit: R. Urtasun]
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Summary – Stuff You Need To Know

To match image I and J under affine transformation:

Compute scale and rotation invariant keypoints in both images

Compute a (rotation invariant) feature vector in each keypoint (e.g., SIFT)

Match all features in I to all features in J

For each feature in reference image I find closest match in J

If ratio between closest and second closest match is < 0.8, keep match

Do RANSAC to compute affine transformation A:

Select 3 matches at random

Compute A

Compute the number of inliers

Repeat

Find A that gave the most inliers
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