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What are neural networks?
Go'éﬂg
Let’'s ask

¢ Biological

Input Hidden Output
layer layer layer

— Output
e Computational
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What are neural networks?

...Neural networks (NNs) are computational models inspired by
biological neural networks [...] and are used to estimate or
approximate functions... jwied
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What are neural networks?

Origins:
@ Traced back to threshold logic [W. McCulloch and W. Pitts, 1943]
@ Perceptron [F. Rosenblatt, 1958]

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2015 5/39



What are neural networks? Use cases

@ Classification

@ Playing video games

@ Captcha

@ Neural Turing Machine (e.g., learn how to Sort) aexcraves

http://www.technologyreview.com/view/532156/googles-secretive-deepmind-startup-unveils-a-neural-turing-machine/
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What are neural networks?
Example:

@ input x
@ parameters wy, ws, b
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What are neural networks?
Example:

@ input x
@ parameters wy, ws, b
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How to compute the function?

Forward propagation/pass, inference, prediction:
@ Given input x and parameters w, b

@ Compute (latent variables/) intermediate results in a feed-forward
manner

@ Until we obtain output function f

xeR

W1 Wo

)

beR
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How to compute the function?

Example: input x, parameters wy, wo, b
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How to compute the function?

Example: input x, parameters wy, wo, b

xeR
"
U hy = O'(W1'X+b)
T f = W2-h1
beR

Sigmoid function:
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How to compute the function?

Example: input x, parameters wy, wo, b

X eR
WA

)
S
.

€

h1 = 0'(W1'X+b)
W2-h1

m —
Il

oy
e

Sigmoid function:
o(z) =1/(1 + exp(-2))

x=In2,b=In3, wy =2, wp, =2
hy =7
f=2
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How to compute the function?

Given parameters, whatis fforx =0, x =1, x =2, ...

f=woo(wy - X+ b)
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Let's mess with parameters:

xeR
O= @ Ly hi = o(wi-x+b)
= W2-h1
o(z) = 1/(1+exp(-2))

o
m
~
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Let's mess with parameters:

xeR

w "%
Oy b = o(w X +b)

Y f = W2'h1
o(z) = 1/(1+exp(-2))

beR

wy = 1.0, b changes
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Let’'s mess with parameters:

xeR

Ww- w:
(— (h 2 hy = o(ws - x+b)

\T/ f = W2'h1
o(z) = 1/(1+exp(-2))

beR

wy = 1.0, b changes
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Let’'s mess with parameters:

xeR

Ww- w:
O— (o 2y h = o(ws x+Db)

\T/ f Wo - h1
o(z) = 1/(1+exp(-2))

beR

wy = 1.0, b changes b =0, wq changes
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Let’'s mess with parameters:

xeR
W) e

hy f hy = O’(W1 -X+b)
\T/ f Wo - h1
o(z) = 1/(1 +exp(-2))

beR

wy = 1.0, b changes b =0, wq changes
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Let’'s mess with parameters:

xeR
W) e

hy f hy = O’(W1 -X+b)
\T/ f Wo - h1
o(z) = 1/(1 +exp(-2))

beR
wy = 1.0, b changes b =0, wq changes
1
0.8
0.6
— _wlzo
0.4 _W1=0.5
02 —w, =10
—_w, = 100
95 0 5
X

Keep in mind the step function.

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2015

11/39



How to use Neural Networks for binary classification?
Feature/Measurement: x

Output: How likely is the input to be a cat?

058
0.6
>
0.4
0.2
0 -
=5 0 M
X
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How to use Neural Networks for binary classification?
Feature/Measurement: x

Output: How likely is the input to be a cat?

i
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How to use Neural Networks for binary classification?
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How to use Neural Networks for binary classification?
Shifted feature/measurement: x

Output: How likely is the input to be a cat?

Previous features
1

0.8

0.6

0.4

0.2

95 0 5
X
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How to use Neural Networks for binary classification?
Shifted feature/measurement: x

Output: How likely is the input to be a cat?

Previous features Shifted features
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How to use Neural Networks for binary classification?
Shifted feature/measurement: x

Output: How likely is the input to be a cat?

Previous features Shifted features

1

0.8
0.6

- 0.4
0.2

95 0 5
X

Learning/Training means finding the right parameters.
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So far we are able to scale and translate sigmoids.

@ How well can we approximate an arbitrary function?
@ With the simple model we are obviously not going very far.

Features are good
Simple classifier

1
0.8
0.6

0.4

0.2

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2015 14/39
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So far we are able to scale and translate sigmoids.

@ How well can we approximate an arbitrary function?
@ With the simple model we are obviously not going very far.

Features are good

Features are noisy

Simple classifier

More complex classifier

|
a
x o
o

@ How can we generalize?
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Let’s use more hidden variables:

hiy = o(wy-x+by)
h, = O'(W3-X—|—b2)
Wo - hy + wy - hy

\
-
I
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Let’s use more hidden variables:

hiy = o(wy-x+by)
xXeR W 2 h2 = J(WS‘X+b2)

5 0 5

X

wy = —100, by = 40, wz = 100, by = 60, wp = 1, wy = 1
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So let’s simplify:

O—> Bump(xq, X2, h) — f

We simplify a pair of hidden nodes to a “bump” function:
@ Starts at xq
@ Ends at x,
@ Has height h
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Now we can represent “bumps” very well. How can we generalize?
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Now we can represent “bumps” very well. How can we generalize?
Bump(0.0, 0.2, hy)
Bump(0.2, 0.4, hy)
Bump(0.4, 0.6, h3) —X f
Bump(0.6, 0.8, hy)

Bump(0.8, 1.0, hs)

1.5
1
- 05
0
—— Approximation
-0.5

0.5 1
X

More bumps gives more accurate approximation.

Corresponds to a single layer network.
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@ Universality: theoretically we can approximate an arbitrary
function

@ So we can learn a really complex cat classifier
@ Where is the catch?
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@ Universality: theoretically we can approximate an arbitrary
function

@ So we can learn a really complex cat classifier
@ Where is the catch?

@ Complexity, we might need quite a few hidden units
@ Overfitting, memorize the training data
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Generalizations are possible to
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Generalizations are possible to
@ include more input dimensions
@ capture more output dimensions
@ employ multiple layers for more efficient representations

See ‘http://neuralnetworksanddeeplearning.com/chap4.html’ for a
great read!

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2015 19/39



How do we find the parameters to obtain a good approximation? How
do we tell a computer to do that?
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How do we find the parameters to obtain a good approximation? How
do we tell a computer to do that?

Intuitive explanation:
@ Compute approximation error at the output

@ Propagate error back by computing individual contributions of
parameters to error

[Fig. from H. Lee]
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Example for backpropagation of error:

@ Target function: 5x®

@ Approximation: f(x, w)

@ Domain of interest: x € {0,1,2,3}
@ Error:

e(w)= > (6x% —f(x,w))

x€{0,1,2,3}
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Example for backpropagation of error:

@ Target function: 5x®

@ Approximation: f(x, w)

@ Domain of interest: x € {0,1,2,3}
@ Error:

e(w)= > (6x% —f(x,w))

x€{0,1,2,3}

@ Program of interest:

. R 2 _ 2
mMI/n e(W) — mM|/n Z (5X f(X7 W))
x€{0,1,2,3} xw)

How to optimize?
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Example for backpropagation of error:

@ Target function: 5x®

@ Approximation: f(x, w)

@ Domain of interest: x € {0,1,2,3}
@ Error:

e(w)= > (6x% —f(x,w))

x€{0,1,2,3}

@ Program of interest:

. o 2 _ 2
mine(w) =min 3= (5x* — f(x,w))
x€{0,1,2,3} e(;,'w)

How to optimize? Gradient descent
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Gradient descent
mwi/n e(w)
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Gradient descent

min e(w)
Algorithm: start with wg, t =0
@ Compute gradient g; = 2¢ e,

@ Update w1 = wy — ng;
© Sett« t+1
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Chain rule is important to compute gradients:

. P H 2 - 2
min e(w) = min Z (5x° — f(x,w))
xe{0.1.2,3} (xw)
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Chain rule is important to compute gradients:

. P H 2 2
xe{0,12,3} (ow)

Loss function: ¢(x, w)
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Chain rule is important to compute gradients:

. P H 2 2
xe{0,1,2,3} (ow)

Loss function: ¢(x, w)

@ Squared loss
@ Log loss
@ Hinge loss
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Chain rule is important to compute gradients:

min e(w) = min Z (5x2 — f(x, w))?

x€{0,1,2,3} o)

Loss function: ¢(x, w)

@ Squared loss

@ Log loss

@ Hinge loss
Derivatives:

oe(w) ol(x, w)
wo Z ow
xe{0,1,2,3}
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Chain rule is important to compute gradients:

min e(w) = min Z (5x2 — f(x, w))?

x€{0,1,2,3} o)
Loss function: ¢(x, w)
@ Squared loss
@ Log loss
@ Hinge loss
Derivatives:
oe(w) ol(x, w)
wo Z ow
xe{0,1,2,3}
B Z ol(x,w) of(x, w)
N ow
xe{0,1,2,3}

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2015

23/39



Slightly more complex example:
Composite function represented as a directed a-cyclic graph

Ux,w) = fi(wy, fo(wo, (.. .)))

fi(wq, )
ot o
owy 2
WA f2(W27 f3)
oty ot
0 oy
of O
Ofy Owsp
Wa f3( 5 )

Repeated application of chain rule for efficient computation of all
gradients
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Back propagation doesn’t work well for deep sigmoid networks:
@ Diffusion of gradient signal (multiplication of many small numbers)

@ Attractivity of many local minima (random initialization is very far
from good points)

@ Requires a lot of training samples
@ Need for significant computational power
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Back propagation doesn’t work well for deep sigmoid networks:
@ Diffusion of gradient signal (multiplication of many small numbers)

@ Attractivity of many local minima (random initialization is very far
from good points)

@ Requires a lot of training samples
@ Need for significant computational power

Solution: 2 step approach
@ Greedy layerwise pre-training
@ Perform full fine tuning at the end
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Why go deep?
@ Representation efficiency (fewer
computational units for the same function)

@ Hierarchical representation (non-local
generalization)

@ Combinatorial sharing (re-use of earlier
computation)

@ Works very well

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding
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To obtain more flexibility/non-linearity we use additional function
prototypes:
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To obtain more flexibility/non-linearity we use additional function
prototypes:

@ Sigmoid
@ Rectified linear unit (ReLU)
@ Pooling
@ Dropout
°

Convolutions
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Convolutions

224

N\

155
224 JSfride

3 48

What do the numbers mean?

See Sanja’s lecture 14 for the answers...
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Max Pooling

Stride
“of 4

What is happening here?
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pooling
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Rectified Linear Unit (ReLU)
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Rectified Linear Unit (ReLU)
@ Drop information if smaller than zero
@ Fixes the problem of vanishing gradients to some degree
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Rectified Linear Unit (ReLU)
@ Drop information if smaller than zero
@ Fixes the problem of vanishing gradients to some degree

Dropout

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2015 32/39



Rectified Linear Unit (ReLU)
@ Drop information if smaller than zero
@ Fixes the problem of vanishing gradients to some degree

Dropout
@ Drop information at random
@ Kind of a regularization, enforcing redundancy
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A famous deep learning network called “AlexNet.”

i

2048 2048

oab \dense

[I p7 3 \ 33]

192 192 128 Max
Max 128 Max pooling
pooling pooling

@ The network won the ImageNet competition in 2012.
@ How many parameters?
@ Given an image, what is happening?

@ Inference Time: about 2ms per image when processing many
images in parallel on the GPU

@ Training Time: a few days given a single recent GPU

[Fig. adapted from A. Krizhevsky]
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Demo
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Neural networks have been used for many applications:

@ Classification and Recognition in Computer Vision
@ Text Parsing in Natural Language Processing

@ Playing Video Games

@ Stock Market Prediction

@ Captcha

Demos:
@ Russ website
@ Antonio Places website
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Classification in Computer Vision: ImageNet Challenge
http://deeplearning.cs.toronto.edu/

Since it’'s the end of the semester, let’s find the beach...

Possible tags:

V ¥ S, oicing chai
V' 3 I sc:sore coas, seacoast

v ¥ ST v-to. terrace

v x R tricycle. trike, velocipede

v x @I dining tabie, board

v x (ST jnricisha, ricksha, rickshaw

¢ EEETI sanavar, sand bar

v X BRI =kesice. lakeshore
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Classification in Computer Vision: ImageNet Challenge
http://deeplearning.cs.toronto.edu/

A place to maybe prepare for exams...
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Links:

@ Tutorials: http://deeplearning.net/tutorial/deeplearning.pdf

@ Toronto Demo by Russ and students:
http://deeplearning.cs.toronto.edu/

@ MIT Demo by Antonio and students:
http://places.csail.mit.edu/demo.html

@ Honglak Lee:
http://deeplearningworkshopnips2010.files.wordpress.com/2010/09/r
workshop-tutorial-final.pdf

@ Yann LeCun:
http://www.cs.nyu.edu/ yann/talks/lecun-ranzato-icml2013.pdf

@ Richard Socher: http://Ixmls.it.pt/2014/socher-Ixmls.pdf

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2015 38/39



Videos:

@ Video games: https://www.youtube.com/watch?v=mARt-xPablE

@ Captcha: http://singularityhub.com/2013/10/29/tiny-ai-startup-
vicarious-says-its-solved-captcha/

@ https://www.youtube.com/watch?v=Ige-dI2JUAM#t=27

@ Stock exchange:
http://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-
networks/Applications/stocks.html
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