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Outline

Montreal 2014

• visual route following 
• motivation 
• background on visual teach and 

repeat 

• can this work in the long term? 
• dealing with lighting change 
• maintaining maps over the lifetime 

of a robot 
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Stereo Visual Odometry
• on nominal terrain, the Mars rovers (Spirit, Opportunity,                                                  

and Curiosity) use wheel odometry to track position changes 

• visual odometry (VO) provides accurate localization in high-wheel-slip environments 

• pioneered by Moravec (1980), Matthies (1987) and extended by many others

Images: NASA/JPL/Caltech
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Camera Model
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Multiview Geometry
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Stereo Camera Model
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Stereo Visual Odometry
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Stereo Visual Odometry Pipeline
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Stereo Visual Odometry Pipeline

Devon Island 2008
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Stereo Visual Odometry Example
Devon Island 2008
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Lambert A, Furgale P T, Barfoot T D, and Enright J. “Field 
Testing of Visual Odometry Aided by a Sun Sensor and 
Inclinometer”. Journal of Field Robotics, 29(3):426–444, 2012.



Stereo Visual Odometry Example
Devon Island 2008
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Lambert A, Furgale P T, Barfoot T D, and Enright J. “Field 
Testing of Visual Odometry Aided by a Sun Sensor and 
Inclinometer”. Journal of Field Robotics, 29(3):426–444, 2012.



Building Blocks, Teach and Repeat
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Teach Phase
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Repeat Phase

12

wheeled 
chassis 

(the plant)

stereo camera
(sensor)

path localizer
(state 

estimator)

path tracker + 
safety checks
(controller)

pose relative 
to path

images

vehicle 
commands

vehicle 
state

mobile robotautonomous repeat

Devon Island 2009

 relative 
map

(reference)

Furgale P T and Barfoot T D. “Visual Path Following on a 
Manifold in Unstructured Three-Dimensional Terrain”, 

ICRA 2010 Kuka Service Robotics Best Paper Award 

Furgale P T and Barfoot T D. “Visual Teach and Repeat 
for Long-Range Rover Autonomy”, JFR 2010



Teach Phase
A relative map is... 

• a sequence of relative pose 
changes (e.g., estimated using 
stereo visual odometry) 

• with local metric/appearance 
data at each pose (e.g., visual 
landmarks)
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Figure 7: The visual reconstruction of a five kilometer rover traverse plotted against GPS (Top).
Although the reconstruction is wildly inaccurate at this scale, locally it is good enough to enable re-
tracing of the route. The bottom images show views from either end of the path, with the reference
path plotted as a series of chevrons. To the rover, the map is locally Euclidean.

is defined to be the same as F�⇥r0 . All of the keypoints are triangulated using (4) and placed in the251

map. In each subsequent frame, incoming keypoints are matched against the working database and252

subjected to outlier detection. Let us use n to index the inlying feature tracks. Each track provides253

a mapping from feature i in the map, to keypoint j. To estimate Cck,m, and �ck,m
m , we define the254

error term, en:255

en := yk,j � h(Cck,m(qi,m
m � �ck,m

m ))

Letting Mk be the number of feature tracks at time k, we define our objective function, Jk, to be256

Jk :=
1

2

Mk�

n=1

eT
n Wnen , (5)

where Wn is a weighting matrix based on the inverse of the estimated measurement covariance of257

yk,j . We linearize (5) and minimize Jk using the Gauss-Newton method.258

When the percentage of features tracked drops below a threshold, �f , the pose (Cck,m, �ck,m
m ) is259

added to the reference path, and all of the keypoints are added to the map. Using a threshold260

avoids generating bloated maps while the robot is sitting still, and automatically adjusts the number261

of features in the map based on the difficulty of the terrain. Using the pose estimated in the previous262



• matching against the previous frame is still performed 
to carry the system past areas where map matching 
fails 

• helps with lighting variations 

• we also match against the current local map gathered 
during teaching phase 

• maps are loaded from disk as needed

Repeat Phase:  Path Localizer
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Repeat Phase:  Path Localizer
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Repeat Phase:  Path Localizer
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Repeat Phase:  Path Localizer 
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Stereo VT&R Example

Montreal 2012
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Furgale P T and Barfoot T D. “Visual Teach and 
Repeat for Long-Range Rover Autonomy”, JFR 2010



Stereo VT&R Example

Montreal 2012
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Furgale P T and Barfoot T D. “Visual Teach and 
Repeat for Long-Range Rover Autonomy”, JFR 2010



VT&R ➜ Network of Reusable Paths

Sudbury 2011
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Stenning B E, McManus C, and Barfoot T D. “Planning using 
a Network of Reusable Paths: A Physical Embodiment of a 
Rapidly Exploring Random Tree”, JFR 2013



VT&R ➜ Network of Reusable Paths

Sudbury 2011
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van Es S K and Barfoot T D. “Being in Two Places at Once: 
Smooth Visual Path Following on Globally Inconsistent Pose 
Graphs”, CRV 2015



VT&R ➜ Network of Reusable Paths

Sudbury 2011
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VT&R Gallery

Montreal 2012

23

the localization algorithm [2].
Experiments showed that the altitude at which the VT&R

algorithm is performed was crucial. Teaching at a high
altitude increases the camera’s field of view and results in
fewer map match failures. Depending on the height used
during the teach pass, different sizes of interest points are
used. The higher we fly, the bigger the feature must be in
order to be detected by the SURF algorithm. The resolution
of the bottom camera is, as mentioned in Section IV-A, very
low, and therefore small features are not visible at high
altitudes. To summarize, if enough big interest points are
available, it is beneficial to fly high. The characteristics of
the floor play an important role as well. Highly repetitive or
untextured ground is to be avoided.

Since we created a ‘fake’ depth image by assigning the
same altitude to all pixels in the image plane, the localization
algorithm cannot deal well with surface height changes. A
possible solution for high-altitude flights is to exclusively
rely on the pressure sensor for altitude estimation, which has
a reasonable accuracy for higher altitudes. Hence, ground
height changes would not affect the ‘fake’ depth image.

VI. FUTURE WORK

This paper described preliminary results obtained from
implementing, for the first time, a VT&R algorithm [6]
on a quadrocopter. In Section III-B we summarized several
assumptions of the current approach. Future work will aim
to address those limitations. The goal is to enable route
teaching through a human pilot (and not only on the cart)
and to allow arbitrary flight paths (and not straight lines
at a constant altitude). To do so, the following steps are
necessary:

• accounting for roll and pitch when assigning the depth
to each pixel;

• extending the controller to be able to track arbitrary
paths and to include a vertical controller;

• deriving a feasible desired velocity profile (instead of
a constant velocity), which takes vehicle constraints
and constraints derived from the VT&R localization
algorithm into account;

• increasing the image processing speed, which would
enable higher flight speeds;

• extensive testing under various conditions (including
lighting changes).

VII. CONCLUSION

We successfully showed that the visual teach and repeat
(VT&R) algorithm in [6], which has previously been used
for autonomous, long-range navigation of ground vehicles,
can be applied to flying vehicles with the 3D sensor being
replaced by a monocular, downward-facing camera and an
altitude sensor. The use of a manifold map of overlapping
submaps allows long-range navigation along a previously
explored path without the use of GPS or a globally consistent

(a) External video.

(b) Path and quadrocopter visualization.

(c) Visual odometry tracks.

(d) Map match tracks.

Figure 7. Snapshots of the 16-m-long autonomous flight, which is shown
in the movie found at http://youtu.be/BRDvK4xD8ZY.
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Visual Route Following Pros and Cons

Sudbury 2011

• low-computational-cost point-to-point autonomous 
driving in GPS-denied environments 

• exploits human experience for in-situ path planning 

• exploits strengths of computer vision by keeping 
viewpoints the same between mapping and 
localization 

• scene appearance can change (e.g., lighting, 
weather) 

• scene geometry can change (e.g., vegetation growth, 
construction) 
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Lighting-Invariant VT&R using Lidar Intensity Images
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McManus, Furgale, Stenning, and Barfoot, “Lighting-Invariant Visual 
Teach and Repeat Using Appearance-Based Lidar”, ICRA 2012 ⇒ JFR 2013  



ABL VT&R Example

Sudbury 2011
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McManus, Furgale, Stenning, and Barfoot, “Lighting-Invariant Visual 
Teach and Repeat Using Appearance-Based Lidar”, ICRA 2012 ⇒ JFR 2013  



Lighting-Invariant VT&R using Lidar Intensity Images
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VO TRACKSMAP MATCHES

bright sunlight very dark

Sudbury 2011

McManus, Furgale, Stenning, and Barfoot, “Lighting-Invariant Visual 
Teach and Repeat Using Appearance-Based Lidar”, ICRA 2012 ⇒ JFR 2013  



I = logG� ↵ logB � � logR

Lighting-Resistant Stereo VT&R using Colour-Constant Images
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Colin McManus, Winston Churchill, Will Maddern, 
Alex Stewart and Paul Newman, “Shady Dealings: 
Robust, Long-Term Visual Localisation using 
Illumination Invariance”, ICRA 2014 

Peter Corke, Rohan Paul, Winston Churchill and 
Paul Newman, “Dealing with Shadows: Capturing 
Intrinsic Scene Appearance for Image-based 
Outdoor Localisation”, IROS 2013 
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Lighting-Resistant Stereo VT&R using Colour-Constant Images

Montreal 2014

Paton M, MacTavish K, Ostafew C J, and Barfoot T D. “Lighting-
Resistant Stereo Visual Teach and Repeat Using Color-Constant 
Images”, ICRA 2015
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Lighting-Resistant Stereo VT&R using Colour-Constant Images

Montreal 2014

Paton M, MacTavish K, Ostafew C J, and Barfoot T D. “Lighting-
Resistant Stereo Visual Teach and Repeat Using Color-Constant 
Images”, ICRA 2015
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Visual Route Following, State of Affairs

Sudbury 2011
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• where have we been? 
• stereo VO 
• place revisiting (a short time later) 

• where are we now? 
• dealing with lighting change 

• lidar images 
• illumination-invariant images 

• where are we going? 
• next steps in long-term visual 

navigation 
• many real applications need to 

work for years 

hours

days to week

10 years



pass 0
(teach)

pass 1
(repeat)

new pose to be localized 
using active region
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Applying Bandaids to Static Maps Isn’t Good Enough



pass 0
(teach)

pass 1
(repeat)

new pose to be localized 
using active region

missing links to pass 0
indicate map-match failures

pass 2
(repeat)

pass 3
(repeat)

pass N
(repeat)
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Current Work:  Mapping == Logging

Winston Churchill and Paul Newman, “Experience-based 
Navigation for Long-term Localisation”, IJRR, 2013



UTIAS 2014

Thanks for listening!
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Tim Barfoot 
tim.barfoot@utoronto.ca


http://asrl.utias.utoronto.ca
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