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Abstract
Software functional equivalence checking is a technique for ana-
lyzing the impact of change of a portion of code on the rest of the
system. The existing functional equivalence checking approaches
are applicable only at the individual software product level. In
this paper, we propose a lifted functional equivalence checking ap-
proach, CLEVER-V, that can efficiently handle annotative software
product lines. Instead of checking functional equivalence of every
product separately, CLEVER-V analyzes all products together to it-
eratively identify groups of non-equivalent products with common
causes. We report on the implementation of the lifted functional
equivalence checking approach and demonstrate its effectiveness
and scalability on a suite of 288 realistic software updates from
BusyBox.
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1 Introduction
A software product line (SPL) [7, 8, 11] is a family of similar software
systems (products) with shared assets. Maintaining multiple prod-
ucts via a product line facilitates reuse and thus is widely practised
in many domains. Yet SPLs, like all software, are subject to frequent
updates, e.g., new features, updates to underlying libraries, bug
fixes. How do these updates affect behaviour of the products com-
prising the SPL? In principle, SPL updates may affect every product,
making change impact analysis a time-consuming and potentially
complex task. Several existing techniques, CC2 [14], CLEVER [25],
Rêve [13] and SymDiff [23] can be used for validating functional
equivalence between two versions of a program. Yet, these tech-
niques are applicable only at the individual software product level,
that is, they can be used to determine whether two products are
functionally equivalent. Variability-aware functional equivalence,
applied for SPLs, aims to determine the functional equivalence for
every software product in the SPLs. A naive, or brute-force strat-
egy [33], is to generate and analyze all products separately and
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then merge their results. However, such a strategy is unlikely to
scale for commonly used SPLs such as Linux kernel, which contain
over 15,000 features [24].

In this paper, we address the problem of change impact assess-
ment for SPLs by proposing a lifted functional equivalence check-
ing approach, CLEVER-V. To overcome the scalability challenge,
CLEVER-V analyzes all products together to iteratively identify
groups of non-equivalent productswith a common cause. CLEVER-V
exploits a key observation: non-equivalent products often share
the same or similar counterexample to equivalence. This observa-
tion enables us to reuse the counterexample of one non-equivalent
product to efficiently identify other non-equivalent products with
the same counterexample as well as find similar counterexamples
for other non-equivalent products.
Illustrative Example. Consider the pair of functions F_1 and F_2 in
Fig. 1 with small differences on Lines 7–8. Both functions have three
features,𝐴, 𝐵,𝐶 and three inputs, 𝑥 , 𝑦, 𝑧, and produce one output, 𝑟 .
Line 7 changes defined to !defined, and Line 8 changes x to y. To
trigger the difference, Line 8 has to be enabled and Line 4 disabled
so that 𝑥 ≠ 𝑦 before Line 6. The following is a sample analysis result
of a variability-aware equivalence: (1) for feature configurations
satisfying (𝐴∧𝐵) ∨ (¬𝐴∧𝐶) (e.g.,𝐴∧𝐵∧𝐶 ,𝐴∧𝐵∧¬𝐶 , ¬𝐴∧𝐵∧𝐶 ,
¬𝐴∧¬𝐵 ∧𝐶), a counterexample to the equivalence of F_1 and F_2
is 𝑥 = 0 ∧ 𝑦 = −1 ∧ 𝑧 = 1; (2) other feature configurations derive
equivalent products.

CLEVER-V first finds that F_1 and F_2 in Fig. 1a and 1b produce
different outputs for product (𝐴 ∧ 𝐵 ∧ 𝐶) under the input (𝑥 =

1, 𝑦 = −1, 𝑧 = 1). Then, CLEVER-V tries to identify other non-
equivalent products due to the same input. As the result, CLEVER-V
discovered that F_1 and F_2 produce different outputs under any
feature configuration satisfying𝐵∧𝐴 (i.e.,𝐴∧𝐵∧𝐶), when the inputs
satisfy 𝑧 > 0∧𝑥 > 𝑦 ∧𝑧 ≤ 1∧𝑦 < 0. Then, CLEVER-V tries to find
other feature configurations that derive non-equivalent products
under inputs satisfying 𝑧 > 0∧𝑥 > 𝑦 ∧𝑧 ≤ 1∧𝑦 < 0 and finds that
the only other set of configurations are𝐶∧¬𝐴. Thus, it produces the
following formula, which we call a featured counterexample (FCEX),
that captures the feature configurations of non-equivalent products
and their counterexamples: ((𝐵 ∧𝐴) ∨ (𝐶 ∧ ¬𝐴)) ∧ (𝑧 > 0 ∧ 𝑥 >

𝑦∧𝑧 ≤ 1). After repeating the previous step, CLEVER-V determines
that there are no other FCEXs. Thus, all non-equivalence products
and their counterexamples have been found. Using this strategy,
our variability-aware equivalence checker can solve many similar
instances efficiently.
Contributions. This paper makes the following contributions. (1)
We formally define the problem of checking for functional equiva-
lence between two software product lines (SPL); (2) We propose a
lifted functional equivalence checking approach, CLEVER-V, that
takes two annotative software product lines and produces a sound
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1 in t F_1 ( in t x , in t y , in t z ) {
2 in t r = 0 ;
3 # i f d e f i n e d A && ! d e f i n e d B
4 x = y ;
5 #endif
6 while ( z > 0 ) {
7 # i f d e f i n e d A | | d e f i n e d C
8 r += x ;
9 # e l se
10 r += y ;
11 #endif
12 −−z ;
13 }
14 return r ;
15 }

(a) F_1.

1 in t F_2 ( in t x , in t y , in t z ) {
2 in t r = 0 ;
3 # i f d e f i n e d A && ! d e f i n e d B
4 x = y ;
5 #endif
6 while ( z > 0 ) {
7 # i f d e f i n e d A | | ! d e f i n e d C
8 r += y ;
9 # e l se
10 r += y ;
11 #endif
12 −−z ;
13 }
14 return r ;
15 }

(b) F_2.

Figure 1: Two C functions with feature variabilities introduced by preprocessor macros. F_2modifies F_1 via a preprocessor
macro on Line 7 and right-hand side value on Line 8.

and complete equivalence summary. (3) We report on a prototype
implementation of CLEVER-V and empirically evaluate it on a suite
of 288 benchmarks inspired by real SPL updates from BusyBox.
Organization. The rest of the paper is structured as follows. Sec. 2
gives the necessary background. Sec. 3 formally defines the prob-
lem of checking functional equivalence of SPLs. Sec. 4 presents
our approach at a high level, including the definition of what our
analysis reports and the correctness proof of our algorithms. Sec. 5
discusses how these ideas have been implemented. Sec. 6 evalu-
ates the performance of CLEVER-V compared to the product-based
baseline (brute-force) approach that generates and checks all pairs
of products. Sec. 7 examines related works. Finally, in Sec. 8, we
conclude and outline some future research directions.

2 Preliminaries
In this section, we present the necessary background on program,
program equivalence, and software product lines.

2.1 Program
For simplicity, we consider a simple many-sorted imperative pro-
gramming language where all operations are assignments or as-
sumptions. We further assume that every program is a function
whose type and arity are statically known. Under the above assump-
tions, a program can be represented as a Control-Flow Automaton
(CFA) [14]. Note that the assumptions on the considered program-
ming language are made only for simplifying the presentation, but
the language itself is Turing-complete and thus expressive enough
to capture general programs.

Definition 2.1 (Control-Flow Automaton). A CFA is a tuple (𝐿, 𝑙0,
𝑙f , 𝑋, ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸), where (1) 𝐿 is a finite and non-empty set of pro-
gram locations; (2) 𝑙0, 𝑙f ∈ 𝐿 are the initial and final locations; (3)
𝑋 is a set of program variables; (4) ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 ⊆ 𝑋 are the input and
output variables; (5) 𝐸 ⊆ 𝐿 ×𝑂 × 𝐿 is a set of control flow edges,
where𝑂 is one of the operations described below. (i) An assignment
𝑥 B 𝑎, where 𝑥 ∈ 𝑋 and 𝑎 is a term of the same sort, or type, as 𝑥 ;
(ii) an assumption assume(𝑏), where 𝑏 is a Boolean term; or (iii)

a sequential composition 𝑜1;𝑜2, where both 𝑜1, 𝑜2 ∈ 𝑂 . A term is
either a variable (𝑥 ), a constant (1) or a function application (𝑥 + 1).
Semantics. Given a CFA Λ = (𝐿, 𝑙0, 𝑙f , 𝑋, ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸), its semantics
is defined as a set of execution traces L(Λ). Each trace 𝜎 ∈ L(Λ) is
a sequence of states 𝑠1, 𝑠2, . . . , 𝑠𝑛 , where each state 𝑠𝑖 , 𝑖 ∈ {1, · · · , 𝑛}
is a tuple (𝑙 , 𝑣) that specifies its program location and variable as-
signment, respectively. Given a term 𝑎 and an assignment 𝑣 , let 𝑣 [𝑎]
denote the result of evaluating 𝑎 under 𝑣 . For variable assignments
𝑣 and 𝑣 ′, a variable 𝑥 and a term 𝑎, 𝑣 ′ = 𝑣 [𝑥 ← 𝑎] iff 𝑣 ′ [𝑥] = 𝑎 and
𝑣 ′ [𝑦] = 𝑣 [𝑦] for variable 𝑦 ≠ 𝑥 . We say that a trace 𝜎 is in L(Λ)
iff (1) 𝜎 starts at location 𝑙𝑖 , and (2) for every pair of consecutive
states (𝑙 , 𝑣) and (𝑙 ′, 𝑣 ′) in 𝜎 , there is an edge (𝑙, 𝑜, 𝑙 ′) such that 𝑣 and
𝑣 ′ satisfy the semantic relation induced by 𝑜 :

𝑅𝑜 (𝑣, 𝑣 ′) =


𝑣 ′ = 𝑣 [𝑥 ← 𝑎], if 𝑜 is 𝑥 B 𝑎

𝑣 [𝑏] = ⊤, if 𝑜 is assume(𝑏)
∃𝑣 ∗ .(𝑅𝑜1 (𝑣, 𝑣∗) ∧ 𝑅𝑜2 (𝑣∗, 𝑣)) if 𝑜 is 𝑜1;𝑜2

Definition 2.2 (Function Application). Let a CFA Λ and two vec-
tors ®𝑡𝑖𝑛 and ®𝑡𝑜𝑢𝑡 be given. We say that the application of Λ on the
input ®𝑡𝑖𝑛 produces the output ®𝑡𝑜𝑢𝑡 , denoted as Λ(®𝑡𝑖𝑛) = ®𝑡𝑜𝑢𝑡 if and
only if there exists a finite trace 𝜎 = (𝑙0, 𝑣0) . . . (𝑙𝑓 , 𝑣 𝑓 ) in L(Λ) s.t.
𝑣0 [®𝑥𝑖𝑛] = ®𝑡𝑖𝑛 and 𝑣 𝑓 [®𝑥𝑜𝑢𝑡 ] = ®𝑡𝑜𝑢𝑡 .

A trace 𝜎 terminates if 𝜎 is finite and the last state is at 𝑙𝑓 . A CFA
Λ is deterministic if each state has a fixed successor state in all traces
of L(Λ). Λ is complete if every trace in L(Λ) either terminates or
is an infinite sequence (i.e., the execution does not get stuck at a
non-final location). In the rest of the paper, we assume that all CFAs
are deterministic and complete. Note that, under the deterministic
and complete assumption, for every input ®𝑡𝑖𝑛 , if Λ terminates, then
Λ(®𝑡𝑖𝑛) has a unique return value (®𝑡𝑜𝑢𝑡 ).

Example 2.1 (CFA). Consider the function F_1 in Fig. 1a, ignoring
the presence conditions. The CFA of F_1 is shown in Fig. 2a. The
trace (𝑙𝑖 , {𝑟 : 0, 𝑥 : 0, 𝑦 : 5, 𝑧 : 0}), (4, {𝑟 : 0, 𝑥 : 5, 𝑦 : 5, 𝑧 : 0}),
(𝑙𝑓 , {𝑟 : 0 𝑥 : 5, 𝑦 : 5, 𝑧 : 0}) is in the language L(F_1). F_1
is deterministic since the only branching location is 4, and the
branching conditions [𝑧 > 0] and [𝑧 ≤ 0] are mutually exclusive.
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(a) The CFA of F_1 (without features).
(b) The derived CFA of F_1 with configuration
(𝐴,¬𝐵,¬𝐶 ) . (c) The variability-aware CFA of F_1.

(d) The metaproduct of F_1. (e) The metaproduct of F_2.

Figure 2: (a) The CFA (without features); (b) a derived product (with configuration 𝐴); (c) a variability-aware CFA; (d) a
metaproduct of the function F_1 (Fig. 1a); (e) a metaproduct of the function F_1 (Fig. 1b). Numbers in the nodes represent the
program locations.

F_1 is complete because at least one transition is enabled for every
location, including 4, because 𝑧 > 0 ∨ 𝑧 ≤ 0⇒ ⊤.

Definition 2.3 (Functional Equivalence). Given two complete and
deterministic CFAs Λ and Λ′, Λ is functionally equivalent to Λ′,
denoted as Λ ≡ Λ′, iff on every input ®𝑡𝑖𝑛 where Λ and Λ′ both
terminate, Λ(®𝑡𝑖𝑛) = Λ′ (®𝑡𝑖𝑛).

Note that the definition of functional equivalence excludes cases
where Λ terminates and Λ′ does not (or vice versa), and the study
of termination is not within the scope of this paper.

2.2 Program Analysis
Hoare Triples and Counterexamples. Let a CFA Λ = (𝐿, 𝑙0, 𝑙f , 𝑋, ®𝑥𝑖𝑛,
®𝑥𝑜𝑢𝑡 , 𝐸) be given. The assume-guarantee style analysis on Λ is rep-
resented as a Hoare triple [17]: {𝑝𝑟𝑒}Λ{𝑝𝑜𝑠𝑡} where 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡
are expressions over ®𝑥𝑖𝑛 and ®𝑥𝑖𝑛 ∪ ®𝑥𝑜𝑢𝑡 , respectively. The Hoare
triple {𝑝𝑟𝑒}Λ{𝑝𝑜𝑠𝑡} is valid iff for all input values ®𝑡𝑖𝑛 , 𝑝𝑟𝑒 [𝑥𝑖𝑛 ←
®𝑡𝑖𝑛] = ⊤ (denoted as ®𝑡𝑖𝑛 |= 𝑝𝑟𝑒) implies 𝑝𝑜𝑠𝑡 [𝑥𝑖𝑛 ← ®𝑡𝑖𝑛 ;𝑥𝑜𝑢𝑡 ←
Λ(®𝑡𝑖𝑛)] = ⊤ (denoted as ®𝑡𝑖𝑛

⋃
Λ(®𝑡𝑖𝑛) |= 𝑝𝑜𝑠𝑡 ). On the other hand, if

there exists an input value ®𝑡𝑖𝑛 such that 𝑡𝑖𝑛 |= 𝑝𝑟𝑒 and ®𝑡𝑖𝑛
⋃

Λ(®𝑡𝑖𝑛) ̸|=
𝑝𝑜𝑠𝑡 , then ®𝑡𝑖𝑛 is a counterexample (CEX) to the validity of the Hoare
triple. Given a Hoare triple, a program verification tool (e.g., Sea-
Horn [16]) can be used to prove the validity of the Hoare triple or
to generate a CEX.

Definition 2.4 (Generalized CEX). Let a CFA Λ = (𝐿, 𝑙0, 𝑙f , 𝑋, ®𝑥𝑖𝑛,
®𝑥𝑜𝑢𝑡 , 𝐸) and a Hoare triple {𝑝𝑟𝑒}Λ{𝑝𝑜𝑠𝑡} be given. A Boolean ex-
pression (over ®𝑥𝑖𝑛) 𝑔𝑐𝑒𝑥 is a generalized counterexample (GCEX) to
the validity of {𝑝𝑟𝑒}Λ{𝑝𝑜𝑠𝑡} iff every input value ®𝑡𝑖𝑛 that satisfies
𝑔𝑒𝑥𝑝 (®𝑡𝑖𝑛 |= 𝑔𝑒𝑥𝑝 ) is a CEX to the validity of {𝑝𝑟𝑒}Λ{𝑝𝑜𝑠𝑡}.

We can compute a GCEX from a single CEX ®𝑡𝑖𝑛 by maximally
identifying the set of (conjunction of atoms) 𝑔𝑐𝑒𝑥 ← 𝑐1 ∧ 𝑐2 . . .
as long as 𝑡𝑖𝑛 |= 𝑔𝑐𝑒𝑥 and 𝑔𝑐𝑒𝑥 remains a correct GCEX. We will
discuss the details of the GCEX computation in Sec. 5.

Example 2.2. Consider the function F_2 (see Fig. 1b) without
presence conditions. The Hoare triple {𝑦 > 0 ∧ 𝑧 > 0} F_2 {𝑟 > 0}
is valid while {𝑦 > 0 ∧ 𝑧 >= 0} F_2 {𝑟 > 0} has a counterexample
®𝑡𝑖𝑛 = (1, 1, 0). A GCEX generalized from ®𝑡𝑖𝑛 is 𝑧 ≤ 0.

Definition 2.5 (Self-Composition). LetΛ1 = (𝐿1, 𝑙0, 𝑙f , 𝑋1, ®𝑥𝑖𝑛, ®𝑥1𝑜𝑢𝑡 , 𝐸1)
andΛ2 = (𝐿2, 𝑙0, 𝑙f , 𝑋2, ®𝑥𝑖𝑛, ®𝑥2𝑜𝑢𝑡 , 𝐸2) be two CFAs with the same in-
puts ®𝑥𝑖𝑛 . A self-composition ofΛ andΛ′ is a CFAΛ× = (𝐿×, 𝑙0, 𝑙f , 𝑋×, ®𝑥𝑖𝑛,
®𝑥𝑜𝑢𝑡 ∪ ®𝑥2𝑜𝑢𝑡 , 𝐸×) with inputs ®𝑥𝑖𝑛 and outputs ®𝑥𝑜𝑢𝑡 ∪ ®𝑥2𝑜𝑢𝑡 such
that for any input ®𝑡𝑖𝑛 where both Λ1 and Λ2 terminate, Λ1 (®𝑡𝑖𝑛) =
Λ× (®𝑡𝑖𝑛) [ ®𝑥1𝑜𝑢𝑡 ] and Λ2 (®𝑡𝑖𝑛) = Λ× (®𝑡𝑖𝑛) [ ®𝑥2𝑜𝑢𝑡 ].

In contrast to the classical definition of self-composition [6],
where multiple copies of the same CFAs are composed to verify k-
safety properties such as determinism and noninterference, Def. 2.5
considers compositions between different (but similar) CFAs for
equivalence checking. Existing self-composition approaches [32]
are applicable as long as the declarative constraints in Def. 2.5
are satisfied. In Sec. 4, we demonstrate a concrete example of self-
composition for equivalence checking (Example 4.4).

Theorem 2.3. Let two CFAs Λ1 and Λ2 be given. If Λ× is the self-
composition of Λ1 and Λ2, then Λ1 ≡ Λ2 iff {⊤}Λ×{ ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 }.

The proof follows directly from Def. 2.5. Thm. 2.3 allows us to
reduce the problem of checking Λ1 ≡ Λ2 to checking the validity
of a Hoare triple {⊤}Λ×{ ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 }.
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2.3 Software Product Lines
A software product line (SPL) defines a collection of related software
products, where each product can be enabled by a specific feature
configuration. In compositional SPLs, features are implemented as
separate units and are composed together by a desired feature
configuration [1, 22]. Delta-oriented programming [29] uses a core
module to define shared code for all products and specifies feature
variability using delta modules. In annotative SPLs, features are
explicitly annotated in the code base. In this work, we consider
annotative SPLs at the level of programs represented as CFAs where
variabilities are annotations on nodes and edges. Software product
lines can thus be represented with variability-aware CFAs:

Definition 2.6 (Variability-Aware CFA andDerived CFA). A variability-
aware CFA ℒ is a tuple (𝐹,Φ, 𝐿, 𝑙0, 𝑙f , 𝑋, ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸, 𝜙), where 𝐿, 𝑙0,
𝑙𝑓 , 𝑋 , ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸 is defined analogously to CFA. The additional
attributes are: 𝐹 , a finite set of features, Φ, a propositional formula
on 𝐹 called a feature model, and 𝜙 , a function that defines a presence
condition 𝜙 (𝑒) for the edges in 𝐸 where 𝜙 (𝑒) is a Boolean expression
over 𝐹 . A feature configuration 𝜔 is valid if Φ[𝐹 ← 𝜔] is evaluated
to ⊤. Since 𝐹 is a finite set of Boolean variables, we abuse the no-
tation and refer to Φ as the set of all valid feature configurations.
Given a valid feature configuration 𝜔 ∈ Φ, a derived product of
𝜔 , denoted as ℒ |𝜔 , is a CFA (𝐿, 𝑙0, 𝑙𝑓 , ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸 |𝜔 ), where 𝐸 |𝜔
is the subset of 𝐸 such that for every edge 𝑒 ∈ 𝐸 |𝜔 , the presence
condition 𝜙 (𝑒) [𝐹 ← 𝜔] is evaluated to ⊤. The variability-aware
CFA ℒ defines the set of all the CFAs that can be derived from the
feature models Φ and the presence condition 𝜙 . We assume that 𝜙
satisfies the following properties:

(Determinism). Let 𝑔1 = (𝑙, 𝑜, 𝑙1) ∈ 𝐺 and 𝑔2 = (𝑙, 𝑜, 𝑙2) ∈ 𝐺

be two edges that have the same source location 𝑙 and operation
𝑜 but a different destination location (i.e., 𝑙1 ≠ 𝑙2). Then Φ ⇒
¬(𝜙 (𝑔1) ∧ 𝜙 (𝑔2)).

(Completeness). Suppose 𝛾 (𝑙) is the set of all edges that start
from location 𝑙 . Then for any location 𝑙 ∈ 𝐿\{𝑙f },Φ⇒

∨
𝑔∈𝛾 (𝑙 ) 𝜙 (𝑔).

Example 2.4. Consider the function F_1 from Fig. 1a. The variability-
aware CFA (denoted as ℒ𝐹1 ) of F_1 is shown in Fig. 2c with feature
variables 𝐹 = {𝐴, 𝐵,𝐶} and the feature model Φ = ⊤. The two out-
going edges of location 4 have the presence conditions 𝐴 ∧ ¬𝐵 and
¬𝐴∨𝐵, respectively, and the two outgoing edges of location 8 have
the presence conditions 𝐴 ∨𝐶 and ¬𝐴 ∧¬𝐶 , respectively. Since the
presence conditions of edges from the same source node are always
mutually exclusive and complementary, the presence conditions
are deterministic and complete. Under the feature model Φ,ℒ𝐹1 has
eight different feature configurations, and the product derived from
the configuration (𝐴,¬𝐵,¬𝐶) is shown in Fig. 2b, where the edges
with presence conditions 𝐴 ∧ ¬𝐵 and 𝐴 ∨𝐶 are enabled, while the
edges with presence conditions ¬𝐴 ∨ 𝐵 and ¬𝐴 ∧ ¬𝐶 are disabled.
The derived products are also deterministic and complete.

3 Variability-Aware Functional Equivalence
In this section, we formally define the problem of checking the
functional equivalence of software product lines (called the VEQ
problem). Then we describe the expected outcome of our approach
that would solve the VEQ problem.

Definition 3.1 (VEQProblem). Letℒ = (𝐹,Φ, 𝐿, 𝑙0, 𝑙f , 𝑋, ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸, 𝜙)
and ℒ ′ = (𝐹,Φ, 𝐿′, 𝑙0, 𝑙f , 𝑋 ′, ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸′, 𝜙 ′) be two variability-
aware CFAs that have the same feature variables 𝐹 , feature models
Φ, inputs ®𝑥𝑖𝑛 and outputs ®𝑥𝑜𝑢𝑡 . The problem of verifying the func-
tional equivalence of ℒ and ℒ ′ is to determine the functional
equivalence of every derived product ℒ |𝜔 ≡ ℒ ′ |𝜔 for a feature
configuration 𝜔 ∈ Φ. Formally, the VEQ of ℒ and ℒ ′ computes
a function 𝑉𝐸𝑄ℒ≡ℒ ′ : {⊤,⊥} |𝐹 | → {⊤,⊥} such that for every
𝜔 ∈ Φ, 𝑉𝐸𝑄ℒ≡ℒ ′ (𝜔) iff ℒ |𝜔 ≡ ℒ ′ |𝜔 .

Naively, one could solve the VEQ problem by checking the func-
tional equivalence for each derived product separately and then
report the result for each feature configuration. However, the naive
approach is unlikely to scale due to the number of feature config-
urations, as discussed in Sec. 1. Furthermore, the analysis results
are produced for each individual product, which is not succinct
(𝑂 (2 |𝐹 | )). Instead of considering one configuration at a time, we
propose to analyze a set of feature configurations and generate a
featured counterexample (FCEX) as a summary of the equivalence
status for the set. Intuitively, an FCEX reports the set of feature
configurations whose derived products are nonequivalent due to
the same set of CEXs.

Definition 3.2 (Featured Counterexample). Given two variability-
aware CFAs ℒ = (𝐹,Φ, 𝐿, 𝑙0, 𝑙f , 𝑋, ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸, 𝜙) and ℒ ′ = (𝐹,Φ,
𝐿′, 𝑙0, 𝑙f , 𝑋

′, ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸′, 𝜙 ′), a featured counterexample (FCEX) to
ℒ ≡ ℒ ′ is a tuple (𝑝, 𝑞), where 𝑝 is a propositional formula over
𝐹 and 𝑞 is a quantifier-free formula over ®𝑥𝑖𝑛 . An FCEX is sound iff
for every feature configuration 𝜔 ∈ Φ that satisfies 𝑝 and for every
input value ®𝑡𝑖𝑛 that satisfies 𝑞, we have ℒ |𝜔 (®𝑡𝑖𝑛) ≠ ℒ ′ |𝜔 (®𝑡𝑖𝑛). We
refer to 𝑝 and 𝑞 as the head and body of the FCEX, respectively.

Example 3.1. Consider the functions F_1 and F_2 in Fig. 1a and
Fig. 1b, respectively. Let ℒ𝐹_1 and ℒ𝐹_2 be the variability CFA of
F_1 and F_2, respectively. Then the tuple (¬𝐴∧𝐶 , 𝑥 = 𝑦 > 0∧𝑧 > 0)
is a FCEX for ℒ𝐹_1 ≡ ℒ𝐹_2. From the FCEX, we can show that
ℒ𝐹_1 |{¬𝐴,𝐵,𝐶 } (1, 1, 1) ≠ ℒ𝐹_2 |{¬𝐴,𝐵,𝐶 } (1, 1, 1) since the feature
configuration {¬𝐴, 𝐵,𝐶} satisfies the head ¬𝐴 ∧ 𝐶 and the input
(𝑥 = 1 ∧ 𝑦 = 1 ∧ 𝑧 = 1) satisfies the body 𝑥 = 𝑦 > 0 ∧ 𝑧 > 0.

Definition 3.3 (NEQ-Summary). Given two variability-aware CFAs
ℒ = (𝐹,Φ, 𝐿, 𝑙0, 𝑙f , 𝑋, ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸, 𝜙) andℒ ′ = (𝐹,Φ, 𝐿′, 𝑙0, 𝑙f , 𝑋 ′, ®𝑥𝑖𝑛,
®𝑥𝑜𝑢𝑡 , 𝐸′, 𝜙 ′), an NEQ-summary Cex↑ (ℒ ,ℒ ′) is a set of FCEXs to
ℒ ≡ ℒ ′. The summary is sound if all FCEXs in the summary are
sound. The summary is complete if for every feature configura-
tion 𝜔 ∈ Φ such that ℒ |𝜔 . ℒ ′ |𝜔 (the derived products are not
functionally equivalent), there exists an FCEX = (𝑝 , 𝑞) such that
𝜔 satisfies 𝑝 . The summary is minimal if, for every pair of FCEXs
(𝑝, 𝑞) and (𝑝′, 𝑞′) in the summary, 𝑞 ∧ 𝑞′ is UNSAT.

Theorem 3.2 (Validity of NEQ-Summary). Let two variability-
aware CFAsℒ ,ℒ ′ with feature modelΦ be given. If a NEQ-summary
Cex↑ (ℒ ,ℒ ′) is sound and complete, thenCex↑ (ℒ ,ℒ ′) answers the
VEQ problem. More specifically, for every feature configuration𝜔 ∈ Φ,
ℒ |𝜔 . ℒ ′ |𝜔 iff there exists some FCEX (𝑝 , 𝑞) in Cex↑ (ℒ ,ℒ ′) such
that 𝜔 |= 𝑝 .

Proof. For every feature configuration 𝜔 ∈ Φ, if there is an
FCEX (𝑝, 𝑞) in Cex↑ (ℒ ,ℒ ′) such that 𝜔 satisfies 𝑝 , then ℒ |𝜔 .
ℒ ′𝜔 due to the soundness of the NEQ-summary. On the other hand,
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if there is no such FCEX (𝑝, 𝑞), then ℒ |𝜔 ≡ ℒ ′𝜔 due to the com-
pleteness of the NEQ-summary. □

Given two variability-aware CFAs ℒ and ℒ ′, we want to com-
pute a complete and sound NEQ-summary while minimizing the
FCEXs. Finding the summary with the smallest number of FCEXs
is expensive, since it reduces to the high-dimensional geometric
set cover problem, which is NP-complete [15]. Instead, we wish to
compute a minimal NEQ-summary and merge FCEXs as much as
possible (while preserving soundness) based on Thm. 3.3.

Theorem 3.3. Let (𝑝, 𝑞) and (𝑝′, 𝑞′) ∈ Cex↑ (ℒ ,ℒ ′) be two
FCEXs in a sound and complete NEQ-summary. If 𝑞 ∧𝑞′ is satisfiable,
replacing (𝑝, 𝑞) and (𝑝′, 𝑞′) with (𝑝 ∨ 𝑝′, 𝑞 ∧ 𝑞′) in the summary
preserves soundness and completeness.

Proof. The replacement satisfies the completeness property
because∨ is associative and commutative. The replacement is sound
because 𝑞 ∧ 𝑞′ is satisfiable and is stronger than 𝑞 and 𝑞′. □

Example 3.4. Consider functions F_1 and F_2 shown in Fig. 1a
and Fig. 1b, respectively. Suppose that ℒ𝐹_1 and ℒ𝐹_2 are the
variability CFA of F_1 and F_2, respectively. The NEQ-summary
(for ℒ𝐹_1 ≡ ℒ𝐹_2),

{ (¬𝐴 ∧𝐶, 𝑥 ≠ 𝑦 ∧ 𝑧 > 0), (𝐵 ∧𝐴, 𝑥 ≠ 𝑦 ∧ 𝑧 > 0) }

is sound and complete. From the first FCEX of the summary, we
can show that ®𝑥𝑖𝑛 = {𝑥 = 1, 𝑦 = 2, 𝑧 = 3} is a CEX under the
feature configuration 𝜔 = {¬𝐴, 𝐵,𝐶} because 𝜔 |= ¬𝐴 ∧ ¬𝐶 and
®𝑥𝑖𝑛 |= 𝑥 ≠ 𝑦∧𝑧 > 0. Moreover, we can show thatℒ𝐹_1 |𝜔 ≡ ℒ𝐹_2 |𝜔
for any feature configuration 𝜔 ̸ |= (¬𝐴 ∧𝐶) ∨ (𝐵 ∧𝐴).

The summary is not minimal and can be further minimized by
merging FCEXs since their bodies (see Def. 3.2) have an non-empty
intersection. More specifically, all three FCEXs have the same body
𝑥 ≠ 𝑦∧𝑧 > 0. Therefore, FCEXs can be merged by taking the union
of their heads. After merging FCEXs, we obtain the minimized
NEQ-summary: {((¬𝐴 ∧𝐶) ∨ (𝐴 ∧ 𝐵), 𝑥 ≠ 𝑦 ∧ 𝑧 > 0)} (the head is
simplified). For every feature configuration𝜔 |= (¬𝐴∧𝐶) ∨ (𝐴∧𝐵),
the derived products ℒ𝐹_1 |𝜔 and ℒ𝐹_2 |𝜔 are equivalent.

4 Computing NEQ-Summary
In this section, we present our approach for computing the NEQ-
summary for the VEQ problem. The approach consists of three
steps (see Fig. 3): (1) transforming the variability-aware CFA into
a metaproduct CFA where the feature variables are replaced with
program variables; (2) reducing the problem of CFA equivalence
checking into verification of a safety property, expressed as a Hoare
triple, over the self-composed CFA; (3) iteratively producing gener-
alized counterexamples of the Hoare triple and adding them into
NEQ-summary until the summary is complete. We describe Step
(1) in Sec. 4.1 and Steps (2)–(3) in Sec. 4.2. The proofs of soundness,
complexity, and optimality of the approach are in Sec. 4.3.

4.1 Metaproduct
In this section, we adopted a semantic-preserving transformation
(a.k.a. variability encoding), proposed by Apel et al. [19], that en-
codes variability-aware CFAs into CFAs, denoted as metaproducts.
The transformation allows us to reduce the VEQ problem (Def. 3.1)

Figure 3: The workflow for computing the NEQ-summary to
the VEQ problem. Inputs are in blue, outputs in yellow.

on the variability-aware CFAs to the equivalence checking (Def. 2.3)
problem on their metaproducts.

Definition 4.1 (Metaproduct). Let a variability-aware CFA ℒ =

(𝐹,Φ , 𝐿, 𝑙0, 𝑙f , 𝑋, ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸, 𝜙) be given. ACFAℒ ↑ = (𝐿∪𝑙 ′0, 𝑙
′
0, 𝑙f , 𝐹∪

𝑋, 𝐹 ∪ ®𝑥𝑖𝑛, ®𝑥𝑜𝑢𝑡 , 𝐸′) is a metaproduct of ℒ iff the edges in 𝐸′ sat-
isfy the following rules: (1) the edge connecting the initial loca-
tion (𝑙 ′0, assume(Φ), 𝑙0) is an edge in 𝐸′ and (2) for every edge
𝑒 = (𝑙𝑖 , 𝑜, 𝑙𝑓 ) ∈ 𝐸, there exists an edge 𝑒′ = (𝑙𝑖 , 𝑜′, 𝑙𝑓 ) where 𝑜′ is a
sequential composition of assume(𝜙 (𝑒)) and 𝑜 .

Intuitively, the metaproduct of a variability-aware CFA converts
the feature variable, 𝐹 , to the program variables, 𝑋 ∪ 𝐹 , and pushes
the enabling conditions, 𝜙 , as assumptions on the edges (rule (2)
of 𝐸′). In addition, a new initial location 𝑙 ′0 and its connecting edge
(𝑙 ′0, assume(Φ), 𝑙0) are introduced to restrict the space of feature
configurations by the feature model Φ.

Example 4.1. Consider the variability-aware CFA ℒ𝐹_1 shown
in Fig. 2c for function F_1 (in Fig. 1a). The metaproduct of ℒ𝐹_1 is
shown in Fig. 2d, where the feature variables 𝐴, 𝐵 and 𝐶 are con-
verted into program inputs. In the metaproduct, edges connecting
to a temporary location (e.g., 𝑡𝑚𝑝1, 𝑡𝑚𝑝2 and 𝑡𝑚𝑝3) are the assump-
tion edges for capturing presence conditions. For example, the se-
quential composition (4, assume(𝐴∧¬𝐵), 𝑡𝑚𝑝1); (𝑡𝑚𝑝1, 𝑥 ← 𝑦, 6)
in the metaproduct corresponds to the edge (4, 𝑥 ← 𝑦 |𝐴∧¬𝐵, 6)
in ℒ𝐹_1 with the presence condition 𝐴 ∧ ¬𝐵. The metaproduct is
deterministic and complete.

The metaproduct preserves all traces in any CFAs derived from
the variability-aware CFA.

Theorem 4.2. Given a variability-aware CFAℒ = (𝐹,Φ, 𝐿, 𝑙0, 𝑙f , 𝑋, ®𝑥𝑖𝑛,
®𝑥𝑜𝑢𝑡 , 𝐸, 𝜙) and its metaproduct ℒ ↑, the traces of the metaproduct
L(ℒ ↑) are equivalent to the union of all traces from the derived
products

⋃
𝜔∈Φ L(ℒ |𝜔 )

Proof. We prove trace equivalence in two directions: (1)L(ℒ ↑) ⊇⋃
𝜔∈Φ L(ℒ |𝜔 ) and (2) L(ℒ ↑) ⊆ ⋃

𝜔∈Φ L(ℒ |𝜔 ).
We prove (1) by contradiction: Suppose there exists a trace 𝜎 ∈

L(ℒ |𝜔 ) but not in L(ℒ ↑). Then either (1a) there is an initial state
𝑠0 allowed in ℒ |𝜔 but not in ℒ ↑, or (1b) there is a state transition
between 𝑠𝑖 , 𝑠𝑖+1 that is permitted in ℒ |𝜔 but not in ℒ ↑. Case (1a)
is not possible, since the program variables 𝑋 are the same for
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Algorithm 1 EQ checks the equivalence of two metaproduct CFAs
and produces a NEQ-summary.

Input Metaproduct CFAs ℒ ↑ and ℒ ↑
′

Output A NEQ-summary
1: procedure EQ(ℒ ↑ , ℒ ↑′)
2: ℒ ↑× ← Self-compose(ℒ ↑,ℒ ↑′ )
3: NEQ-summary← {}, pre← ⊤
4: ®𝑡𝑖𝑛 ← Verify&CEX{pre}ℒ ↑× { ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 }
5: while ®𝑡𝑖𝑛 ≠ ∅ do
6: 𝑐 ← Generalize(®𝑡𝑖𝑛 )
7: 𝑝,𝑞 ← Split(𝑐 )
8: 𝑝∗, 𝑞∗ ← GeneralizeFCEXs(pre, 𝑝, 𝑞,ℒ ↑× )
9: NEQ-summary← NEQ-summary ∪ { (𝑝∗, 𝑞∗) }
10: pre← 𝑝𝑟𝑒 ∧ ¬𝑝∗
11: ®𝑡𝑖𝑛 ← Verify&CEX{pre}ℒ ↑× { ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 }
12: end while
13: return NEQ-summary
14: end procedure

the two CFAs, and the assignment over the feature variables 𝐹 is
fixed by 𝜔 in ℒ |𝜔 but free in ℒ ↑. For case (1b), suppose that the
transition from 𝑠𝑖 to 𝑠𝑖+1 is due to an edge 𝑒 = (𝑙, 𝑜, 𝑙 ′) of ℒ |𝜔 . By
construction of 𝐸′ (the edges of ℒ ↑), there exists an edge 𝑒′ =
(𝑙, 𝑜′, 𝑙 ′) in 𝐸′ where 𝑜′ = assume(𝜙 (𝑒)) ;𝑜 . Since 𝑒 is enabled by 𝜙
under assignment 𝜔 , assigning 𝐹 by 𝜔 will pass the assumption in
𝑒′. Therefore, the transition from 𝑠𝑖 to 𝑠𝑖+1 is also available in ℒ ↑,
which is a contradiction.

We prove (2) by realizing that the assignment over 𝐹 in ℒ ↑ is
static (it is determined in the initial state 𝑠0 and does not change over
states). For every trace𝜎 ∈ L(ℒ ↑), we denote the static assignment
in 𝐹 by 𝜔 ′, and then 𝜎 is also a trace in ℒ |𝜔 ′ . Moreover, the initial
transition of the metaproduct (𝑙 ′0, assume(Φ), 𝑙0) restricts the valid
space of 𝜔 ′ by Φ. Therefore, ℒ |𝜔 ′ is a derived product of ℒ . □

Theorem 4.3. Let ℒ and ℒ ′ be two variability-aware CFA with
metaproducts ℒ ↑ and ℒ ↑

′
, respectively. For any configuration 𝜔 , if

®𝑥𝑖𝑛 is a CEX of equivalence in the derived product such thatℒ |𝜔 ( ®𝑥𝑖𝑛) ≠
ℒ ′ | ®𝑥𝑖𝑛 , then ®𝑥𝑖𝑛 ∪𝜔 is a CEX of equivalence for their meta-products
(i.e., ℒ ↑ ( ®𝑥𝑖𝑛 ∪ 𝜔) ≠ ℒ ↑

′ ( ®𝑥𝑖𝑛 ∪ 𝜔)).

Thm. 4.3 is a direct consequence of Thm. 4.2. It enables perform-
ing equivalence analysis on the metaproduct instead of the derived
products.

4.2 An Algorithm to Compute NEQ-Summary
In this section, we describe EQ, the equivalence analysis algorithm
(see Alg. 1). We study its soundness, run-time complexity, and
optimality in Sec. 4.3.

EQ takes two metaproduct CFAs, ℒ ↑ and ℒ ↑
′ (transformed

from variability-aware CFAs ℒ and ℒ ′, respectively), as input
and produces a complete and sound NEQ-summary. EQ first self-
composes ℒ ↑ and ℒ ↑

′ to obtain ℒ ↑× as the self-composition
(Line 2), and then, following Thm. 2.3, checks the equivalence ofℒ ↑

andℒ ↑
′ by verifying the validity of theHoare triple {⊤}ℒ ↑×{ ®𝑥1𝑜𝑢𝑡 =

®𝑥2𝑜𝑢𝑡 }(Line 4). If the Hoare triple is valid, an empty NEQ-summary
is returned (Line 13). Otherwise, EQ obtains a CEX ®𝑡𝑖𝑛 , and invokes
Generalize to obtain a GCEX (see Def. 2.4) 𝑐 (Line 6). EQ then splits

Algorithm 2 GeneralizeFCEXs generalizes an FCEX (𝑝, 𝑞) into
(𝑝∗, 𝑞∗) where 𝑞∗ is stronger than 𝑞, and 𝑝∗ represents the set of all
feature configurations that are non-equivalent due to the input 𝑞∗.

Input A FCEX (𝑝,𝑞) , a precondition pre and a self-composition ℒ ↑×
Output A NEQ-summary

1: procedure GeneralizeFCEXs(pre, 𝑝 , 𝑞, ℒ ↑× )
2: 𝑝∗ ← 𝑝 and 𝑞∗ ← 𝑞

3: ®𝑡𝑖𝑛 ← Verify&CEX{pre ∧ ¬𝑝 ∗ ∧𝑞∗}ℒ ↑× { ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 }
4: while ®𝑡𝑖𝑛 ≠ ∅ do
5: 𝑐 ← Generalize(®𝑡𝑖𝑛 )
6: 𝑝′, 𝑞′ ← Split(𝑐 )
7: 𝑝∗ ← 𝑝 ∗ ∨𝑝′ and 𝑞∗ ← 𝑞 ∗ ∧𝑞′
8: ®𝑡𝑖𝑛 ← Verify&CEX{pre ∧ ¬𝑝 ∗ ∧𝑞∗}ℒ ↑× { ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 }
9: end while
10: return 𝑝∗, 𝑞∗
11: end procedure

𝑐 into subformulae 𝑝 and 𝑞 over feature variables 𝐹 and program
variables 𝑋 , respectively (Line 7). EQ then adds (𝑝, 𝑞) as a FCEX
(see Def. 3.2) to the NEQ-summary (Line 9). Since 𝑝 represents a
set of non-equivalent feature configurations, EQ does not need to
consider them again for equivalence analysis and hence adds ¬𝑝
to the precondition of the Hoare triple (Line 10). After strengthen-
ing the precondition, EQ verifies the Hoare triple again (Line 11).
If a CEX exists, EQ adds more FCEXs to the NEQ-summary and
strengthens the precondition (Lines 5–12). EQ terminates when the
Hoare triple becomes valid, returning the NEQ-summary (Line 13).

We observed in the example in Fig. 1 that if an input is an CEX
for a feature configuration, then it is likely a CEX for other feature
configurations as well. Based on this observation, we developed
GeneralizeFCEXs — an optimization for EQ to further generalize
FCEXs before adding them to NEQ-summary (Line 8 in Alg. 1). Com-
putation of GeneralizeFCEXs is given in Alg. 2. The algorithm
takes a featured counterexample (𝑝, 𝑞), the current precondition
𝑝𝑟𝑒 , and the self-composition ℒ ↑× as inputs, and generalizes (𝑝, 𝑞)
into a new FCEX (𝑝∗, 𝑞∗), where 𝑝 → 𝑝∗ and 𝑞∗ → 𝑞. Intuitively,
the input FCEX (𝑝, 𝑞) is generalized by expanding the feature con-
figurations covered in the head (𝑝∗) while ensuring the resulting
FCEX is sound and has a non-empty body (𝑞∗). Generalization is
achieved by repeatedly identifying GCEXs 𝑝′ ∧ 𝑞′ to the validity
of the Hoare triple {pre ∧ 𝑞 ∗ ∧¬𝑝∗}ℒ ↑×{ ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 } (Line 6
of Alg. 2) and adding 𝑝′ and 𝑞′ to 𝑝∗ and 𝑞∗, respectively (Line 7).
The generalization ends when the Hoare triple becomes valid.

Example 4.4. Consider the functions F_1 and F_2 in Fig. 1a and
Fig. 1b, respectively, and letℒ𝐹_1 andℒ𝐹_2 be the variability-aware
CFAs for F_1 and F_2. We illustrate how EQ (Alg. 1) computes NEQ-
summary for ℒ𝐹_1 ≡ ℒ𝐹_2.

Before calling EQ, we first pre-process variability-aware CFAs
ℒ𝐹_1 and ℒ𝐹_2 into meta-products ℒ ↑𝐹_1 and ℒ ↑𝐹_2 shown in
Fig. 2d and Fig. 2e, respectively. Then Alg. 1 self-composes (Line 2)
ℒ ↑𝐹_1 and ℒ ↑𝐹_2 into ℒ ↑× (shown in Fig. 4). The variables 𝑟1
and 𝑟2 in ℒ ↑× store the values of the same variable 𝑟 from ℒ ↑𝐹_1
and ℒ ↑𝐹_2, respectively. The other program variables in ℒ ↑𝐹_1
and ℒ ↑𝐹_2 always have the same value and thus are preserved in
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Figure 4: A self-composition of the F_1 and F_2 metaproduct.

ℒ ↑× . When an execution reaches the final location 𝑙𝑓 in ℒ ↑× , the
values of 𝑟1 and 𝑟2 are then returned as the output of ℒ ↑× .

Then EQ invokes Verify&CEX (Line 4) to identify a CEX to the
Hoare tripe {𝑝𝑟𝑒}ℒ ↑× (𝑟1 = 𝑟2) where 𝑝𝑟𝑒 is initially ⊤. Suppose
the CEX ®𝑡𝑖𝑛 = (𝐴, 𝐵, 𝐶, 𝑥 = 1, 𝑦 = 0, 𝑧 = 1) is returned. Then EQ
generalizes ®𝑡𝑖𝑛 (Line 6) into a generalized counterexample (GCEX)
𝑐 ← (𝐴 ∧ 𝐵 ∧ 𝑧 = 1 ∧ 𝑥 ≠ 𝑦). Then EQ splits the GCEX 𝑐 (Line 7)
into a FCEX (𝑝 , 𝑞) where 𝑝 is (𝐴∧𝐵) and 𝑞 is (𝑧 = 1∧𝑥 ≠ 𝑦). Then
EQ calls GeneralizeFCEXs to generalize (Line 8) the FCEX (𝑝 , 𝑞).

GeneralizeFCEXs tries generalizing the FCEX (𝑝 , 𝑞) by first
checking validity of the Hoare triple {𝑝𝑟𝑒∧¬𝑝 ∗∧𝑞∗}ℒ ↑× (𝑟1 = 𝑟2)
where 𝑝𝑟𝑒 ← ⊤, 𝑝∗ ← 𝑝 and 𝑞∗ ← 𝑞 (Line 3). Suppose a CEX
®𝑡𝑖𝑛 = (¬𝐴, 𝐵, 𝐶, 𝑥 = 1, 𝑦 = 0, 𝑧 = 1) is returned. The CEX is then
generalized into a FCEX (𝑝′, 𝑞′) where 𝑝′ = ¬𝐴 ∧𝐶 and 𝑞′ = 𝑥 ≠

𝑦∧𝑧 = 1 (same as 𝑞). Then 𝑝𝑟𝑒 is updated as 𝑝∗ ← 𝑝 ∗∨𝑝′ and 𝑞∗ is
updated as𝑞∗ ← 𝑞∗∧𝑞′ (Lines 5–7). Then the updatedHoare triple’s
validity is checked again (Line 8) to obtain newCEXs. Eventually, 𝑝∗
becomes (𝐴∧𝐵) ∨ (¬𝐴∧𝐶) and 𝑞∗ becomes (𝑧 = 1∧𝑥 ≠ 𝑦). At this
point, the Hoare triple {𝑝𝑟𝑒∧¬𝑝∗∧𝑞∗}ℒ ↑× (𝑟1 = 𝑟2) becomes valid,
and GeneralizeFCEXs returns the generalized FCEX (𝑝∗, 𝑞∗).

After obtaining the generalized FCEX (𝑝∗, 𝑞∗) from Generalize-
FCEXs, EQ updates 𝑝𝑟𝑒 ← 𝑝𝑟𝑒∧¬𝑝∗ (Line 10), and then checks the
validity of the Hoare triple {𝑝𝑟𝑒}ℒ ↑× (𝑟1 = 𝑟2) again (Line 11). The
Hoare triple is valid and EQ returns the single entry NEQ-summary
{((𝐴 ∧ 𝐵) ∨ (¬𝐴 ∧𝐶), 𝑧 = 1 ∧ 𝑥 ≠ 𝑦)}. The NEQ-summary is sound,
complete and minimal.

4.3 Soundness, Complexity and Summary
Minimality

In this section, we first prove the soundness of EQ (Alg. 1), and
then study its runtime complexity. Finally, we prove that the NEQ-
summary returned by EQ is minimal.

Theorem 4.5 (Soundness). Let two variability-aware CFAs ℒ ,
ℒ ′ and their respective meta-products ℒ ↑, ℒ ↑

′
be given. The NEQ-

summary produced by EQ(ℒ ↑,ℒ ↑′) is complete and sound.

Proof. First, we prove that the NEQ-summary returned by EQ
is always sound. An FCEX (𝑝∗, 𝑞∗) is added to the NEQ-summary

(Line 9 of Alg. 1) iff (𝑝∗, 𝑞∗) is an FCEX returned by General-
izeFCEXs (Line 8 of Alg. 1). The formulae ¬𝑝∗ and 𝑞∗ are incre-
mentally strengthened from ¬𝑝 and 𝑞 by intersecting with ¬𝑝′
and 𝑞′, respectively, where (𝑝′, 𝑞′) is a GCEX for the Hoare triple
{pre ∧ ¬𝑝 ∗ ∧𝑞∗}ℒ ↑×{ ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 } (Line 7 of Alg. 2). Since
¬𝑝∗ → ¬𝑝′ and 𝑞∗ → 𝑞′, (𝑝∗, 𝑞∗) is also a GCEX for the Hoare
triple {pre ∧ 𝑞}ℒ ↑×{ ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 }. Since pre ∧ 𝑞 → ⊤, (𝑝∗, 𝑞∗)
is also a GCEX for the Hoare triple {⊤}ℒ ↑×{ ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 } By
Def. 2.4, every input ®𝑣 ′𝑖𝑛 that satisfies 𝑝 ∗∧𝑞∗ is a CEX of the Hoare
triple {⊤}ℒ ↑×{ ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 }. By Thm. 2.3 and 4.3, these inputs
are also CEXs of equivalence for the derived CFAs. Therefore, ev-
ery FCEX added to NEQ-summary is sound, and NEQ-summary is
sound as well.

Second, we prove that the NEQ-summary returned by EQ is
always complete. EQ terminates and returns the NEQ-summary
iff the Hoare triple {pre}ℒ ↑×{ ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 } (Line 11 of Alg. 1)
has no CEX (Line 5 of Alg. 1). At every iteration, the current NEQ-
summary is {(𝑝1, 𝑞1) . . . , (𝑝𝑛, 𝑞𝑛)} iff the precondition pre is ¬𝑝1 ∧
. . .¬𝑝𝑛 . By Thm. 2.3 and 4.3, the absence of CEX for the Hoare triple
implies that no feature configuration outside of 𝑝1 ∨ . . . 𝑝𝑛 is non-
equivalent. Therefore, the returned NEQ-summary is complete. □

EQ calls the procedure Verify&CEX to soundly verify the Hoare
triples. Since program verification is undecidable in general, EQ
might not terminate as Verify&CEX might not always terminate.
Therefore, instead of analyzing the algorithm’s worst-case runtime
complexity, we analyze the number of times Verify&CEX is invoked
in a single run, since Verify&CEX is a performance bottleneck.

Theorem 4.6 (Complexity). Let two variability-aware CFAs ℒ ,
ℒ ′ and their respective meta-products ℒ ↑, ℒ ↑

′
be given. Suppose

𝐹 is the set of feature variables for ℒ and ℒ ′. Then the verification
procedure Verify&CEX is invoked at most 𝑂 (2 |𝐹 | ) times during a
single run of EQ.

Proof. Since 𝐹 is a finite set of boolean variables, the number
of feature configurations is bounded by 𝑂 (2 |𝐹 | ). Let 𝑃 be the set of
non-equivalent feature configurations 𝑃 = {𝜔 | (ℒ |𝜔 . ℒ ′ |𝜔 )}.
We show that the satisfying solution of the formula 𝑃 ∧ pre is
monotonically decreasing by at least 𝑥 at every iteration of EQ
(Line 5 of Alg. 1), where 𝑥 is the number of times Verify&CEX is
invoked during the iteration. The decrease in the number of solu-
tions can be proved by the fact that 𝑝𝑟𝑒 is strengthened by adding
¬𝑝 at each iteration (Line 10 of Alg. 1), and ¬𝑝 is a conjunction of
feature expressions ¬𝑝1 ∧ . . .¬𝑝𝑥 , where each feature expression
¬𝑝𝑖 ∈ ¬𝑝 contains at least one distinct feature configuration in
𝑃 ∧ 𝑝𝑟𝑒 . This is because 𝑝𝑖 ∧ 𝑞 is a GCEX from the CEX ®𝑡𝑖 of the
Hoare triple {pre ∧ ¬𝑝1 . . .¬𝑝𝑖−1}ℒ ↑×{ ®𝑥1𝑜𝑢𝑡 = ®𝑥2𝑜𝑢𝑡 } (Line 6 of
Alg. 1). Since ®𝑡𝑖 is a CEX, ®𝑡𝑖𝑛 ∈ 𝑃 (valid), ®𝑡𝑖𝑛 |= 𝑝𝑟𝑒 (not blocked),
and 𝑡𝑖 |= ¬𝑝1 ∧ ¬ . . . 𝑝𝑖−1 (distinct). By Def. 2.4, ®𝑡𝑖 |= 𝑝𝑖 . Therefore,
given ¬𝑝 = ¬𝑝1 ∧ . . .¬𝑝𝑥 , the number of solutions of 𝑝𝑟𝑒 ∧ ¬𝑝
is at least 𝑥 less than the number of solutions in 𝑝𝑟𝑒 . Note that
EQ produces one ¬𝑝𝑖 for every call to Verify&CEX (Line 11 of
Alg. 1 and Line 8 of Alg. 2), and hence the number of invocations of
Verify&CEX is 𝑥 . Given that the algorithm ends when pre ∧ 𝑃 = ∅,
EQ calls Verify&CEX at most 𝑂 (2 |𝐹 | ) times. □
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Theorem 4.7 (Minimality). Let two variability-aware CFAs ℒ ,
ℒ ′ and their respectivemeta-productsℒ ↑,ℒ ↑

′
be given. If EQ(ℒ ↑,ℒ ↑′)

terminates and returns a NEQ-summary 𝑆 , then 𝑆 is minimal.

Proof. By Thm. 3.3, a summary 𝑆 is minimal if for any pair
of FCEXs (𝑝, 𝑞) and (𝑝′, 𝑞′) in 𝑆 , 𝑞 ∧ 𝑞′ is UNSAT. Every FCEX
(𝑝∗, 𝑞∗) in the summary 𝑆 is generalized by FCEX returned by
GeneralizeFCEXs (Line 8 of Alg. 1). GeneralizeFCEXs terminates
and returns (𝑝∗,𝑞) iff the Hoare triple {pre∧¬𝑝∗∧𝑞∗}ℒ ↑×{ ®𝑥1𝑜𝑢𝑡 =
®𝑥2𝑜𝑢𝑡 } becomes valid (Line 8 of Alg. 2). This means that there
are no feature configurations in the space of 𝑝𝑟𝑒 ∧ ¬𝑝∗ that can
derive non-equivalent CFAs with CEXs in the space of 𝑞∗. Since 𝑝𝑟𝑒
represents the space of feature configurations that are not already
in the summary 𝑆 , for any FCEX (𝑝𝛿 , 𝑞𝛿 ) added to 𝑆 after (𝑝∗, 𝑞∗),
𝑞𝛿 ∧ 𝑞∗ is UNSAT. Moreover, for any FCEX (𝑝𝛿 , 𝑞𝛿 ) added before
(𝑝∗, 𝑞∗), 𝑞𝛿 ∧ 𝑞∗ is also UNSAT (since (𝑝∗, 𝑞∗) is added to 𝑆 after
(𝑝𝛿 , 𝑞𝛿 ), and the constraint on (𝑝∗, 𝑞∗) is also applied to (𝑝𝛿 , 𝑞𝛿 )).
Therefore, 𝑆 is a minimal summary. □

5 Implementation
We have implemented a prototype of the lifted functional equiva-
lence checker, CLEVER-V, using 3000 lines of Scala code. CLEVER-V
includes the front-end C_to_VCFAs for compiling C source code to
variability-aware CFAs) and the implementation of Steps (1)–(3)
in Fig. 3. CLEVER-V uses TypeChef [20] as its front end to parse
annotated software product lines expressed in C language and
convert them to variability-aware CFAs. For Step (1), CLEVER-V
implements the technique proposed by Apel et al. [19] to gen-
erate metaproducts. For Step (2), CLEVER-V uses the algorithm
implemented by Feng et al. [14] to self-compose metaproducts. For
Step (3), CLEVER-V implements the algorithm EQ (Alg. 1) and the
optimization GeneralizeFCEXs (Alg. 2). The implementation of
Step (3) uses SeaHorn [16] as the back-end verifier (Verify&CEX
on Lines 4 and 11 of Alg. 1 and Lines 3 and 8 of Alg. 1). It also uses
the counter-example generalization technique proposed by Hui et
al. [18] on Line 6 of Alg. 1 and Line 5 of Alg. 2 to obtain GCEXs.

Limitations. Our Variability-aware CFA model (Def. 2.6) as-
sumes that the input functions are deterministic and complete. The
model only captures feature variabilities in annotative SPLs but not
compositional or delta-oriented ones. The definition of functional
equivalence (Def. 3.1) assumes that two input functions have the
same signatures (i.e., the same inputs and outputs). In addition,
components that our implementation uses impose some technical
constraints: source-level self-composition [14] requires that the
functions be non-recursive, well-structured and exiting from their
last statement. The back-end verifier [16] limits data types to chars,
integers, Booleans and non-parametric arrays. Both of these tech-
nical limitations can be removed as better underlying components
become available.

6 Evaluation
In this section, we evaluate our lifted equivalence analyzer, CLEVER-V,
to answer the following research questions: RQ1: How effective is
our approach at solving VEQ problems? RQ2: How does our ap-
proach scale compared to the brute-force approach as the number
of features increases? To answer RQ1 (effectiveness), we prepared

a case-study for analyzing the change impact of a real software
update in BusyBox. To answer RQ2 (scalability), we synthesized a
set of “hard” benchmark instances by increasing the variability of
the case study and proposing a wide range of updates.

6.1 Case-study Preparation
We selected the case-study from historical commits of the BusyBox
software product line 1 (a software suite that includes several Unix
utilities). For each commit 𝐶 , let 𝑆 and 𝑆 ′ be the set of C-language
functions before and after 𝐶 . 𝐶 can only be selected if there exist
functions 𝐹 ∈ 𝑆 and 𝐹 ′ ∈ 𝑆 ′ that satisfy the following properties: (i)
𝐹 and 𝐹 ′ both have return values (i.e., their type is not void), (ii) the
signatures of 𝐹 and 𝐹 ′ are the same in terms of function names and
the return type, as well as parameter names and types; (iii) the code
structures of the function bodies of 𝐹 and 𝐹 ′ are different (i.e., the
new code is not a reformat of the old code); and (iv) there is at least
one feature and one feature-specific software artifact annotated
using a feature expression (i.e., the two functions we are analyzing
are SPLs with #ifdef variability and are not single products).

For each selected commit 𝐶 and a pair of functions 𝐹 and 𝐹 ′

that satisfy the selection criteria, we aimed to prepare a VEQ prob-
lem instance for checking the functional equivalence of 𝐹 and 𝐹 ′

(𝐹 ≡ 𝐹 ′). We manually made a few modifications to eliminate pro-
gramming constructs unsupported by our front-end (TypeChef),
middle-end (self-composition), or back-end (SeaHorn). For ex-
ample, we rewrote enum’s into constants and bitwise operations
into equivalent C expressions. We also decomposed members in C
struct’s into individual variables (e.g., struct { int x; int y;
} s; became int s_x; int s_y;) to accommodate our middle-end.
In addition, we turned C standard library functions for strings (e.g.,
strcmp, strcoll) into uninterpreted functions since our back-end
did not support reasoning about them. We identified the first VEQ
instance (𝐹 ≡ 𝐹 ′) where the use of uninterrupted functions in 𝐹 and
𝐹 ′ does not affect their equivalence, and used it for our case-study,
referring to this instance as b-Orig.

6.2 RQ1: Effectiveness
To answer RQ1, we use the case-study instance b-Orig constructed
from the commit 6b01b71e (see Fig. 5). The function affected by
the update (i.e., sortcmp) is part of the BusyBox’s implementation
of the Unix ls command, which is used to display file information
in sorted order. It compares the statistics of two file entries and
returns an integer, whose sign tells ls which entry should come
first in the list (i.e., if it returns a positive integer, then the first
entry should appear before the second and vice versa).

The commit removes the while loop inside the else branch and
changes the number of bits to shift in the if branch from sizeof(int)*8
to enum BITS_TO_SHIFT, or equivalently, 8 * (sizeof(dif) -
sizeof(int)). The code versions before and after the commit both
aim to right shift the variable dif until it is small enough to fit into
an int. This update should not change the behaviour of the program
if sizeof(dif) == sizeof(int) * 2 evaluates to true. sortcmp
has two features: CONFIG_LOCALE_SUPPORT and CONFIG_LFS, both
are not visible from the figure.

1https://busybox.net/
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510 510 / ∗ Make d i f f i t i n t o an i n t ∗ /
511 511 i f ( s i z eo f ( d i f ) > s i z eo f ( in t ) ) {
512 − i f ( s i z eo f ( d i f ) == s i z eo f ( in t ) ∗ 2 ) {
513 − / ∗ t y p i c a l on many a r c h e s ∗ /
514 − i f ( d i f != 0 ) {
515 − d i f = 1 | ( in t ) ( ( u o f f _ t ) d i f >> ( s i z eo f ( in t ) ∗ 8 ) ) ;
516 − }
517 − } e l se {
518 − while ( ( d i f & ~ ( o f f _ t ) INT_MAX) != 0 ) {
519 − d i f >>= ( s i z eo f ( in t ) ∗ 8 / 2 ) ;
520 − }

512 + enum { BITS_TO_SHIFT = 8 ∗ ( s i z eo f ( d i f ) − s i z eo f ( in t ) ) } ;
513 + / ∗ s h i f t l e a v i n g on l y " i n t " wor th o f b i t s ∗ /
514 + i f ( d i f != 0 ) {
515 + d i f = 1 | ( in t ) ( ( u o f f _ t ) d i f >> BITS_TO_SHIFT ) ;

521 516 }
522 517 }

Figure 5: Changes to the file coreutils/ls.c in commit
6b01b71e. Lines starting with - (resp. +) represent the code
deleted (resp. inserted) by the commit.

We ran our prototype on b-Orig, and the result is an empty NEQ-
Summary, which means commit 6b01b71e preserves functional
equivalence under all feature configurations. This result is in line
with our expectations.

To illustrate our approach for handling non-equivalent updates,
we proposed a change. Suppose that commit 6b01b71e also changed
line 515 as followings:
- dif = 1 | (int)((uoff_t))dif >> (sizeof(int)*8));

+ #ifdef CONFIG_LFS
+ dif = 1 | (int)((uoff_t))dif << (sizeof(int)*8));
+ #else
+ dif = 1 | (int)((uoff_t))dif >> (sizeof(int)*8));
+ #endif

That is, we changed the right shift (>>) to a left shift (<<) when
CONFIG_LFS is enabled. The program should behave differently due
to this change. Running lifted equivalence checker on the modified
benchmark (which we call b-Modified) gives the following NEQ-
Summary.
Feature Configurations:

(CONFIG_LOCALE_SUPPORT ∧ CONFIG_LFS)
∨ (CONFIG_LFS ∧ ¬CONFIG_LOCALE_SUPPORT)

Counterexamples:

(sort_dir ∧ ¬sort_mtime ∧ ¬sort_atime ∧ ¬sort_ctime
∧ (strcoll12 < 0) ∧ ¬sort_size ∧ ¬sort_reverse)

∧ (sort_dir ∧ (strcoll12 < 0) ∧ ¬sort_reverse ∧ (strcmp12 < 0)
∧ ¬sort_ctime ∧ ¬sort_mtime ∧ ¬sort_atime ∧ ¬sort_size)

The NEQ-summary contains a single entry representing the
set of non-equivalent products that are characterized by the fea-
ture expressions. Any satisfying input to the counterexample ex-
pression would trigger functional differences on these products.
As an example, CLEVER-V solved the VEQ problem (𝐹 ≡ 𝐹 ′) in
the case study b-Orig, and produced a NEQ-summary. Using the
NEQ-summary, we identified a counterexample to equivalence
(shown in Fig. 6). The counterexample triggers the difference be-
tween 𝐹 and 𝐹 ′ for products derived by the feature configurations:
CONFIG_LOCALE_SUPPORT ∧CONFIG_LFS.
Answer to RQ1. CLEVER-V is effective at solving VEQ problems.
The NEQ-summary for b-Orig is sound and contains all feature
configurations of non-equivalent products.

6.3 RQ2: Scalability
To answer RQ2: scalability of our approach compared to the brute-
force one as the number of features increases, we systematically
generated 288 benchmark instances by first increasing the variabil-
ity of b-Orig and then using program mutation [12] on the modified
b-Orig. We referred to the resulting set as B-Hard. B-Hard was
generated based on two hypotheses on real-world updates to SPLs:
(1) presence conditions are in the form of a conjunction of enabled
and disabled features (e.g., #if !defined FEATURE_A && defined
FEATURE_B), and (2) code changes are small (e.g., replacing + with
-, or << with >>).

We first generated 72 pairs of complex SPLs based on hypoth-
esis (1). Each pair of SPLs were generated by adding 𝑖 additional
features 𝑓1, · · · , 𝑓𝑖 to b-Orig (for each 𝑖 = 1, · · · , 12, we generated
six benchmark cases) and injecting randomly-generated, conjunc-
tive feature expressions as presence conditions. Specifically, the
randomly generated presence condition 𝜙 (𝑠) of statement 𝑠 can be
written as

𝜙 (𝑠) =
∧
𝑓𝑖 ∈𝐹𝑒

𝑓𝑖 ∧
∧
𝑓𝑗 ∈𝐹𝑑

¬𝑓𝑗

where 𝐹𝑒 , 𝐹𝑑 ⊆ {𝑓1, · · · , 𝑓𝑖 } are sets of enabled and disabled fea-
tures. Each feature 𝑓 has an equal probability of 𝑝𝑒 = 0.1 (resp.
𝑝𝑑 = 0.05) to be selected into 𝐹𝑒 (resp. 𝐹𝑑 ), and 1 − 𝑝𝑒 − 𝑝𝑑 to be
unselected. Statements to which we inject presence conditions must
be unaffected by commit 6b01b71e, and the pair of SPLs from the
same benchmark case should inject the same presence conditions
to the same statements.

For each of the 72 pairs of complex SPLs, we created additional
benchmarks by making minor changes to the complex SPLs ac-
cording to hypothesis (2). Each additional benchmark was cre-
ated by applying at least one of the two mutation operators we
selected. The first mutation operator, 𝑀𝑜𝑝 (𝑝𝑜𝑝 ), randomly mu-
tates C-language operations. Each operation (e.g., -, <, ||, >>) has
a probability of 𝑝𝑜𝑝 to be replaced by its counterpart (e.g., +, >,
||, <<). The second mutation operator, 𝑀𝑝𝑐 (𝑝𝑝𝑐 ), randomly mu-
tates presence conditions. Specifically, for any presence condition
𝜙 (𝑠) = ∧

𝑓𝑖 ∈𝐹𝑒 𝑓𝑖 ∧
∧

𝑓𝑗 ∈𝐹𝑑 ¬𝑓𝑗 , each 𝑓𝑖 in 𝐹𝑒 has a probability of
𝑝𝑝𝑐 to be moved to 𝐹𝑑 , and vice versa.

The result of applying one or more mutation operators to the
original program is called a mutant [12]. For each of the 72 pairs of
complex SPLs, we apply𝑀𝑜𝑝 (0.1),𝑀𝑝𝑐 (0.05) or both independently
(i.e., with different random seed) on the pair of SPLs to obtain three
pairs of mutants. This gives a total of 288 benchmarks including
the 72 unmutated benchmarks.

We ran experiments on Ubuntu 22.04 with an Intel® CoreTM i7-
6700 CPU processor and 16 GiB of RAM. Each case was run with
timeout set to 10 minutes, and memory limit set to 16 GB.

In addition to comparing the performance of CLEVER-V against
the brute-force approach, we also aim to study the impact of the
optimization GeneralizeFCEXs (Alg. 2) on CLEVER-V. Therefore,
we evaluate performance on the following three configurations of
B-Hard : (1) the brute-force approach that derives products by all
feature configurations in the feature model and then analyzes them
separately, (2) the unoptimized CLEVER-V that uses CLEVER-V
without the optimization GeneralizeFCEXs, (3) CLEVER-V that
uses CLEVER-V with GeneralizeFCEXs.
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st_size1 = 0 st_size2 = 3
st_atim_tv_sec1 = 0 st_atim_tv_sec2 = 3 st_ctim_tv_sec1 = 0
st_ctim_tv_sec2 = 0 st_mtim_tv_sec1 = 0 st_mtim_tv_sec2 = 3
st_mode1 = 0 st_mode2 = 0
strcoll12 = -1 strcmp12 = -1 all_fmt = 0
sort_size = 0 sort_atime = 0 sort_ctime = 1
sort_mtime = 0 sort_dir = 0 sort_reverse = 1
CONFIG_LOCALE_SUPPORT = 0 CONFIG_LFS = 1

Figure 6: A concrete counterexample to equivalence for the case-study b-orig. CONFIG_LOCALE_SUPPORT and CONFIG_LFS are
feature variables and the others are program variables.

Results. The plot in Fig. 7 shows the running times vs. the number
of additional features. The times are displayed in ms. on a logarith-
mic scale. We plot the Penalized Quantile Runtime (PQR) [21] with
𝑝 = 0.5 and 𝑓 = 10 as the performance indicator. PQR is calculated
by penalizing timeouts with a factor of 𝑓 or taking the 𝑝-quantile
of the successful runs depending on the number of successful runs.
This penalizes unsuccessful runs and is resistant to outliers.

Comparing CLEVER-V against the brute-force approach, we ob-
served that CLEVER-V significantly outperformed the brute-force
approach in all categories. The PQRs (in ms) for CLEVER-V vs.
brute-force are 581.5 vs. 60666.5 for unmutated; 1087.0 vs. 53916.5
for𝑀𝑝𝑐 (0.5); 4513.0 vs. 53785.5 for𝑀𝑜𝑝 (0.1); 5164.0 vs. 56870.0 for
𝑀𝑝𝑐 (0.5) +𝑀𝑜𝑝 (0.1); and 2262.0 vs. 54538.0 over all instances.

Comparing CLEVER-V against unoptimized CLEVER-V, we ob-
served that unoptimized CLEVER-V remained competitive on the
unmutated benchmarks and the benchmarks mutated by both mu-
tation operators (𝑀𝑝𝑐 (0.5) + 𝑀𝑜𝑝 (0.1)). The PQRs (in ms) of un-
optimized CLEVER-V and CLEVER-V were 601.0 and 581.5, re-
spectively, for unmutated benchmarks, and 9206.0 and 5164.0, for
𝑀𝑝𝑐 (0.5) +𝑀𝑜𝑝 (0.1). In other categories, CLEVER-V outperformed
unoptimized CLEVER-V as the number of additional features in-
creased. For benchmarks mutated by𝑀𝑝𝑐 (0.05), the PQRs (in ms)
of unoptimized CLEVER-V and CLEVER-V were 997.5 and 922.5,
respectively, with 6 additional features, and 40945.0 and 9142.5,
respectively, with 12 features. Similarly, for benchmarks mutated
by𝑀𝑝𝑐 (0.1), the PQRs of unoptimized CLEVER-V and CLEVER-V
were 3208.0 and 2684.0, respectively, with 6 additional features,
and 159960.5 and 7458.0, respectively, with 12 additional features.
We observed that enabling the optimization GeneralizeFCEXs (see
Alg. 2) reduces the number of iterations (Lines 5–12 of Alg. 1) re-
quired for converging to a complete NEQ-summary. Even though
GeneralizeFCEXs added an overhead in each iteration, the benefit
of faster convergence becomes important given a large number of
feature configurations, which significantly improved CLEVER-V’s
performance.
Answer to RQ2. CLEVER-V’s performance scales better than the
brute-force approach w.r.t. running times as the number of addi-
tional features increases. CLEVER-V scales better than unoptimized
CLEVER-V when the change is either in the code or in the presence
conditions, while remaining competitive in solving other instances.

6.4 Threats to Validity
Internal Threats. Our benchmark generation threatens internal
validity. The choice of parameters 𝑝𝑒 , 𝑝𝑑 , 𝑝𝑜𝑝 , and 𝑝𝑝𝑐 (see Sec. 6.3)

may bias the effectiveness of FCEX generalization. Since we fixed
the choice of parameters when generating all B-Hard benchmarks,
the results could be skewed toward this generation pattern. How-
ever, as we are more concerned with the scalability as the number
of features increases, we presume we can tolerate these biases.
External Threats. The choice of BusyBox as the subject system
threatens external validity. Further work should consider expand-
ing subject systems to other SPLs, such as the Linux kernel. Fur-
thermore, all benchmark instances (b-Orig and b-Hard) used in
the evaluation satisfy the limitations of CLEVER-V mentioned in
Sec. 5, i.e., they do not contain global variables, jumps, or recursive
function calls. Therefore, our evaluation needs to be repeated on a
broader range of input programs. This is left for future work.

7 Related Work
Functional Equivalence Checking. Zaks et al. [35] reduces equiva-
lence checking to analysis of a self-composition of the two input
programs. This work is followed by many others that use self-
composition to verify program equivalence. For example, Feng et
al. [14] implement an equivalence checker based on the use of con-
ditional model checking to verify self-compositions of extractable
sub-CFGs (a.k.a. impact boundaries) containing calls to different
versions of the library. During self-composition construction, align-
ing is typically used to help in equivalence checking by avoiding
summarizing loops separately. Barthe et al. [5] align programs
by pairing iterations of loops, which makes an inductive proof
easier. Churchill et al. [10] describe an approach to construct prod-
uct programs driven by semantics as opposed to syntax. Another
equivalence checking technique is differential symbolic execution
(DSE) [26], which is an extension of symbolic execution. In par-
ticular, Shadow Symbolic Execution (SSE) [9], Directed incremental
Symbolic Execution (DiSE) [27], and ModDiff [34] are inspired by
DSE. Rêve [13] converts the equivalence checking problem into
Horn constraints that can be solved by an SMT solver. Finally,
ARDiff [4] proposed a counterexample-guided abstraction refine-
ment approach to identify a “simple” slice of the program to reduce
the complexity of equivalence analysis.

We lift Feng at al.’s implementation of the self-composition al-
gorithm. However, unlike all previously mentioned tools and tech-
niques, our work is, to the best of our knowledge, the first equiv-
alence checker that supports SPL analysis. Existing equivalence
checkers must enumerate all product pairs, the number of which
may grow exponentially in the number of features.
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Figure 7: The running times of all 288 benchmarks classified by the mutation operators used.

Product-Line Software Model Checking. The second phase of EQ
(see Alg. 1 in Sec. 4.2) can be viewed as product-line software
model checking. Several authors propose approaches for software
model checking of SPLs written in Java [3, 19, 30] or C [2, 3, 28].
The closest work to ours is [28] as it performs software model
checking on annotative SPLs. As in our approach, the authors use
variability encoding to convert all products into a metaproduct,
then prove it using a verification back-end (i.e., CBMC). The main
difference between our verification phase (i.e., Lines 3–13 of Alg. 1)
and [28] is that we output an NEQ-summary that is sound and
complete— it includes exactly the feature configurations of products
with counterexamples, while [28] is only sound — it produces at
most one product with counterexamples (if any exist). [28] is much
faster because it produces a simpler output and is useful when
counterexamples mean “bugs”; developers use counterexamples
to fix bugs until the product-line software model checker finds
no more counterexamples. Our approach is compliant with the
definition of variability-aware lifting by Shahin and Chechik [31],
and is more useful when certain products in the SPL are expected
to have different behaviour in terms of inputs and outputs due to
changes in specifications, and stakeholders are more interested in
finding all such products.

8 Conclusion
In this paper, we tackled VEQ— the problem of functional equiva-
lence checking for SPLs. We proposed a lifted equivalence checking
algorithm EQ and implemented it in the tool CLEVER-V. We em-
pirically demonstrated CLEVER-V’s effectiveness and scalability
for change impact analysis on realistic SPL updates.

As a future work, we aim to integrate CLEVER-V with exist-
ing equivalence checking techniques such as impact boundary
search [14] and iterative abstraction and refinement [4] to improve
scalability. We also intend to improve CLEVER-V’s applicability by
supporting equivalence checking between programs with recursive
functions as well as stateful functions. Finally, we aim to expand
CLEVER-V to support compositional and delta-oriented SPLs.
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