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Abstract. Automated software verification is a computationally hard
problem that is often exasperated by irrelevant context. Existing ver-
ification engines address this problem with slicing techniques that are
either too cautious, producing large verification condition queries, or too
aggressive, sacrificing soundness. In this paper, we present a novel tech-
nique, called Qicc, that is aggressive, sound, and “a little risky.” Specifi-
cally, we use procedure extraction to generate a small set of verification
queries that we check with existing verification engines. If any query in
the set passes verification, then the original program will pass verifica-
tion. However, there is no guarantee that such a query will exist, so Qicc
may waste time searching. We study the effectiveness of Qicc when it is
combined with two different verification engines, finding that Qicc’s ex-
tra cost is small while the rewards it brings to the analysis are significant.
We evaluated Qicc on a case study—the verification of a cryptographic
function in BusyBox—and found that Qicc succeeds when paired with
two different verifiers, while both verifiers are unsuccessful on their own.

1 Introduction

Automated software verification tools take as input an implementation anno-
tated with specifications and aim to return a correctness proof, or a counterex-
ample. Over the years, a wide range of automated verification techniques have
been proposed, including those based on bounded model checking, k-induction,
and predicate abstraction [3, 11, 9, 6]. These techniques differ substantially and
succeed on different kinds of verification tasks; however, they all have one thing
in common: a better encoded problem leads to better engine performance [21].

One technique for improving problem encodings is program slicing [4, 23].
Program slicing techniques take a program and a slicing criterion, and return a
subset of the input program based on that criterion. In the realm of verification,
these techniques have been used as sound pre-processing steps that eliminate
irrelevant context and focus the underlying verification engine on the properties
in question. For example, verification engines usually eliminate lines of code that
cannot affect assertions. When verification problems are too large, recent work
has suggested using slicing as an unsound pre-processing step, the idea being
that an approximate answer is better than no answer at all [7]. In this paper, we
seek to retain the soundness of the former use, while achieving the reductions of
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Fig. 1: Interprocedural region hierarchies of curve25519. Every node is a region. White
nodes are functions, and blue nodes are parts of functions labeled by corresponding start
and end lines of code. Arrows denote region containment. For example, the function
curve25519 calls the function fe_select inside a region at lines 416-436.

the latter use. We do this with a novel application of a classic program slicing
technique called procedure extraction [16]. Procedure extraction takes a program
and a set of program locations, and returns a minimal procedure that captures
the behaviour of these locations. Traditionally, procedure extraction has been
applied to program refactoring by automatically grouping features into func-
tions [16]. The main challenge in applying it to verification is in deciding which
program locations to extract. If we extract too many locations, the slice will
remain large; if we extract too few, the slice may miss some important context.

In this paper, we propose an approach that “gambles” on a few well-thought-
out slices. The cost of each gamble is small, but the reward is potentially big,
often allowing us to solve previously non-terminating cases. To get an intuition
for our approach, consider the example in Fig. 1 which shows the interprocedural
region hierarchies of the curve25519 function inside BusyBox’s TLS library. We
formally define regions in Sec. 2. For now, consider regions to be contiguous
portions of the control-flow graph of a program with a single entry location
and a single exit location. Regions can be nested, and Fig. 1 shows this nesting
for curve25519. curve25519 is a Diffie-Hellman function that takes a private key
and returns a corresponding public key using elliptic curve cryptography, and our
goal is to check whether its assertions hold. We highlight one of these assertions
with a red “assert” in Fig. 1. When given the entire program as input, existing
verification engines, e.g., CBMC [5] and UltimateAutomizer [14], struggle to
prove this assertion (and the other assertions in the program) because they are
overwhelmed by the size of the problem. However, as we discuss in more detail in
Sec. 4.5, the part of the program inside the red rectangle is sufficient to prove that
this assertion always holds, and focusing verifiers on this part of the program is
sufficient to have them succeed. Our approach searches the regions of a program
until it finds such a sufficient part of the program. When there are multiple
assertions and their candidate sufficient regions do not overlap, assertions can
be checked independently and in parallel.
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Contributions Specifically, this paper makes the following contributions. 1. We
develop a verification approach, Qicc, that searches for regions of a control-flow
graph sufficient to prove assertions and checks these regions in parallel. 2. We
implement a prototype of Qicc that handles a significant subset of C, and allows
concurrent verification with existing verification engines as a parameter. 3. We
empirically evaluate our prototype on a comprehensive case study.

Organization The rest of this paper is organized as follows. Sec. 2 gives the nec-
essary formal background. Sec. 3 describes our approach and proves its correct-
ness. Sec. 4.1 reports on the implementation. Sec. 4 evaluates the performance
of Qicc when paired with different verification engines. Sec. 5 surveys related
approaches. We conclude in Sec. 6.

2 Background

This section provides a brief overview of control-flow automata (CFA) which
we use to model programs and specifications; regions which are the isolated
components of CFAs that can be verified in isolation; and cyclic region bodies
which are a special case of regions that Qicc identifies and attempts to verify.

Control Flow Automata We represent programs using control flow automata
(CFA) borrowed from Beyer et al. [2]. Formally, a CFA (L, li, Lf , V,G) has a
finite set of program locations L, an initial location li, a set of final locations
Lf , a finite set of program variables V , and a finite set of control-flow edges G ∈
L×O×L. The set O of program operations contains assignment and assumption
operations. Assignments are denoted by v ← t, where v is a program variable in
V and t is a term of the same type as v. Assumptions are denoted by [b], where
b is a boolean term. Terms are defined inductively: constants and variables are
terms, and a function application f(t1, t2...tn) of function f : D1, D2...Dn → Dr

over input terms t1, t2...tn of type D1, D2...Dn yields a term of type Dr. A state
of a CFA is a valuation for all variables in V together with a location.

A control-flow edge l o−→ l′ represents the transfer of control from location
l to l′ after successfully executing an operation o. An assignment v ← t is
successfully executed on edge l v←t−−−→ l′ if the value of v at state s′ = {σ′, l′}
is the same as the value of t at state s = {σ, l}. An assumption is successfully
executed on edge l [b]−→ l′ if b evaluates to > at state s = {σ, l}. A program path
l1

o1−→ l2
o2−→ ... on−→ ln is a sequence of edges representing a transition from the

source location l1 to the target location ln. The path is feasible if every operation
on the path can be successfully executed in sequence. The path is complete if
the source location is li and the target location is some lf ∈ Lf .

Program Safety and Assertions We express safety properties with assertions in
the program. Intuitively, an assertion takes a predicate p as input, and checks
whether p evaluates to > while executing the program. We capture this intuition
formally in CFAs, by representing assertions as control-flow edges l [¬p]−−→ lerr,
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Fig. 2: An illustration of a region r (highlighted in red) in a CFA (based on the
motivating example of Feng et al .[10]). The region has 3 as the initial location, and 3
and lerr as its final locations. A path from 1 to any location in the region must have a
local suffix in r, e.g., the path 12345 has a local suffix 345.

where the target location lerr is a special final location representing assertion
violation, and p is the asserted predicate. We require lerr to be reachable only
through assertion edges. We say a path is an error path if it ends in lerr. An
error path is complete if it starts from li, and feasible if every operation on the
path is successfully executed.

Definition 1 (Program Safety). A program is safe with respect to program
assertions if and only if its CFA has no complete and feasible error path. In this
case, we say that the program satisfies the assertion or property. If a program is
not safe, then we say that the program violates the assertion or property.

Sub-CFA and Region. f ′ = (L′, l′i, L
′
f , V,G

′) is a sub-CFA of f = (L, li, Lf , V,G),
where L′ ⊆ L, lerr ∈ L′f and G′ ⊆ G. A region r is a special sub-CFA that further
requires that every path that starts at li and ends at some location l′ ∈ L′ \ lerr
must contain a local suffix which starts at l′i and contains locations and edges
exclusively from L′ and G′, respectively. This requirement allows r to be treated
as a standalone CFA. Fig. 2 illustrates an example of r (highlighted in red) in a
CFA. Since lerr appears in both f and r, we have the following property:

Theorem 1 (Error Suffix). Suppose r = (L′, l′i, L
′
f , V,G

′) is a region of CFA
f = (L, li, Lf , V,G), and r contains an edge l o−→ lerr. If f has a complete error
path p that ends with l o−→ lerr, then there exists a complete error path p′ in r,
and |p| ≥ |p′|. Moreover, if path p is feasible, then p′ is also feasible.

Proof. Since the edge l o−→ lerr is in G′, and l ∈ L′, by the requirement of region,
every error path p that reaches l must have a local suffix that starts at l′i and
contains locations and edges exclusively from L′ and G′, respectively. Therefore,
the suffix is the complete error path p′ in r, and |p| ≥ |p′|. If the complete error
path p is feasible, then the suffix p′ is also feasible. ut
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Thm. 1 shows that if an assertion cannot be violated in a region r, then it
also cannot be violated in the original CFA. In the example in Fig. 2, if there are
no complete and feasible error paths in the highlighted region that reaches lerr
through edge 5 [c<0]−−−→ lerr, then there is no complete and feasible error path in
the original CFA reaching lerr through the same edge. In other words, if every
assertion is contained in some safe region, then the original CFA is also safe.
Therefore, a region is a sound program slice for assertion verification.

Domination, backedge, reducibility, and strongly connected components Let f be
a CFA (L, li, Lf , V,G). A location i ∈ L dominates a location j ∈ L if every
path from li to j passes through i. An edge j op−→ i is a backedge if i dominates j.
Graph G is reducible if it becomes acyclic after removing all of its backedges. A
strongly connected component (SCC) S of f is the maximal sub-graph of G with
the property that there is a path from every location in S to every other location
in S. A node i is an entry point of S if i ∈ S and there exists a location n /∈ S
and an edge n → i. Our definition of reducible is equivalent to the following: a
CFA is reducible if every strongly connected sub-CFA has a single entry [13].

Cyclic regions and cyclic region bodies Let f be a CFA (L, li, Lf , V,G), and e be
a backedge j op−→ i ∈ G. The cyclic region of e is defined to be the smallest set
of locations L′ and edges G′ such that: (1) i, j ∈ L′, e ∈ G′, (2) if some location
a 6= i is in L′ then its predecessors location b (∃ edge b op−→ a ∈ G) is also in
L′, and (3) G′ is a strongly connected component. We call i the head of the
cyclic region. A cyclic region can be also seen as a region r = (L′, i, L′f , V,G

′),
where L′f is the set of final locations in Lf or locations with external edges
e′ext ∈ G \ G′. The inclusion of predecessors up to i in condition (2) ensures
that every complete path to some location l ∈ L′ must have a local suffix that
starts with i. In the example in Fig. 2, the highlighted region is a cyclic region
of backedge 7 j←j+1−−−−→ 3 with region head 3.

The body of a cyclic region r is b = (L′, i, L′f , V,G
′′), where the graph G′′

is constructed from G′ by removing all the backedges to the region head i. The
body of a cyclic region r is also a region: for every local suffix p in r there exists a
local suffix of p which does not contain the removed backedges of G′′, by taking
the suffix from the last appearance of the region head in p. For the example in
Fig. 2, we obtain the highlighted region r by excluding the backedge 7 j←j+1−−−−→ 3
from r’s graph. The path 34567345 in r has a local suffix 345 in the cyclic region.

3 Qicc

The goal of Qicc is to expedite verification of assertions by trying to remove
irrelevant context. Qicc is aggressive, in that it attempts to solve the problem
with the least amount of context possible and then gradually adds context until
it is sufficient. It would be too expensive to attempt every possible region, so
Qicc prioritizes those that are easy to identify, quick to check, and likely to
work. Specifically, Qicc prioritizes cyclic region bodies, as defined in Sec. 2. This
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heuristic is good because cycles can be very expensive to handle—especially with
techniques like Bounded Model Checking [3]. For the example in Fig. 4a, Qicc
starts by trying to verify the green region in isolation, and if that context is
insufficient, it attempts a larger region (green and red). If that context is still
insufficient, Qicc will attempt the entire CFA for the complete context.

In this section, we describe how Qicc works. We begin with cyclic region
identification (front-end step in Fig. 3) and show why checking region bodies is
sound. We then describe the verification step that gambles on program slices
and calls an external verifier X. We refer to the combination as Qicc+X.

3.1 Cyclic Region Identification

Algorithm 1: RNT Gen
Data: Reducible CFA, f
Result: Region Nesting Tree T

1 σ ← new Stack()
/* T is an association map */

2 T .addChild(ROOT, f)
3 σ ← push(σ, f)
4 while ¬isEmpty(σ) do
5 γ ← pop(σ)
6 IRs← InnerFinder(γ, T)
7 σ ← pushAll(σ, IRs)
8 return T

Algorithm 2: InnerFinder
Data: Region γ
Mutate: Region Nesting Tree T
Result: Set of regions inside γ

1 components ← Tarjan(γ)
InnerRegions ← set()

2 for S ← components do
3 if size(S) > 1 then
4 Sbody ← RegionBody(S)
5 T .addChild(γ, Sbody)
6 InnerRegions.add(Sbody)
7 return InnerRegions

The first step of our approach is to identify all cyclic regions in the input
program’s CFA. Suppose r1 = (L1, i1, Lf1, V,G1) and r2 = (L2, i2, Lf2, V,G2)
are two cyclic regions in a CFA f . We say that r1 is an inner region of r2 if
L1 ⊆ L2, G1 ⊆ G2, and r2’s head i2 dominates r1’s head i1. A Region Nesting
Tree (RNT) T for the CFA f is a tree of cyclic region bodies based on the nesting
relationship. The root of T is f and its children are the bodies of cyclic regions
that are not nested in other cyclic regions. If r1 is nested in r2, then r1’s body
b1 is a descendent of r2’s body b2. b1 is a direct child of b2 if b2 is the unique
immediate ancestor of b1. Fig. 4b shows the RNT T of the CFA f in Fig. 4a.
The root of T is f . r2’s body b2 is a direct child f . r1’s body b1 is a direct child
of b2, which is also the leaf of T .

The identification algorithm is described in Alg. 1. It takes as input a reducible
CFA f and returns all cyclic regions, organized in an RNT T . Alg. 1 first makes
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Fig. 4: (a) An illustration of a CFA f with nested cyclic regions. Region r1 (green) of
backedge 6 op6−−→ 4 has locations 4,5,6 and lerr. Region r2 (green and red) of backedge
7 op8−−→ 3 has locations 3,4,5,6,7 and lerr. r1 is an inner region of r2 since r2’s head 3
dominates r1’s head 4, and r1 is a sub-CFA of r2. (b) The region nesting tree (RNT)
of f where b1 and b2 are the body of regions of r1 and r2, respectively.

f to be the root of T (line 2), and pushes f into a stack σ (line 3), which is the set
of sub-CFAs that may have inner cyclic regions. Alg. 1 pops a sub-CFA γ from
σ, and identifies the inner regions in γ by calling InnerFinder (Alg. 2). Alg. 2
first identifies all Strongly Connected Components (SCCs) in γ using Tarjan’s
Algorithm [22] (line 1). Since f is assumed to be reducible, every SCC S in
γ is a cyclic region. Therefore, S’s body Sbody is added as a child of γ in T
(line 5). Notice that Sbody is not an SCC because the backedge to the entry
is removed. Therefore, we push every identified Sbody onto σ (line 7 in Alg. 1)
to find inner cyclic regions. The algorithm continues popping sub-CFAs from σ
until it becomes empty, and finally returns T .

In the example in Fig. 4a, Alg. 1 first identified r2 as the SCC of f , and
added r2’s body b2 (backedge 7 op8−−→ 3 is removed) as a child of f in T . Then
the algorithm searched on b2 for SCC, and identified r1. r1’s body b1 (backedge
6 op6−−→ 4 is removed) is added as b2’s child. Finally, the algorithm failed to find
SCC in b2, and returned T .

Theorem 2 (RNT Gen Correctness). Every node in the RNT T returned
by Alg. 1 is either f or the body of some cyclic region in f .

Proof. Every node is added to T by finding an SCC of a sub-CFA of f , treating
S as a cyclic region, and adding the body of S to T (line 5 of InnerFinder).
Therefore, it is sufficient to show that for every SCC S explored by InnerFinder,
S is indeed a cyclic region of f .

In the first iteration, InnerFinder explores f . By the definition of SCCs,
the components at line 5 of InnerFinder are all sub-CFAs of f , and are all
cyclic (every node can reach every other node). Since f is reducible, every SCC
including the members of components will have a single entry point and will
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be reducible (since sub-CFAs cannot introduce new edges into existing cycles).
Let Si be the ith SCC of components and let i be its single entry point. There
must be a backedge e to i or else i would not be in the SCC. Therefore, by the
definition of cyclic regions, the cyclic region of e is exactly Si, as desired. In
subsequent iterations the same argument is repeated, but with a new reducible
CFA given to InnerFinder. ut

Thm. 2 together with Thm. 1 ensure that every node in the RNT is a sound
program slice to be verified against assertions. This is important for establishing
the correctness of Qicc’s verification process.

3.2 Gambling

The RNT T returned by Alg. 1 is a tree of possible regions that Qicc can verify
to establish safety for the input CFA f . For every assertion edge e = l assert−−−−→ lerr
in f , Qicc identifies the initial region b ∈ T where no descendent of b contains
the edge e. Qicc then verifies the assertion e in b by calling a verifier. If verifi-
cation succeeds, then e is marked safe, and Qicc moves to the next assertion. If
verification fails, then Qicc verifies the parent of b, and repeats the verification
process by climbing up T until the root f is verified. Qicc returns “safe” if and
only if every assertion is marked safe. Qicc returns an assertion violation if and
only if some assertion is violated in T ’s root, f . For an input f in Fig. 4a and the
RNT in Fig. 4b, Qicc identifies b1 as the initial region that contains the assertion
edge e = 5 assert−−−−→ lerr, and verifies it against e. If the verification fails, then b1’s
parent b2 is checked. If the verification on b2 still fails, then the entire CFA f is
verified with the complete context. Qicc returns “safe” if e cannot be violated in
one of b1, b2 or f , and returns “unsafe” if e is violated in f .

Theorem 3 (Partial Correctness of Qicc). If Qicc terminates on an input
CFA f , then Qicc returns “safe” if and only if f is safe.

Proof. =⇒: If Qicc returns “safe”, then f is indeed safe: By Thm. 2, we know
that every node in the RNT T returned by Alg. 1 is a region. For each assertion,
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if there exists a region r ∈ T such that the assertion cannot be violated in r
(safe region), then the assertion cannot be violated in f (Thm. 1). Since Qicc
returns “safe” when it finds a safe region for every assertion, no assertion can be
violated in f , and f is safe.
⇐=: If f is safe, then Qicc returns “safe”: Suppose f is “safe”, then f is a

safe region where no assertion is violated. Since f is a node in the RNT T , Qicc
eventually verifies f against all assertions inside, and returns “safe”.

Optimizations: Batch Verification and Concurrent Verification. We highlight
two key optimizations of Qicc, batch verification and concurrent verification.
Instead of checking every assertion separately in a region b, batch verification
allows all assertions to be verified in b at the same time. If verification is success-
ful, then all assertions in b are marked safe. If verification is unsuccessful, the
violated assertion is disabled in b, and b is verified again with the rest of asser-
tions until every assertion is either safe or disabled in b. When batch verification
is enabled, concurrent verification allows two regions r1 and r2 in the RNT T
to be verified concurrently if they contain different assertions, Fig 5 displays the
logic that can be done concurrently. If two regions have some shared assertions,
then the verification result is shared and propagated from one to the other. We
evaluate the impact of these optimizations in the next section.

4 Evaluation

In this section, we describe a prototype implementation of Qicc, report on the
results of a systematic evaluation, and present a case-study.

4.1 Implementation

We implemented the Qicc front-end region identification and the RNT genera-
tion algorithms in OCaml as CIL plugins [20]. We used TypeScript to implement
the gambling algorithm to interface with the underlying solvers. Our implemen-
tation is limited to a subset of C without recursion, and focuses on a restricted
version of cyclic regions which corresponds to the intuitive notion of loops. In ad-
dition, our implementation only supports regions with a single entry and where
the backedge is not a goto statement. Our gambling algorithm does not support
mutual recursion, as it would form a cycle in the verification task tree, but lack
of support for regular recursion and regions described are implementation-based.
Qicc can be parametrized by different verifiers – the current implementation in-
terfaces with CBMC and Ultimate Automizer [5, 14]. We refer to these instances
as Qicc+CBMC and Qicc+UA, respectively. Qicc interacts with the verifiers
by extracting each selected region as a function, and the verifier is provided
with an entry function for each step in the gambling algorithm. Please refer to
supplementary material for the tool source and usage instructions 3.

3 https://github.com/MuradAkh/Qicc
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4.2 Experimental Design

In this section, we evaluate Qicc’s performance as a slicer for program verification
techniques and report the performance advantage Qicc provides when coupled
with different verifiers; we first study its effect on bounded-model-checking [3]
(i.e., Qicc+CBMC) before extending the study to other techniques. Since Qicc
was designed to take advantage of cases where region bodies are sufficient to
prove the assertion, we say that Qicc hits when that is the case and misses
otherwise. We aim, in particular, to answer the following research questions:
RQ1: What is the benefit of Qicc+CBMC when it hits? What is the cost of
Qicc+CBMC when it misses?
RQ2: Does the performance benefit of Qicc extend to other verifiers?
RQ3: Can Qicc scale to large, real-world, programs?

To answer these questions, we first present a thorough systematic comparison
of Qicc+CBMC with CBMC, to assess benefits of a hit and costs of a miss in
different scenarios. Second, we present a smaller systematic study using Ultimate
Automizer (UA) [14] (i.e., Qicc+UA vs. UA) that shows how our technique has
potential beyond BMCs. Third, we show how Qicc+CBMC and Qicc+UA were
able to quickly prove that array bounds are respected in a real-world program
while neither CBMC nor UA were able to terminate on this example. All exper-
iments were conducted on Ubuntu 18.04 with 8 GB of memory, and a quad-core
Intel Core i7 processor at 1.8Ghz.

4.3 RQ1: Bounded Model Checking Systematic Analysis

Since Qicc’s main goal is to reduce the performance penalty caused by cycles, we
compared Qicc+CBMC and CBMC on 33 different configurations of synthetic
loops and the benchmark as-is (baseline case).

1 int main(){
2 int n, x = 1;
3 while (n < 1000){
4 assert(x == 1);
5 n += x;}}

Fig. 6: An program with an
assertion inside a loop

Loop bounds We first categorize loops by their
bound type: small static bounds vs. large static
bounds, and arbitrary / unbounded. The bound
type estimates the difficulty of verification for a
bounded model checker (BMC): loops with small
static bounds are cheap for a BMC to unroll, and
only a small number of unrollings is necessary to
convert these into equivalent loop-free programs.
Loops with large static bounds are usually expen-
sive to unroll and solve: the complexity of the loop
body and degree of internal nesting both increase
its difficulty. Lastly, loops with arbitrary or non-
deterministic bounds cannot be verified successfully with a BMC because BMC
cannot statically determine the number of necessary loop unrollings. For the
purpose of our evaluation, we used 10 and 200 as small and large loop bounds,
respectively.
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Loop structure scenarios We create six general categories of relationships
between loops and assertions to perform our analysis. We illustrate these rela-
tionships in Fig. 7, where assert denotes the location of the assertion, and fact
denotes the location of the furthest fact required to guarantee the assertion al-
ways holds. For example, in Listing 6, to prove that x == 1 on line 5, we need
to know that x was initialised to 1 on line 2. In scenarios Single 2 and Double
3, Qicc is guaranteed to miss, as a required fact is outside of the loop. In the
baseline scenario, Qicc is expected to perform as well as the underlying tool (plus
a small baseline overhead). In Double 1 and Single 1, Qicc is guaranteed to hit,
as all the necessary information lies within the inner loop. Finally, in Double 2,
Qicc is guaranteed to miss once and then hit, as the furthest fact is between two
loops. Fig 6 falls into Single 2 scenario. In each of these scenarios, we will vary
the loop bounds to create cases.

Experiments Every valid combination of loop structure and bound type yields
34 scenarios - one baseline scenario, 3 loop bounds for both of the single loop
scenarios, and 9 permutations of loop bounds for all three of the double loop sce-
narios. We used 14 existing benchmarks adapted from SV-COMP [1] to generate
476 (14 * 34) synthetic scenarios. This process involved adding synthetic loops;
loops that were already present in the SV-COMP benchmark were left as-is. For
all runs, we enabled the unwinding-assertions command-line option and set
the unrolling limit to 200. When the unwinding assertions option is disabled,
unbounded loops are considered to have the the unrolling limit n as the bound.
We ran all experiments with a 600 second timeout.

Results and Analysis. Table 1 displays the number of solved instances. The
columns represent different loop structures introduced earlier, and the rows rep-
resent possible bounds for loops in those structures. Qicc+CBMC is always able
to solve instances that CBMC solves; in addition, Qicc is able to handle other
instances where it hits, specifically in Double 1, Double 2, and Single 1 categories.

Fig. 8 plots the runtime of CBMC vs. Qicc+CBMC on all generated cases.
The figure shows that in scenarios where Qicc was guaranteed to hit (Single 1
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Table 1: Instances solved by CBMC and Qicc+CBMC.

Bounds/Structures Solved instances, CBMC/Qicc+CBMC
Single 1 Single 2 Double 1 Double 2 Double 3

small 13/13 13/13 8/13 13/13 13/13
large 7/13 13/13 4/13 7/13 13/13
arbitrary 0/13 0/0 0/13 0/0 0/0
small/large 6/13 13/13 13/13
small/arbitrary 0/13 0/0 0/0
large/small 6/13 7/13 13/13
large/arbitrary 0/13 0/0 0/0
arbitrary/small 0/13 0/13 0/0
arbitrary/large 0/13 0/13 0/0
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Fig. 9: Systematic study runtimes,
UA vs Qicc+UA

and Double 1), the performance benefit of Qicc+CBMC was very substantial,
and Qicc+CBMC was able to solve 19 (out of 39 in this category) and 93 (out
of of 126) more cases than CBMC, respectively. For cases where Qicc was guar-
anteed to miss (Double 3 and Single 2), the overhead was very manageable, and
Qicc+CBMC was able to solve the same number of instances as CBMC within
the time bound. In the case of Double 2, where Qicc missed once and hit once,
the timing benefit was still significant, and Qicc+CBMC was able to solve 89
(out of 126) more cases than CBMC. We can also see that our technique is most
helpful with large loops, although in Double 1 scenario Qicc is able to solve more
cases even with only small loops. In the baseline case (with no synthetic loops
and no opportunity for Qicc to hit), both configurations solve 13/14 instances.

Answer to RQ1: When Qicc hits, its potential performance benefit is signif-
icant, and can make the difference between CBMC terminating and not termi-
nating. The cost of the miss is at worst proportional to the depth of the program,
and is generally low. The misses are proportionally more impactful on simpler
examples, where the verification cost is small anyway.
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Table 2: The number of solved instances in the systematic study, by loop structure

Bounds/Structures Number of solved instances
Baseline Single 1 Single 2 Double 1 Double 2 Double 3

UA 9 8 8 6 6 8
Qicc+UA 9 9 9 9 9 8

4.4 RQ2: Evaluation with Automata Verifier

We perform a similar systematic analysis to the one described in Sec. 4.3 but
replacing CBMC with Ultimate Automizer (UA) [14] as the underlying veri-
fier. We chose the state-of-the-art automata-based model checker UA to show
that Qicc generalizes beyond bounded-model-checking techniques, and because
of UA’s top-tier performance at SV-COMP [1]. We used the same loop structure
scenarios as in the BMC evaluation. Unlike in the BMC evaluation, the loop
bound was not varied as we found that it had no direct impact on UA’s per-
formance. Table 2 shows the number of instances solved by UA and Qicc+UA.
Qicc+UA was able to solve 8 more cases than UA, particularly when loops were
doubly nested (Double 1), and even in scenarios where Qicc missed once and hit
once (Double 2). Fig. 9 shows runtime for all the runs. As in case of CBMC, the
overhead of a miss is minor, as no points are significantly below the diagonal
apart from cheap cases. We can see hits can yield substantial performance ben-
efit as a number of cases are significantly above the diagonal. Because of UA’s
inherent randomness, Qicc+UA sometimes outperformed UA in cases where this
was not expected, and vice-versa; the linear cases above the diagonal in Fig. 9
are clear examples of the former. In order to show that the number of successful
solves was not affected by randomness, we reran cases where Qicc+UA or UA
did not terminate, but no further cases terminated after the re-run.

Answer to RQ2: Qicc shows potential when combined with an automata-
based model checking technique. Just like with CBMC, the cost of a miss is
low. The benefit of a hit is not as consistent as with CBMC, but Qicc+UA
outperforms UA in some cases.

4.5 RQ3: Case Study

We now aim to show that Qicc can be effectively applied to real programs. To do
this, we verify static array bounds in a larger (400-line) file from busybox (see
networking/tls_fe.c in the busybox repository). The only modification made
to the file was the encoding of arrays with pointers, as our implementation does
not fully support C array syntax. As part of the study, we added assertions to
check bounds of all instances of references to array elements.

Results and Analysis. Neither CBMC nor UA were able to prove the asser-
tions without Qicc. CBMC was unable to complete the unrolling process without
running out of memory. The unrolling limit was set to 253, same as the largest
loop bound in the program. UA did not run out of memory but did not termi-
nate within 2 hours. Qicc+UA terminated in 55s in sequential mode and 35s
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in concurrent, meanwhile Qicc+CBMC terminated in 13s and 11s for sequential
and concurrent modes respectively.

Qicc+UA saw a 20-second performance boost when proving the assertions
concurrently (one thread per assertion). The performance benefit was more sig-
nificant for Qicc+UA as UA has a larger baseline runtime overhead. Our case
study contained 13 assertions and our machine had 4 cores, so not all threads
were able to run in parallel. Because of this, we expect a significant performance
boost on machines with more cores.

Answer to RQ3: Qicc improves the performance of both UA and CBMC on a
real example. Furthermore, verifying assertions concurrently yields a substantial
performance boost.

4.6 Threats to validity

We have identified two threats to validity of our evaluation. Our case study was
limited to verifying array bounds on a single program, and it may not scale
well on other verification tasks, where the fact is further away from an assertion.
However, our systematic analysis used a variety of verification tasks with different
types of loops, showing that the cost of a miss is often negligible.

Second, we have not investigated the frequency of hits or misses in real-world
programs. However, our results show that the cost of a miss is likely far smaller
than the benefit of a hit. The cost of a miss can be further reduced using multiple
processor cores, allowing a child and a parent region to be executed concurrently.

5 Related Work

In this section, we describe tools and techniques most relevant to our approach.
We include problem reduction techniques that either have similar goals, or make
similar simplifications to Qicc’s region identification and isolation.

Program Slicing. Program slicing, proposed by Weiser et. al [23], is a family
of strategies that look for the minimal section of a program relevant to pre-
serving a specific behavior. Slicing complements safety verification techniques
in that it scopes down the potential region [8] impacting an assertion; a more
specifically scoped region makes verification more tractable. For example, Cook
et al. prototyped a CBMC slicer based on approximating the cone-of-influence
of program variables [7]. Qicc is a program slicer based on assuming locality of
assertions—that proving assertions is made easier by using and isolating nearby
context. Qicc uses regions as the program slice for speeding up verification.

Program Transformations for Verification. The problem of exploiting relevant
context for program verification was previously explored by Lai et. al [19] and
Wei et. al [12] in the context of mixed semantics. They outlined a program
transformation that lifts out assertions from procedure calls using the fact that
execution returns to the caller only when contained assertions are safe. As a side-
effect, their transformation also ensures that neighboring context is prioritized
to prove an assertion. Their alternative approach starts with information from
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the outermost context (i.e., the region where an assertion is moved out to) first
in contrast to Qicc, which starts from the innermost inlined context.

Differential Program Verifiers. SymDiff [17] and 2Clever [10] are differen-
tial program verifiers that reason about a program’s semantic differences after a
change. Both techniques exploit a similar loop transformation to Qicc. SymDiff
encodes each loop iteration as an inlined tail-recursive procedure [18]. 2Clever,
which specifically targets changes made relative to an unchanging context, ap-
plies a variation of our procedure extraction-based transformation. SymDiff and
2Clever differ from Qicc as they target differential verification (and, in particu-
lar, do not target program safety (error reachability)), and they do not reason
about segments in isolation.

Checking Array Properties. To check properties in large arrays, Jana et.
al. [15] removed loop head and in-lined the body, assigning non-deterministic
values to loop variables. Unlike Qicc, their approach still performs verification
on the entire program rather than on an isolated segment. However, this ap-
proach may be effective in cases where Qicc fails to achieve convergence.

6 Conclusion

Large, complicated programs challenge verification engines which need to dis-
cover relevant context in a large space. We implemented a prototype of Qicc,
instantiated it with two existing verifiers, CBMC and UA, and evaluated both
instantiations, Qicc+CBMC and Qicc+UA, on 476 and 84 systematically gen-
erated test cases, respectively. We found that Qicc+CBMC solved 312 cases
compared to 162 cases solved by CBMC alone; and Qicc+UA solved 53 cases
compared to 45 cases solved by UA alone. We then evaluated both pairs on a
case study, verification of a cryptographic function in BusyBox. Qicc+CBMC
and Qicc+UA both succeeded in the verification task whereby both CBMC and
UA failed. Qicc’s overhead is reasonable, while its benefits are large.

To further improve performance, in the future we plan to add a mechanism to
reuse information from previously attempted proofs and insert additional facts
into loop bodies as assumptions. We also intend to insert additional facts such
as constant variables that can be identified using static analysis. We expect that
these improvements will greatly expand the number of cases where Qicc is able
to improve performance of the underlying verification tool.
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