Topics that we will try to cover:
@ Indexing for fast retrieval (we still owe this one)
@ Object classification (we did this one already)

e Neural Networks

Object class detection

Hough-voting techniques

Support Vector Machines (SVM) detector on HOG features
Deformable part-based model (DPM)

R-CNN (detector with Neural Networks)

@ Segmentation

o Unsupervised segmentation ( “bottom-up” techniques)
o Supervised segmentation (“top-down” techniques)

Sanja Fidler CSC420: Intro to Image Understanding



Recognition:

Indexing for Fast Retrieval
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Recognizing or Retrieving Specific Objects

@ Example: Visual search in feature films

Visually defined query “Groundhog Day" [Rammis, 1993]

“Find this
clock”

“Find this
place”

Demo: http://www.robots.ox.ac.uk/~vgg/research/vgoogle/

[Source: J. Sivic, slide credit: R. Urtasun]
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http://www.robots.ox.ac.uk/~vgg/research/vgoogle/

Recognizing or Retrieving Specific Objects

@ Example: Search photos on the web for particular places

Find these landmarks ...in these images and 1M more

[Source: J. Sivic, slide credit: R. Urtasun]
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Why is it Difficult?

@ Objects can have possibly large changes in scale, viewpoint, lighting and
partial occlusion.

Viewpoint

Lighting Occlusion

[Source: J. Sivic, slide credit: R. Urtasun]
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Why is it Difficult?

@ There is tones of data.
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Our Case: Matching with Local Features

@ For each image in our database we extracted local descriptors (e.g., SIFT)

Database of images

image hugeN

frames
each has: (x,y,scale,orientation)
and: a descriptor (e.g., SIFT which is 128-dim)
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Our Case: Matching with Local Features

@ For each image in our database we extracted local descriptors (e.g., SIFT)

Database of images

=
&
4

2 LS o
LI

image 1 image i\ i lm/aée 3 image hugeN
\ i /

v _»We will forget about this for a moment
frames /~ and focus on the descriptors

each has: (x,y,scale,orientation) *
and: a descriptor (e.g., SIFT which is 128-dim)
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Our Case: Matching with Local Features

@ Let's focus on descriptors only (vectors of e.g. 128 dim for SIFT)

Database of images

— .
g . B¢

g ¢ @

image 1 image 2 Image 3 image hugeN

| )15]7 5 ) « 747 = 02,015 0.19
f3 = [0.23,0.3 ol i 09,001, .. ¢ £ =02, 00

0 DX s 0 (18] 012,022, ...,0.18

( ).00]" Lol i N = 015,002 0.08

L " -
. 3 o
........ \ S~
....... Y

N .

descriptors (vectors)
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Our Case: Matching with Local Features

Database of images

‘ ‘i‘ “‘ '0‘

. - %

image 1 image 2 image 3

image hugeN
0.0.0.2 0.15]7 17 = 005001, ..,027 Y = 002,015 0197
f3 = [0.23,0.12, an’ Ji = 000,001 v.1s)’ A TR R R 02"
[} = [0A2.005,...,0087 2 =00ns,. .. 01" o 012,022, 0187
' descriptors (vectors)
0,06, 0,18 o™ 2 L 0Loas 047 om0, 002 0,08

3 1,02 ... 0167
Now | get a reference (query) image s vy
of an object. | want to retrieve all 014.022,.....0.09
images from the database that !
contain the object. How? = RO 0

reference (query) image
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Our Case: Matching with Local Features

Database of images

® sl . (WG
a* LG

image 3 image hugeN
0.0.0.2 0.15]7 Ji =[005.0.11 0z? Y = 002,015 0,19/
fi = 028,012, a1 £i = 000,001, 018 £ =02, 02
0 M f )0, 01X 0’ v 012,022 1 18|"
descriptors (vectors) !
.06 0 00 s )10 014 f 005,00 0.0
... . N

Before (Assignment 3) we were iy O
matching all reference descriptors 014,022,097 m ‘
to all descriptors in each database ! o
image. Not very efficient. =AY »
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Our Case: Matching with Local Features

Database of images

‘W > e sl . (WG
«* e

image 1 image 2 image 3 image hugeN

Y = 002,015 0.19)
[ AN (T8 IS I

012,022 018"

descriptors (vectors)

Before (Assignment 3) we were i :l,, _,’ g _ , Q
matching all reference descriptors 014,022,097 ﬂ l
to all descriptors in each database : (o3
image. Not very efficient. 5=, 02 @

reference (query) image
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Indexing!

— = *’—7‘
A Word Index! -
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Indexing Local Features: Inverted File Index

@ For text documents, an efficient way to find all pages on which a word
occurs is to use an index.

@ We want to find all images in which a feature occurs.
@ To use this idea, well need to map our features to “visual words" .

o Why?

—
~
-

[Source: K. Grauman, slide credit: R. Urtasun]
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How would “visual words” help us?

Database of images

3]
&

/]
&
é‘A

image 1 image 2 Image 3 image hugeN

wl w2 w7 W

Wws w3 wa w2

W 1 Wi 7
v words "

Wi w7 wa

Imagine that | am somehow able to “name” my
descriptors with a set of “words”.
How can this help me?

Sanja Fidler CSC420: Intro to Image Understanding



How would “visual words” help us?

Database of images

g

image 1 image 3 image hugeN
wl w2 w7 wo
Wa w3 wa w2
W we Wi WOI’dS w7
w1 W wa e
1 13 We can now build an inverted file index
Z A e This is like an Index of a book
3 2
4 1
5 1
6 2,hugeN
7 2,3,hugeN
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How would “visual words” help us?

Database of images

image 1 image 2 image 3 image hugeN
wl w2 w7
wh w3 wa
wa W w1

wa
w2

words e

w1 w7 wa -

Visualword ~ [image | We can also assign the descriptors in the
13 reference image to the visual words
2,hugeN ‘\.

5 .

1

1
2,hugeN
2,3,hugeN

N OOV A W N =

reference (query) image
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How would “visual words” help us?

Database of images

image 1 image 3 image hugeN

wi w2 w7 wo
Wws w3 wi w2
V4 Ve " 7
L L words W

Wwo Wws

m And for each word in the

1 reference image, we lookup

2 z.huseN our inverted file and check

3 2 which images contain it. w3
4 3 We only need to match our ™!
2 & reference image to the irs
§ A NUReN retrieved set of images. :

7 2,3,hugeN wi

reference (query) image
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But What Are Our Visual “Words"?

Database of images

— .
g . |Be

48 By
i 0 Q q LXK 2

image 1 image 2 image 3 image hugeNr
0.0.0.2 0.15]7 JE=[005.0.11 027 Y = 002,015 0,19
f3 = [0.25,0.12 ! IS ).00,0.01 018 N 02, 0
0.12.0.15 007 [ )00, 0108 0 - AN 2,022 118"
‘ descriptors (vectors) ¢ g .
0.06.0.18 o’ i 0.1.0.15, 147 N = 015,002 0.08

reference (query) image
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But What Are Our Visual “Words"?

Database of images

By ®

’l

image 1 image 2 image hugeN

fl =02 0.15]7 J7 =[005.0.01 027 Y = 002,015 019"

f3 = 025,012 a’ Ji = 009,001 o.1s)’ N c,02,. .00

/ 0.12.0.15 00T 5= o008 0’ - frams 018
: descriptors (vectors)

/. 0.06.0.18 00" 2 w0015 0.14]7 N 5,002 0,08

The quest for visual words

We could do something like:

If all coordinates of vector smaller than 0.1, then call this vector word 1
If first n-1 coordinates < 0.1, but last coordinate is > 0.1, call this vector word 2
If first n-2 and last coordinate < 0.1, but n-1 coordinate > 0.1, call this vector word 3

Why is this not a very good choice? How can we do this better?
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But What Are Our Visual “Words"?

Database of images

By ®

.l

image 1 image 2 Image 3 image hugeN
! 0.1.0.2 0.15]7 JE =[005.041.....027 7Y = 002,015 0,107
f1 o 023,032 an’ fi = 000 o8]’ N a0, 097
/ 012,015 0™ 2 =jpo0ns ni’ - s 02,022 018"
~. descriptors (vectors) i
i =5 i
£ v [0.06.0.18 00" f <0015 o]T ™, - i"" 015,002 0,08,

You can imagine each descriptor vector as
a point in a high-dimensional space (128-
dim for SIFT).

Disclaimer: This is only for the purpose of easier
visualization of the solution.
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But What Are Our Visual “Wo

Database of images

Y

ol yl o
* X 2

image 1 Image 3 image hugeN
1.1, 0.15]7 / 0.05. 1) ( Y = 002,015 0.10]"
3w 023,012, 01" f 0.09,0.01 0.18)’ f 01,02 0.2}
/ M Wl 00,008 0’ - sy 2,022 018"
. descriptors (vectors) £
0,06, 0 0.00 3 0.1.0.15 '] f, Vo= 015,002 0,08,

The quest for visual words

* We can choose our visual words as
“representative” vectors in this space

* We can perform clustering (for
example k-means)
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But What Are Our Visual “Words"?

Database of images

g

image 1 image 2 image 3

image hugeN
fi=1.02 0.15]7 Ji=005.001.....027 Y = 012,015 0,107
£ 023,032 al’ Ji = 0,001 v.1s)’ A TR N B 0.2{7
f 0.12.0.15 007 1= 00,008 0T - frry 02,022 0187
: descriptors (vectors)
71w [0.06 018 om|™ g2 0.1.0.15 0147 N 05,002 0.08

Visual words: cluster centers

® W1=[0.1,0.15.....08)]
® W2 =[0.15.0.01,...,0.09]7
8 W3=[0.01,009,...,01]7

® W4=[02,002...,014]7
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But What Are Our Visual “Words"?

Database of images

ol yl o
* X 3

image 2 image 3 image hugeN
/7 = 005001 027 £V = 002,005 0.19("
£ 028,032, 00" Te.00,001 o8]’ N 02 0.2

/ 0.12.0.10, oo 5 fanr 012,022 TR

71w 0,06 0.18 00" fZL w0015 0147

Visual words

® W1=/[0.1.0.15,....08]"
® W2 =[0.15.0.01,...,0.09]7
8 W3 =[0.01,000,...,01]7

® W4=[02,002...,014]7
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But What Are Our Visual “Words"?

Database of images

image 2 image 3 image hugeN
Ji =[005.001 027 £V = 002,005 0.19("
aly’ §i = 0,001 o8]’ [ T8 W 1R 0.2
f 0.12.0.15 \-:I:” , 5 0.0, <-|:n (I8} descriptors (VECIOfS) foor niz 1.r 2 0187
£ 005 0.18 -nr}‘n\ £ w0015 0147 For N o s, 002 0.08
Visual words We find the closest visual word (Euclidean distance)
4..\-* %
1 = 5 TN
® W1l=[01,015,...,0.8] é >
® W2=[0.15,001,....0007 21
2= |[0.15,0.01,...,0.0¢ ~
| . : 5 °
‘ arg min;|| f — Wil| % ,%‘%%
8 W3 =[0.01,0.09,...,0.1]7
® W4a=[02,002,..., 0.14)7
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Visual Words

@ All example patches on the right belong to the same visual word.

! ‘.
‘ansamiailae nim

e

[Source: R. Urtasun]
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Now We Can do Our Fast Matching

Database of images

image 1 image 3 image hugeN

wi w2 w7 wo
Wws w3 wi w2
V4 Ve " 7
L L words W

Wwo Wws

m And for each word in the

1 reference image, we lookup

2 z.huseN our inverted file and check

3 2 which images contain it. w3
4 3 We only need to match our ™!
2 & reference image to the irs
§ A NUReN retrieved set of images. :

7 2,3,hugeN wi

reference (query) image
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In

ed File Index

@ Now we found all images in the database that have at least one visual word
in common with the query image

@ But this can still give us lots of images... What can we do?

New query image

@
-
»n
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Inverted File Index

@ Now we found all images in the database that have at least one visual word
in common with the query image

@ But this can still give us lots of images... What can we do?

@ ldea: Compute meaningful similarity (efficiently) between query image and
retrieved images. Then just match query to top K most similar images and
forget about the rest.
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Inverted File Index

Now we found all images in the database that have at least one visual word
in common with the query image

But this can still give us lots of images... What can we do?

Idea: Compute meaningful similarity (efficiently) between query image and
retrieved images. Then just match query to top K most similar images and
forget about the rest.

How can we do compute a meaningful similarity, and do it fast?
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Relation to Documents

etinal, cerebral cortex
eye, cell, optical
nerve, image

wise analyss in a system of nerve
Sored I COAMNG. A0 s System each
has it5 speaitic AUNGon and /5 respo

3 spechic defad m the patiem of ihe relng
mage

Crina 1 Torecasing & trade surpius of $50tn
(ES510n) 10 $1000n s year, 8 Breelokd
Increase on 2004 $32ta. The Commerce

urplus, commerce, ")
exports, imports, US,
uan, bank, domestic,
foreign, increase, 4

It wil take its fime and ead careddly b
Aowng the yuan 1o nse Sarther in vakse

[Slide credit: R. Urtasun]
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Bags of Visual Words

[Slide credit: R. Urtasun]
@ Summarize entire image based on its distribution (histogram) of word
occurrences.

@ Analogous to bag of words representation commonly used for documents.
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Compute a Bag-of-Words Description

Database of images

o
®
O

image 1 image 3 image hugeN
wl w2 w7 we
wh w3 wa w2
Wy we w1 words w7
u-x u' 7 u.u wa

= HOW many times a word repeats in image (frequency)

=Word 1
" Word 2

Word 3
“word 4
“Word S
“Word 6

Word 7

S N wBs W N

wmage 1 representanon

[2631521
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Compute a Bag-of-Words Description

Database of images

‘i‘; C"

8 o

image 1 image 2 image 3

wl w2 w7 W

wh ws wa Wa

(] " w1 -

. words "
Wi w7 wa e
We can do the same for the reference image
4 =Word 1 6 ®word 1
6 Word 2 5 “Word 2
s Word 3 4 - Word 3
4 ®Word 4 3 ®word 4
3 “Word S “word 5
2
2 = Word 6 “ Word 6
1 Word 7 3 Word 7
o : 0 = i
mage 1 representancn reference image representation
[2631521 [12:4:8122:;]
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Compute a Bag-of-Words Description

Database of images

‘i‘; C"
98 4

image 1 image 2 image 3
wi w2 w7 W
wh w3 wa W2
wa W Wi Vi
: words !
w1 w7 wa e
4 =Word 1 6 " word 1
6 Word 2 5 “Word 2
s Word 3 4 - Word 3
4 ®Word 4 3 ®word 4
3 “Word " word s
2
2 = Word 6 “ Word 6
1 Word 7 3 Word 7
] H [ .
mage 1 representancn reference image representation
How do we compare?
v bt < 3 e « . ]
[2631521 Je ~[ 1245122 ]
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Comparing Images

@ Compute the similarity by normalized dot product between their
representations (vectors)

<t,q>

sim(tj,q) = ————
59 = Tl Tral
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Comparing Images

@ Compute the similarity by normalized dot product between their
representations (vectors)

. <tj,q>

S|m(t-,q) I kR i
! [1tll - [lall

@ Rank images in database based on the similarity score (the higher the better)

@ Take top K best ranked images and do spatial verification (compute
transformation and count inliers)
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Compute a Better Bag-of-Words Description

Database of images

image 1 image 3 image hugeN

Wl w2 w7 wo
W w3 wa W2

W wa Wi

words e

Wi w7 wa

Ws

. Problem can quickly occur if one word

: ::’:":; / appears in many many images and has a big
5 i _.,/ count in each image (it dominates the
a swods ¢ vector)
3 swords This way any similarity based on this vector
2 “Word 6 / will be dominated with this very frequent,
: W_'""__,'=" non-discriminative word.

enage 1 representation s Our similarity will not have much sense.
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Compute a Better Bag-of-Words Description

Database of images

® e . |me®
.‘ s @

image 1 image 3 image hugeN
wi w2 w7 W
Wi w3 wa Wwa
W we Wi words w7
Wi w7 wa W
. ; Intuition:
- Werd L ,".
6 " i . .
3 wworm2 /  Re-weigh the entries such that words that
/
5 iy i appear in many images (documents) are
on / S
3 awens 1 down-weighted
2 “Word 6 /
1 Word 7/ This re-weighting is called tf-idf
] H
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Compute a Better Bag-of-Words Description

@ Instead of a histogram, for retrieval it's better to re-weight the image
description vector t = [t1, ta, ..., t;,...] with term frequency-inverse
document frequency (tf-idf), a standard trick in document retrieval:

Niq N
ti=— log —
ng nj
where:

nig ... is the number of occurrences of word i in image d
ng ... is the total number of words in image d
n; ... is the number of occurrences of word i in the whole database
N ... is the number of documents in the whole database
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Compute a Better Bag-of-Words Description

@ Instead of a histogram, for retrieval it's better to re-weight the image
description vector t = [t1, ta, ..., t;,...] with term frequency-inverse
document frequency (tf-idf), a standard trick in document retrieval:

Niq N
ti=— log —
ng nj
where:

nig ... is the number of occurrences of word i in image d
ng ... is the total number of words in image d
n;i ... is the number of occurrences of word i in the whole database
N ... is the number of documents in the whole database

@ The weighting is a product of two terms: the word frequency ’;—;’ and the
inverse document frequency log nﬂ
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Compute a Better Bag-of-Words Description

@ Instead of a histogram, for retrieval it's better to re-weight the image
description vector t = [t1, ta, ..., t;,...] with term frequency-inverse
document frequency (tf-idf), a standard trick in document retrieval:

Niq N
ti=— log —
ng nj
where:

nig ... is the number of occurrences of word i in image d
ng ... is the total number of words in image d
n;i ... is the number of occurrences of word i in the whole database
N ... is the number of documents in the whole database

@ The weighting is a product of two terms: the word frequency ’,’1—5’ and the
inverse document frequency log nﬂ

@ Intuition behind this: word frequency weights words occurring often in a
particular document, and thus describe it well, while the inverse document
frequency downweights the words that occur often in the full dataset
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Comparing Images

@ Compute the similarity by normalized dot product between their tf-idf
representations (vectors)
<t,q>

sim(tj,q) = ————
59 = Tl Tral

@ Rank images in database based on the similarity score (the higher the better)

@ Take top K best ranked images and do spatial verification (compute
transformation and count inliers)
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Spatial Verification

@ Both image pairs have many visual words in common

@ Only some of the matches are mutually consistent

D8 image with hid’- Bow
similarity DB image with high Bow
similarity

[Source: O. Chum]
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Visual Words/Bags of Words

Good

flexible to geometry / deformations / viewpoint
compact summary of image content
provides vector representation for sets

very good results in practice

background and foreground mixed when bag covers whole image
optimal vocabulary formation remains unclear

basic model ignores geometry must verify afterwards, or encode via features
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Fast image retrieval:

Compute features in all images from database, and query image.

Cluster the descriptors from the images in the database (e.g., k-means) to
get k clusters. These clusters are vectors that live in the same dimensional
space as the descriptors. We call them visual words.

Assign each descriptor in database and query image to the closest cluster.
Build an inverted file index

For a query image, lookup all the visual words in the inverted file index to
get a list of images that share at least one visual word with the query

Compute a bag-of-words (BoW) vector for each retrieved image and query.
This vector just counts the number of occurrences of each word. It has as
many dimensions as there are visual words. Weight the vector with tf-idf.

Compute similarity between query BoW vector and all retrieved image BoW
vectors. Sort (highest to lowest). Take top K most similar images (e.g, 100)

Do spatial verification on all top K retrieved images (RANSAC + affine or
homography + remove images with too few inliers)
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( )

Matlab function:

e [IDX, W] = KMEANS(X, K); where rows of X are descriptors,
rows of W are visual words vectors, and /DX are assignments of
rows of X to visual words

@ Once you have W, you can quickly compute /DX via the DIST2
function (Assignment 2):

D = pst2(X’, W’); [~,IDX] = MIN(D, [], 2);

@ A much faster way of computing the closest cluster (IDX) is via
the FLANN library: http://www.cs.ubc.ca/research/flann/

@ Since X is typically super large, KMEANS will run for days... A solution is to
randomly sample a few descriptors from X and cluster those. Another great
possibility is to use this:
http://www.robots.ox.ac.uk/~vgg/software/fastanncluster/
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http://www.cs.ubc.ca/research/flann/
http://www.robots.ox.ac.uk/~vgg/software/fastanncluster/

Even Faster?

@ Can we make the retrieval process even more efficient?
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Vocabulary Trees

@ Hierarchical clustering for large vocabularies, [Nister et al., 06].
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Vocabulary Trees

@ Hierarchical clustering for large vocabularies, [Nister et al., 06].

@ k defines the branch factor (number of children of each node) of the tree.
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Vocabulary Trees

@ Hierarchical clustering for large vocabularies, [Nister et al., 06].
@ k defines the branch factor (number of children of each node) of the tree.

@ First, an initial k-means process is run on the training data, defining k
cluster centers (same as we did before).
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Vocabulary Trees

@ Hierarchical clustering for large vocabularies, [Nister et al., 06].
@ k defines the branch factor (number of children of each node) of the tree.

@ First, an initial k-means process is run on the training data, defining k
cluster centers (same as we did before).

@ The same process is then recursively applied to each group.
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Vocabulary Trees

@ Hierarchical clustering for large vocabularies, [Nister et al., 06].
@ k defines the branch factor (number of children of each node) of the tree.

@ First, an initial k-means process is run on the training data, defining k
cluster centers (same as we did before).

@ The same process is then recursively applied to each group.

@ The tree is determined level by level, up to some maximum number of levels
L.
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Constructing the tree

@ Offline phase: hierarchical clustering (e.g., k-means at leach level).

Vocabulary Tree
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Constructing the tree

@ Offline phase: hierarchical clustering (e.g., k-means at leach level).

Vocabulary Tree
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Constructing the tree

@ Offline phase: hierarchical clustering (e.g., k-means at leach level).

Vocabulary Tree
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Constructing the tree

@ Offline phase: hierarchical clustering (e.g., k-means at leach level).

Vocabulary Tree
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Assigning Descriptors to Words

Sanja Fidler

“Vocabulary” tree

(visual words in a hierarchy)
()
)

The words that | use to form the descriptor
are the leaves of the tree
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Assigning Descriptors to Words

“Vocabulary” tree

fé‘ (visual words in a hierarchy)

S

& e
A =02012 0.1)7 —— ” ?

; )

f! = .12, 0.5 (TS

05,0.18 om?

How do | transform my (eg, SIFT) descriptors into such visual words?
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Assigning Descriptors to Words

@ Each descriptor vector is propagated down the tree by at each level
comparing the descriptor vector to the k candidate cluster centers
(represented by k children in the tree) and choosing the closest one.

“Vocabulary” tree

(visual words in a hierarchy)

Find the closest word at each level for a selected parent, starting from top
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Assigning Descriptors to Words

@ The tree allows us to efficiently match a descriptor to a very large vocabulary

“Vocabulary” tree

(visual words in a hierarchy)

Efficiency: At each level we are only comparing to k words (and k is small)
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Assigning Descriptors to Words
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Vocabulary Size

@ Complexity: branching factor and number of levels

@ Most important for the retrieval quality is to have a large vocabulary
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Next Time
Object Detection
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