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Abstract. In this paper, we utilize rental ads to create realistic textured
3D models of building exteriors. In particular, we exploit the address of
the property and its floorplan, which are typically available in the ad. The
address allows us to extract Google StreetView images around the build-
ing, while the building’s floorplan allows for an efficient parametrization
of the building in 3D via a small set of random variables. We propose an
energy minimization framework which jointly reasons about the height
of each floor, the vertical positions of windows and doors, as well as the
precise location of the building in the world’s map, by exploiting several
geometric and semantic cues from the StreetView imagery. To demon-
strate the effectiveness of our approach, we collected a new dataset with
174 houses by crawling a popular rental website. Our experiments show
that our approach is able to precisely estimate the geometry and location
of the property, and can create realistic 3D building models.
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Fig. 1: We exploit rental ads and a small set of (wide-baseline) Google’s StreetView
images to build realistic textured 3D models of the buildings’ exterior. In particular,
our method creates models by using only the (approximate) address and a floorplan
extracted from the rental ad, in addition to StreetView.

1 Introduction

Significant effort is being invested into creating accurate 3D models of cities.
For example, Google and other map providers such as OpenStreetMap are aug-
menting their maps with 3D buildings. Architects craft such models for ur-
ban/property planning, and visualization for their clients. This process typically
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involves expensive 3D sensors and/or humans in the loop. Automatically creat-
ing accurate 3D models of building exteriors has thus become an important area
of research with applications in 3D city modeling, virtual tours of cities and ur-
ban planning [1–3]. The problem entails estimating detailed 3D geometry of the
building, parsing semantically its important facade elements such as windows
and doors, and precisely registering the building with the world’s map.

Most existing approaches to 3D building estimation typically require LIDAR
scans from either aerial [4,5] or ground-level views [2], or video scans [1]. While
these approaches have shown impressive results [1, 2, 6], their use is inherently
limited to the availability of such sensors. In this paper, our goal is to enable a
wider use, where the user can easily obtain a realistic model of her/his house by
providing only an approximate address and a floorplan of the building.

Towards this goal, we exploit rental ads which contain both the property’s
address as well as a floor plan. We convert the address to a rough geo-location,
and exploit Google’s Geo-Reference API to obtain a set of StreetView images
where the property’s exterior is visible. A floorplan provides us with an accurate
and metric outline of the building’s exterior along with information about the
position of windows and doors. This information is given in the footprint of the
building, and typically the vertical positions (along the height) are not known.

Our approach then reasons jointly about the 3D geometry of the building
and its registration with the Google’s StreetView imagery. In particular, we
estimate the height of each floor, the vertical positions of windows and doors,
and the accurate position of the building in the world’s map. We frame the
problem as inference in a Markov random field that exploits several geometric
and semantic cues from the StreetView images as well as the floorplan. Note that
the StreetView images have a very wide baseline, and thus relying on keypoint
matching across the views would result in imprecise estimation. In our model,
we exhaustively explore the solution space, by efficiently scoring our projected
building model across all views. Our approach is thus also partially robust to
cases where the building is occluded by vegetation.

To demonstrate the effectiveness of our approach, we collected a new dataset
with 174 houses by crawling an Australian rental website. We annotated the
precise pose of each house with respect to Google’s StreetView images, as well
as the locations of windows, doors and floors. Our experiments show that our
approach is able to precisely estimate the geometry and location of the property.
This enables us to reconstruct a realistic textured 3D model of the building’s
exterior. We refer the reader to Fig. 1 for an illustration of our approach and an
example of our 3D rendering. Our dataset and source code will be made available
at http://www.cs.toronto.edu/housecraft.

2 Related work

Interactive image-based modeling: Interactive modeling of buildings use
one or more images as a guide to build 3D models. In the seminal work of [7],
users are required to draw edges over multi-view images and the architectural
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3D model is then built by a grammar of parameterized primitive polyhedral
shapes. Sinha et al. [3] proposed an interactive system for generating textured
3D architectural models by sketching multiple photographs. Camera poses are
recovered by structure from motion and 3D models are constrained by vanishing
point detection. We refer the reader to [8] for a more systematic literature review.

Automatic 3D building modeling: Researchers also attempted to tackle
the problem in a fully automatic way. Many approaches made use of LIDAR
aerial imagery [4,5] for this purpose. In our review, we focus on approaches that
exploit ground-level information. The general idea is to utilize prior knowledge
to constrain the target 3D models, such as parallelism, orthogonality, piece-wise
planar and vanishing point constraints [1, 9–12]. These methods either rely on
dense point clouds reconstructed from multiview stereo [1,11] or line segment [9]
features that guide the architectural reconstruction. However, line segment based
methods are not robust to clutter and occlusion, while multi-view approaches
rely on the input to be either a video or a set of images with relatively small
motion. Unlike previous approaches, our method requires only on a very sparse
set of large-baseline images (typically 3 images per house with average distance
between the cameras of 16.7 meters). Furthermore, we can handle large occlusion
and clutter, such as vegetation and cars in the street.

Facade parsing: Our method is also related to work on facade parsing, which
aims at semantic, pixel-level image labeling of the building’s facade [13–16].
Hidden structures of building facades are modeled and utilized to tackle this
problem, such as repetitive windows, low-rankness and grammar constraints.
Compared to these structures, our method exploits the geometry and semantic
priors from the floorplan, and can thus work with a much wider range of facades.

Using floorplans for vision: Floorplans contain useful yet inexpensive geo-
metric and semantic information. They have been exploited for 3D reconstruc-
tion [17–19] and camera localization [20–22]. However, past methods mainly
utilize floorplans for indoor scenes. This is in contrast to our work which aims
to exploit floorplans for outdoor image-based modeling. In [23–25], city maps
with building contours are used to help localization and reconstruction. City
maps differ from floorplans as they do not contain information about windows
and doors. To the best of our knowledge, outdoor image-based modeling with
floorplans has not been proposed in the literature before. Moreover, due to the
rich information available in the floorplans, our 3D parameterized model is very
compact with a relative small number of degrees of freedom.

Recently, Arth et al. [25] proposed a camera localization method using 2.5D
city maps. Our work differs from theirs in two aspects. First, [25] assumes that
the building height is known, e.g., from OpenStreetMaps. For residential houses
considered here this information is not available. Second, it assumes that the
relative camera height w.r.t. building’s base is constant. In our case, reasoning
about relative height is necessary due to the difference in elevation between the
building and the camera.

Holistic 3D scene understanding: Holistic models reason about semantics
and geometry simultaneously, resulting in performance gains. For instance, [26,
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(a)

(c)

Fig. 2: The initial building’s position and StreetView images. In (a), blue pin shows
the geo-reference result, green pins show three nearby StreetView images S1,2,3, red
lines depict the building contours parsed from the map image. (b): Building’s floor-
plan placed on the map. (c) shows StreetView images corresponding to S1,2,3 in (a),
respectively, overlaid with the virtual house rendered with the initial building position
(from (b)) and floor, door, window heights as 1m, 2m, 3m.

.

Vertical position base floor door upper window lower window

Mean value -2.57m 3.33m 2.56m 0.53m 1.34m

Table 1: Average values of vertical positions computed from GT annotations.

27] perform semantic parsing and multi-view reconstruction jointly and [28–30]
reason about both depth and semantic labeling from a monocular image. Our
approach also reasons about semantic parsing and pose estimation jointly, but
constrains the degrees of freedom via floorplan priors.

3 The SydneyHouse Dataset

We exploit rental ads to obtain our dataset. In this section we first explain data
collection and analyze the statistics of our new dataset.
Data Collection: We collected our dataset by crawling an Australian real-
estate website1. We chose this site because it contains housing information
in a formatted layout. We queried the website by using the keyword “Syd-
ney”+“House”, and parsed ads for the top 1,007 search results. A rental ad
is typically composed of several, mostly indoor photos, a floorplan, as well as
meta data information such as the address of the property. In our work we only
kept houses for which a floorplan was available (80.8%). Given the address, we
obtained several outdoor street-level photos around the property via Google’s

1 http://www.domain.com.au/
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Geo-Reference API2. In particular, for each rental ad we downloaded a local map
around the property using Google Maps (Fig. 2(a)). We then parse the building
contours from the map3, and set the building position as the position of the
closest building contour (Fig. 2(b)). This gives us a rough geo-location of the
rental property. We then collected Google StreetView images around this loca-
tion, where we set the camera orientation to always point towards the property
of interest. Fig. 2(c) shows that although the building matches the map very
well, the property does not align well with the images. Obtaining a more accu-
rate alignment is the subject of our work. We finally discarded ads for which the
houses could not be geo-referenced or were not identifiable by the annotators in
StreetView imagery (65.3%). Our final SydneyHouse dataset contains 174 houses
located in different parts of Sydney. We show examples for house selection in our
dataset in the supplementary material.
Ground-truth Annotation: We annotated each house with the vertical posi-
tions (e.g., floor height) and its precise location with respect to the geo-tagged
imagery. We developed a WebGL based annotation tool that constructs the 3D
model of the house given a set of vertical positions. The tool visualizes the pro-
jection of the 3D model onto the corresponding StreetView images. The in-house
annotators were then asked to adjust the properties until the 3D model is best
aligned with the streetview imagery. For each house, we annotate the 1) verti-
cal positions, namely the building’s foundation height (w.r.t. camera), 2) each
floor’s height as well as 3) the door heights, and 4) windows vertical starting and
ending positions. We also annotate the floorplan by specifying line segments for
walls, windows, and doors, as well as building orientation and scale. On average,
the total annotating time for each house was around 20 minutes.
Statistics: Our dataset consists of 174 houses. On average each house has 1.4
levels, 3.2 windows, 1.7 doors. Average values of vertical positions are in Table 1.

4 Building Houses from Rentals Ads and Street Views

In this section, we show how to create a 3D model of the building exterior given
a floor plan and a set of wide-baseline StreetView images. We start by describing
our parametrization of the problem in terms of the random variables denoting
the building’s position and vertical positions. We cast the problem as energy
minimization in a Markov Random Field, where inference can be performed
efficiently despite a large combinatorial solution space.

4.1 Parameterization and Energy Formulation

Given several geo-tagged StreetView images of a house, I = {Ii}Ni=1, and a
floorplan F extracted from the rental ad, our goal is to jointly estimate the 3D
layout of the house as well as its accurate geo-location.

2 https://www.google.com/maps
3 In particular, we use a processing pipeline consisting of color thresholding, connected

component analysis, corner detection, and sorting by geodesic distance.
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(a) (b)

Fig. 3: Visibility and parametrization: (a) shows a floorplan and the visible parts to a
given camera, (b) depicts our parametrization of the building and its pose.

A floorplan contains information about the number of floors, the dimensions
of the footprint of each floor, and the (2D) location of doors and windows in the
footprints. In order to lift the floorplan to 3D, we need to estimate the height of
each floor, the building’s foundation height as well as the vertical position of each
door, window, and possibly a garage gate. Let h be the building’s foundation
height, where h=0 means that the building sits on a plane having the same
height as the camera. Here, h thus simply encodes the vertical offset of the
building’s support surface from the camera. We parameterize all floors with the
same height, which we denote by f . We also assume that all doors (including
the garage gates) have the same height, which we denote by d. Further, let
a = {au, al} be the window’s vertical starting and ending position.

Our initial estimate of the house’s location is not very accurate. We thus
parameterize the property’s true geolocation with two additional degrees of free-
dom (x, y), encoding the (2D) position of the house in the map. Note that this
parameterization is sufficient as projection errors are mainly due to poor geo-
location in Google Maps and not because of inaccurate camera estimates in
StreetView. We confirmed this fact while labeling our dataset. Fig. 3 visualizes
our full parametrization.

Let y = {x, y, h, f, d,a} be the set of all variables we want to estimate for a
house. We formulate the problem as inference in a Markov random field, which
encourages the projection of the 3D model to match the image edges, semantics
and location of doors and windows in all images. Furthermore, we want to en-
courage the building to be salient in the image, and its appearance to be different
than the one of the background. Our complete energy takes the following form:

E(y; I,F) = Eedge(y; I,F) + Eobj(y; I,F) + Eseg(y; I,F)

+ Esal(y; I,F) + Eapp(y; I,F)
(1)

We note that given a building hypothesis y, our energy scores its projection in
the set of StreetView images. Thus, in order to properly score a hypothesis, we
need to reason about the visibility of the walls, windows, etc. We compute the
visibility with a standard exact 2D visibility reasoning method [31]. Fig. 3(a)
shows example of visibility reasoning. We refer the reader to suppl. material for
details. In the following subsection, we describe the potentials in more detail.
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(a) (b) (c)

(d) (e) (f)

Fig. 4: Feature visualization. (a) Initial building position. All features are computed for
a region around the initial building (cyan box in (b)). (b) Detected vertical (blue), hor-
izontal (green), otherwise orientated (red) edges. (c) Detected windows (red) and doors
(green). (d) Foreground color potential with foreground and background color sampled
from cyan/magenta boxes. (e) Saliency-based foreground segmentation. (f) Semantic
segmentation with building (red), sky (purple), occlusion (blue), other (yellow).

4.2 Potentials in our Energy

Edge Potential: This term encodes the fact that most building facade, window,
door and floor boundaries correspond to image edges. We thus define

Eedge(y; I,F) =

N∑
i=1

wT
edgeφedge(y; Ii,F)

where N is the number of StreetView images, wedge is a vector of learned weights
and φedge is a feature vector encoding the distances between the edges of our
projected hypothesis and the image edges. We compute distances for different
types of building edges, i.e., vertical, horizontal, and all. When computing the
potential, we take into account visibility and exploit distance transforms for
efficiency. We use up to four different features per edge type, corresponding to
different thresholded distance transforms (i.e., 0.1m, 0.2m, 0.4m). For each edge
type, the potential then sums the value of the different distance transforms along
the projected visible edges. In particular, we use structured edge [32] to extract
the orientated edge map for each image. Fig. 4(b) shows an example.

Object Potential: To compute the object potential, we first run an object
detector for three classes, i.e. doors, windows, and garage gates, on StreetView
images. This energy term is then designed to encourage agreement between the
projection of the model’s visible doors, windows, and garage gates, and the
detection boxes. We thus define

Eobj(y; I,F) =

N∑
i=1

wT
objφobj(y; Ii,F)
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Proposal Detection

precision recall precision recall F1 score overall acc.

window 10.11% 63.04% 34.65% 76.11% 47.62 84.10%

door 2.32% 32.50% 4.41% 39.29% 7.93 76.92%

garage 7.28% 49.43% 32.14% 81.82% 46.15 90.87%

Table 2: Object detection performance. Accuracy reported at each stage without taking
into account previous errors (objects missed by proposals are excluded for detection).

where N is the number of images, wobj is a vector of weights and φobj is a feature
vector that encodes agreement for each object type. In particular, φobj simply
counts the number of pixels for which the projected (visible) object hypothesis
and the image detection box agree. We additionally use counts of pixels that
are inside the projected object hypothesis, but are not in any detection box,
and another count for pixels contained in the detection boxes but not contained
inside the object hypothesis. Our feature vector is thus 9-dimensional (three
classes and three counting features for each class). We refer the reader to Fig.
4(c) for an illustration. Note that these pixel counts can be computed efficiently
with integral geometry [33], a generalization of integral images to non axis-
aligned plane homographies. In our work, we rectify the image using the known
homography to frontal-parallel view, so that the grid for integral geometry is
axis-aligned, thus simplifying the implementation.

To detect doors, windows and garage gates in the StreetView images we use a
pipeline similar to RCNN [36]. We first use edgebox [37] to generate object pro-
posals (most objects are rectangular in the rectified view). In particular, we use
only 10 object proposals since a house typically have multiple windows/doors,
successfully detecting a few of them is sufficient for our task. We train a convo-
lutional neural network on the region proposals for each class independently, by
fine-tuning AlexNet [38] pre-trained on ImageNet [39], which is available in the
Caffe’s [40] model-zoo. Fig. 4(c) shows an example.

Segmentation Potential: This term encodes the fact that we prefer house con-
figurations that agree with semantics extracted from StreetView images. Towards
this goal, we take advantage of SegNet [41] and compute semantic segmentation
for each StreetView image in terms of four classes: sky, building, occlusion and
other. We define all categories that can occlude a building as occlusion, i.e., tree,
pole, sign and vehicle. We then define our segmentation potential as

Eseg(y; I,F) =
∑
i

wT
segφseg(y; Ii,F)

where wseg is a vector of weights and φseg is a feature vector. Each dimension of
φseg counts the number of pixels inside the projected building region, that were
labeled with one of the categories by the segmentation algorithm. We expect the
learning algorithm to learn that the weight for building is positive and the weight
for sky and other is negative. Similar to the object potential, this term can be
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xy/m IOU h/cm f/cm d/cm al/cm au/cm

random 9.07 21.04%
102.8 49.8 45.6 47.0 55.9box-reg [34,35] 6.68 33.31%

google 5.01 43.46%

ours 2.62 68.29% 49.7 43.1 14.1 36.9 33.6

Table 3: Mean errors of our approach and the baselines. h, f , d, al, and au denote
heights for camera, floor, door, and window, respectively.

efficiently computed via 2D integral geometry in a rectified frontal-parallel view.
Fig. 4(d) shows an example.
Saliency potential: This term encourages the building facade to correspond
to salient objects in the scene. In particular, we use [42] to compute a per-pixel
saliency score (example depicted in Fig. 4(e)). We then compute our potential by
simply summing the salient scores inside the projected building’s region. Note
that as before we can compute this potential in constant time using integral
accumulators.
Appearance potential: This term encourages the image region corresponding
to the projected building’s facade to have color different than the background.
We sample the foreground and background color from image region around,
and sufficiently far away, from the initial building position, where background
normally corresponds to sky, pavement, grass, and other buildings. We compute
per-pixel foreground probability with a kernel density estimator. Our potential
is obtained by summing the foreground probability inside the projected facade.
Fig. 4(f) shows an example.

4.3 Efficient Projection of Building Hypotheses

As shown in Fig. 3(b), given a configuration y, we can lift the floorplan F to 3D,
and project it onto each StreetView image Ii given the known camera parameters
(given by Google’s API). Since the camera poses are fixed (we are “moving” the
building relative to the camera), we can re-write the model’s translation to point
z as: HK[R|t]z = HK[R|t](z0 + x4zx + y4zy), where H is a homography that
rectifies the image to the frontal-parallel view. Here z0 is a chosen initial point,
(zx, zy) is a chosen discretization of the search space, and (x, y) represents the
coordinate of our hypothesis in this space. Since z0 and (zx, zy) are fixed for
all hypotheses, we can pre-compute HK[R|t]z0, HK[R|t]zx, and HK[R|t]zy,
allowing us to avoid matrix multiplication when projecting a new hypothesis z.

4.4 Inference

We perform inference by minimizing the energy in Eq. (1) with respect to y. For
random variables corresponding to vertical building dimensions, we discretize
our solution space by learning a set of prototypes by independently clustering
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range/m gt% time/s xy/m h/cm f/cm al/cm au/cm

5× 5 19.0% 6.22 3.37 58.1 41.7 41.2 28.4

10× 10 62.1% 8.58 2.70 44.0 43.3 41.5 29.6

15× 15 88.5% 12.12 2.66 49.2 42.0 37.1 33.3

20× 20 96.6% 19.05 2.62 49.7 43.1 36.9 33.6

25× 25 97.7% 27.16 2.67 46.6 40.4 35.1 34.2

Table 4: Impact of the size of the search range on the accuracy of the method. Columns
from left to right: xy search range, percentage of ground truth that is within the search
range, inference time per house, average error for each variable.

quant. thres./m time/s xy/m h/cm f/cm al/cm au/cm

0.20 19.05 2.62 49.7 43.1 36.9 33.6

0.25 16.28 2.34 45.7 41.4 26.8 31.3

0.35 12.58 2.81 51.5 34.0 26.8 31.9

Table 5: Impact of the height quantization on inference time and accuracy.

the output space for each random variable. We refer the reader to the suppl.
material for a detailed description of our discretization. It is worth noting that
our energy evaluation can be done very efficiently, since all the energy potentials
can be computed via integral accumulators. This allows us to perform inference
via exhaustive search over the combinatorial space of all prototypes. On average
we can evaluate 20.7k candidates per second on a CPU.

4.5 Learning

We learn the parameters of the model with structured-SVMs [43], using the
parallel implementation of [44]. We compute the loss function as the sum of
loss functions across all StreetView images. For each individual image, we com-
pute the loss as the intersection-over-union (IOU) between the ground-truth
segmentation (implied by the ground-truth layout of the building projected into
the image) and the segmentation corresponding to the model’s projection. We
weigh each class (i.e., building, window, doors/gates) differently. We estimate
these weights as well as the slack rescaling term c via cross-validation.

5 Experiments

We first provide implementation details, and then evaluate our approach on our
newly collected dataset.
Implementation details. For the building’s position, we use a search range
of 20m×20m, discretized by 0.25m. We use k-means clustering with a cluster
variance of 0.2m for our variable-wise clustering, yielding 5 prototypes for h, 3
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edge obj other xy/m h/cm f/cm al/cm au/cm

X 6.42 63.4 47.1 46.7 40.3

X 7.24 83.3 52.5 38.0 45.4

X 3.50 79.5 41.2 46.7 40.3

X X 5.93 59.7 44.7 37.0 40.9

X X 2.84 53.9 40.8 46.7 40.3

X X 3.18 60.6 46.4 37.1 33.2

X X X 2.62 49.7 43.1 36.9 33.6

Table 6: Ablation study of different types of energy terms. The other potential includes
segmentation, saliency, and appearance. Best result is achieved with all potentials.

for f , 1 for d, 2 for al, and 2 for au. Thus in total, the number of unique solutions
is 81× 81× 60, which is roughly 0.4 million possible states.

Evaluation. We evaluate our approach on our SydneyHouse dataset. We con-
duct 6-fold evaluation, where for each test fold, we use 4 folds for training and
1 fold for validation to choose the hyper-parameters. We use grid search to
choose the hyper-parameters over the space c ∈ {2−4, 2−3, 2−2, 2−1, 20, 21}, and
α′ = {0.5, 1, 2}, which is the ratio of object IOU to facade IOU in the task loss.

We compare our approach with three baselines. In the first baseline, we ran-
domly generate the building position, with the same xy search range and dis-
cretization. We denote this baseline as random. In the second baseline, we feed
the frontal-parallel facade image to Inception Network [34] and extract features
from both global pooling and fully connected layers. We then perform box re-
gression as in [35] to find the optimal building’s bounding box, and choose the
regularization parameter that yields best results. We use the new box to obtain
the building position xy. This baseline is referred to as box-reg. In the third base-
line referred to as google, we obtain building position xy by placing the floorplan
to best overlap with the building contour on Google Maps. In all baselines, ver-
tical positions h, f , d, au, and al are obtained by randomly selecting from the
training set. Baselines are repeated 1000 times to get the average performance.

Quantitative results: As shown in Tab. 3, the box-regression baseline achieves
better building position than the random baseline. However, its performance is
still poor, due to limited number of training samples. Our method outperforms
all baselines by a large margin. To better demonstrate our method’s advantage,
we also list the frontal facade IOU with the ground truth in Tab. 3. Note that
our approach significantly improves the overlap with the ground truth. For the
google baseline, we also tried setting vertical dimensions as dataset average and
found our method still outperform the baseline significantly.

Object Detection: As shown in Tab. 2, object proposals detect a fraction of
all objects. This is due to the fact that in our multi-view setup, only a few views
face the frontal facade perpendicularly, and the rectified images are skewed and
blurred in the other views. Doors are more difficult to detect than windows
and garage gates as many doors are covered by the porch. Note that we report
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(Original) (Google) (Ours) (3D model)

Fig. 5: Qualitative comparison. From left to right: input StreetView image, baseline
method, our approach, texture-mapped 3D house model using our result.

precision/recall of each stage without taking into account previous errors, i.e.,
objects that are missed by the proposal are excluded for detection.
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Property 1 Property 2

Property 3 Property 4

Fig. 6: Our approach demonstrates robustness when the house is occluded. Left: orig-
inal images (two for each house). Right: our results.

Impact of search space discretization: We study the impact of the size of
the search range for the building’s xy position in Tab. 4. There is a trade-off
between efficiency and efficacy. As we increase the search range, the percentage
of ground-truth samples located within the search range increases, and building
position accuracy also increases. However, above a certain range the accuracy
starts to drop since more ambiguous samples are included. Tab. 5 shows the im-
pact of different quantization thresholds for the height variables. Supplementary
material investigates more discretization choices.

Ablation study: We perform an ablation study of our approach in Tab. 6.
Notice that incorporating more potentials increases the accuracy of our ap-
proach. Specifically, we can see that other potential, which includes segmen-
tation, saliency, and appearance, helps to estimate the building position xy the
most. The edge potentials are more useful for estimating the building foundation
height h. The best result is achieved when combining all potentials.

Qualitative results: Fig. 5 shows a few qualitative results of our approach and
the google baseline algorithm. It can be seen that the baseline cannot localize the
house precisely in the image due to the mapping and geo-referencing errors. In
contrast, our approach is able to provide accurate xy as well as vertical positions
(floor/base heights, vertical window and door positions). Fig. 6 further shows
four examples with partial occlusions caused by trees in one or two viewpoints.
Despite occlusion, our approach is still able to accurately estimate the building
position and vertical positions.
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Property 1 Property 2

Fig. 7: Failure modes. Left: original images. Right: our results.

Failure modes: Fig. 7 shows a few failure modes. In property 1, our approach
fails because the initial building position is too noisy. The ground truth is 16.3m
from the initial position, which exceeds our 20×20 search range. Property 2 shows
another difficult case, where the building is heavily occluded in the second and
third view, the facade has similar color to the sky, and many non-building edges
exist. In this case, our method still estimates the building xy position correctly,
but fails to estimate the vertical positions.
Timing: We report the efficiency of our method. Computing detection and
segmentation features is done on a GPU, while the rest of code is all executed in
CPU. Our CPU implementation uses Matlab without parallelization. Training
our model takes around 20 minutes each fold. In inference, our approach takes
19.05s in total per house, which includes 3.41s for computing the image features,
8.00s for rendering all configurations and 7.64s for inference. Note that in our
case both rendering and inference are highly parallelizable, thus allowing for high
speed-ups with a more sophisticated implementation.

6 Conclusion

In this paper, we proposed an approach which exploits rentals ads to create
realistic textured 3D models of building exteriors. In particular, the property’s
address is employed to obtain a set of wide-baseline views of the building, while
the floor plan is exploited to provide a footprint of the building’s facade as well
as the location on the floor of doors and windows. We formulated the problem as
inference in a Markov random field that exploits several geometric and seman-
tic cues from the StreetView images as well as the floorplan. Our experiments
showed that our approach is able to precisely estimate the geometry and location
of the property, and can create realistic 3D models of the building exterior.
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