Long-Term Visual Route Following for Mobile Robots

Timothy D Barfoot Canada Research Chair (Tier II) in Autonomous Space Robotics Associate Professor <tim.barfoot@utoronto.ca>

Guest Lecture CSC420: Introduction to Image Understanding October 29, 2015

Outline

visual route following

- motivation
- background on visual teach and repeat

• can this work in the long term?

- dealing with lighting change
- maintaining maps over the lifetime of a robot

- on nominal terrain, the Mars rovers (Spirit, Opportunity, and Curiosity) use wheel odometry to track position changes
- visual odometry (VO) provides accurate localization in high-wheel-slip environments
- pioneered by Moravec (1980), Matthies (1987) and extended by many others

Camera Model

Multiview Geometry

Stereo Camera Model

Devon Island 2008

Stereo Visual Odometry Example

Lambert A, Furgale P T, Barfoot T D, and Enright J. "Field Testing of Visual Odometry Aided by a Sun Sensor and Inclinometer". Journal of Field Robotics, 29(3):426–444, 2012.

Stereo Visual Odometry Example

Lambert A, Furgale P T, Barfoot T D, and Enright J. "Field Testing of Visual Odometry Aided by a Sun Sensor and Inclinometer". Journal of Field Robotics, 29(3):426–444, 2012.

Building Blocks, Teach and Repeat

'pick and place'

'visual route following'

Building Blocks, Teach and Repeat

'pick and place'

'visual route following'

Teach Phase

Repeat Phase

Furgale P T and Barfoot T D. "Visual Path Following on a Manifold in Unstructured Three-Dimensional Terrain", ICRA 2010 Kuka Service Robotics Best Paper Award

Furgale P T and Barfoot T D. "Visual Teach and Repeat for Long-Range Rover Autonomy", JFR 2010

Teach Phase

A relative map is...

- a sequence of <u>relative</u> pose changes (e.g., estimated using stereo visual odometry)
- with <u>local</u> metric/appearance data at each pose (e.g., visual landmarks)

Repeat Phase: Path Localizer

- matching against the previous frame is still performed to carry the system past areas where map matching fails
- helps with lighting variations Previous frame Image **Keypoint** Right de-warp and detection image rectification Nonlinear Stereo **Keypoint** Outlier Pose numerical matching rejection tracking estimate Image solution Left Keypoint de-warp and detection image rectification Current local map • we also match against the current local map gathered during teaching phase
 - maps are loaded from disk as needed

Stereo VT&R Example

Furgale P T and Barfoot T D. "Visual Teach and Repeat for Long-Range Rover Autonomy", JFR 2010

Stereo VT&R Example

Furgale P T and Barfoot T D. "Visual Teach and Repeat for Long-Range Rover Autonomy", JFR 2010

VT&R -> Network of Reusable Paths

Stenning B E, McManus C, and Barfoot T D. "Planning using a Network of Reusable Paths: A Physical Embodiment of a Rapidly Exploring Random Tree", JFR 2013

VT&R -> Network of Reusable Paths

van Es S K and Barfoot T D. "Being in Two Places at Once: Smooth Visual Path Following on Globally Inconsistent Pose Graphs", CRV 2015

VT&R → Network of Reusable Paths

VT&R Gallery

Visual Route Following Pros and Cons

PROS

- low-computational-cost point-to-point autonomous driving in GPS-denied environments
- exploits human experience for in-situ path planning
- exploits strengths of computer vision by keeping viewpoints the same between mapping and localization

CONS

- scene appearance can change (e.g., lighting, weather)
- scene geometry can change (e.g., vegetation growth, construction)

Lighting-Invariant VT&R using Lidar Intensity Images

McManus, Furgale, Stenning, and Barfoot, "Lighting-Invariant Visual Teach and Repeat Using Appearance-Based Lidar", ICRA 2012 \Rightarrow JFR 2013

ABL VT&R Example

McManus, Furgale, Stenning, and Barfoot, "Lighting-Invariant Visual Teach and Repeat Using Appearance-Based Lidar", ICRA 2012 \Rightarrow JFR 2013

Lighting-Invariant VT&R using Lidar Intensity Images

McManus, Furgale, Stenning, and Barfoot, "Lighting-Invariant Visual Teach and Repeat Using Appearance-Based Lidar", ICRA 2012 \Rightarrow JFR 2013

Lighting-Resistant Stereo VT&R using Colour-Constant Images

Colin McManus, Winston Churchill, Will Maddern, Alex Stewart and Paul Newman, "Shady Dealings: Robust, Long-Term Visual Localisation using Illumination Invariance", ICRA 2014

Peter Corke, Rohan Paul, Winston Churchill and Paul Newman, "Dealing with Shadows: Capturing Intrinsic Scene Appearance for Image-based Outdoor Localisation", IROS 2013

$$\mathcal{I} = \log G - \alpha \log B - \beta \log R$$

Paton, MacTavish, Ostafew, and Barfoot, "It's Not Easy Seeing Green: Lighting-Resistant Stereo Visual Teach and Repeat Using Color-

Lighting-Resistant Stereo VT&R using Colour-Constant Images

Montreal 2014

Rocks-and-Sand Static Experiment

Paton M, MacTavish K, Ostafew C J, and Barfoot T D. "Lighting-Resistant Stereo Visual Teach and Repeat Using Color-Constant Images", ICRA 2015

Lighting-Resistant Stereo VT&R using Colour-Constant Images

6:00 AM

Montreal 2014

Paton M, MacTavish K, Ostafew C J, and Barfoot T D. "Lighting-Resistant Stereo Visual Teach and Repeat Using Color-Constant Images", ICRA 2015

8:00 PM

Visual Route Following, State of Affairs

- where have we been?
 - stereo VO
 - place revisiting (a short time later)
- where are we now?
 - dealing with lighting change
 - lidar images
 - illumination-invariant images
- where are we going?
 - next steps in long-term visual navigation
 - many real applications need to work for years

days to week

10 years

Applying Bandaids to Static Maps Isn't Good Enough

Winston Churchill and Paul Newman, "Experience-based Navigation for Long-term Localisation", IJRR, 2013

Thanks for listening!

Looking for CS grad students! APPLY NOW

Tim Barfoot tim.barfoot@utoronto.ca http://asrl.utias.utoronto.ca

