Towards a Formal Framework for
Normative Requirements Elicitation

Nick Feng! !

fengnick @cs.toronto.edu

Lina Marsso
lina.marsso @utoronto.ca

Ana Cavalcanti’
ana.cavalcanti@york.ac.uk

2 University of York York, England

Abstract—As software and cyber-physical systems interacting
with humans become prevalent in domains such as healthcare,
education and customer service, software engineers need to
consider normative (i.e., social, legal, ethical, empathetic and
cultural) requirements. However, their elicitation is challenging,
as they must reflect the often conflicting or redundant views
of stakeholders ranging from users and operators to lawyers,
ethicists and regulators. To address this challenge, we introduce
a tool-supported Formal framework for normaTive requirements
elicitation (FormaTive). It allows specification of normative
rules for a software system in an intuitive high-level language,
and automates: (i) the mapping of the rules to an internal
formal representation; (ii) their analysis to identify rule conflicts,
redundancies, and concerns; and (iii) the synthesis of feedback
enabling users to understand and resolve problems.

I. INTRODUCTION

Software systems have become indispensable and often
closely interact with humans. For example, in the domain of
healthcare [1], [2], robots are being used to assist dressing
and provide companionship. Such systems raise social, legal,
ethical, empathetic, and cultural (SLEEC) concerns that must
be addressed during development [3]-[5], e.g., to ensure that a
dressing robot does not reveal a patient’s personal information.

To address these concerns, SLEEC experts must define
normative requirements, which must be contextualized to
the task being performed [3], [6]. For instance, normative
requirements for a dressing robot may specify that the patient’s
well-being and privacy are prioritized by promptly completing
the dressing task, especially when the patient is underdressed.

Unlike classical approach for non-functional requirements
engineering (e.g., KAOS [7]) where the requirements are
elicited by technical stakeholders, normative requirements are
defined by non-technical stakeholders who need guidance [8]
to carefully specify the requirements at an early stage [9].
Existing work [3], [10], [11] focuses on manual elicitation and
resolution processes. For instance, Townsend et al. [3] pro-
posed an iterative process to derive context-specific normative
requirements by incrementally contextualizing high-level prin-
ciples to the system’s capabilities and operating context. For
example, in thfor the dressing robot, the high-level principle
of “protecting users’ privacy” is contextualized as “prohibiting
opening the curtain when the users are exposed”. As more

2 Beverley Townsend?

bev.townsend @york.ac.uk

Sinem Getir Yaman
sinem.getir.yaman @york.ac.uk

Radu Calinescu? Marsha Chechik'
radu.calinescu@york.ac.uk

chechik @cs.toronto.edu

! University of Toronto Toronto, Canada

principles are contextualized at each iteration, requirements
are strengthened and refined manually to address SLEEC con-
cerns. For the dressing robot, the contextualized requirement
on “protecting users’ privacy” might raise a concern for user
autonomy if the users insist on having the curtains open while
they are being dressed. Such conflicts need to be resolved
manually.

Despite being systematic, manual elicitation of normative
requirements presents challenges: (1) inherited from the classi-
cal manual elicitation process (e.g., time-consuming and prone
to errors) [12], [13]; (2) stemming from theinvolvement of
stakeholders without a technical background; and (3) related
to the complex non-monotonic conditions (e.g., expressed
via if, then, unless) and time constraints (e.g., act within 5
minutes) often present in normative requirements [3], [14],
[15]. As a result, the manual elicitation process can lead to
ambiguous, redundant, conflicting, and incomplete normative
requirements, failing to address SLEEC concerns adequately.

To address these challenges, we introduce a tool-supported
Formal framework for normaTive requirements elicitation:
FormaTive. It allows the specification of normative rules
in an intuitive high-level language, and automates: (i) the
mapping of these rules to an internal formal representation;
(ii) their analysis to identify rule conflicts, redundancies,
and concerns; and (iii) the synthesis of feedback enabling
FormaTive users to understand and resolve these problems.
Our tool, called AutoCheck, is built using the state-of-the-
art (SoTA) normative DSL SLEEC [16] and the SoTA first-
order logic with quantifiers over relational objects (FOL*)
satisfiability checker LEGOS [17]. This artifact is available in
[18]. Our early experimental results indicate that AutoCheck
is effective at identifying rule conflicts, redundancies, and
concerns. Furthermore, it effectively provides feedback that
aids stakeholders in comprehending these issues.

The rest of this paper is organized as follows: Sec. II gives
an overview of the SoTA normative DSL SLEEC. Sec. III
introduces FormaTive, and Sec. IV describes AutoCheck.
Sec. V presents the early evaluation of AutoCheck’s usability
and effectiveness. Sec. VI discusses future research directions.

A. Preliminary requirement elicitation

application
specific principles

system
capabilities

A.b Formalize
preliminary
requirements
using a DSL

{"Aa Contextuaiize ;[preliminary V
: SLEEC principles : requirements formalized rules

B. Requirement sanitization

B Identify redundant
and conflicting rules

conflicts

sanitized
no redudancy/ rules o

C. SLEEC concerns identification

C.a Contextualize and
formalize SLEEC concerns
using the rules’ domain

—

D. Requirement refinement

D Resolve redundancies,

conflicts or concerns

) SLEEC concerns

tified and refine rules

; concerns identified

formalized
___— | concerns

rules

C.b Identify SLEEC
concerns raised
by the rules
no concern

identified

% normative agent rules

(D o FMsupport () Step [~ :Artiact ==~ :Manual | refined rules =
[:lnput []:Generated artifact /] : Derived manually
* :outputs

Fig. 1: Overview of FormaTive. Stage A specifies a set of preliminary requirements expressed as rules with a normative agent DSL;
Stage B checks the presence of redundant or conflicting rules; Stage C checks whether the rules raise any SLEEC concerns; and Stage D
resolves the identified redundancy, conflicts or raised concerns (from Stage B and Stage D) and refines the rules.

II. PRELIMINARIES: NORMATIVE AGENT RULE DSL

The SoTA normative agent DSL, SLEEC DSL [16], has
been shown to be accessible to stakeholders from different
fields, including lawyers, philosophers, roboticists, and soft-
ware engineers. Below, we provide an overview of the key
concepts of the SLEEC DSL, which consists of definitions and
rules (see Tbl. I). Definitions declare events and measures
representing agent capabilities and its activities during the
interaction with the environment, including humans. Events
represent instantaneous actions whereas measures represent
capabilities to provide (immediately) information captured by
values of data types, such as Boolean, numeric, and scale. In
this paper, events are capitalized while measures are not.

Normative agent rules are formalized in SLEEC DSL as
shown in Tbl. I. Each rule has an ID such as r1, and the
basic form “when trigger then response”. Such a rule
defines the required response when the event in the trigger
happens and its condition on measures, if any, are satisfied. For
example, rule r3 applies when the event UserFallen occurs,
in which case the response SupportCalled is required. A
rule in SLEEC DSL can be accompanied by one or more
defeaters, introduced using the “unless” construct. Defeaters
specify circumstances that preempt the original response and
can optionally offer an alternative response. In rule r2, the first
’ statement preempts the response of the condition
“userUnderDressed”. Another defeater further preempts the
response and the first defeater if the value of the measure
“userDistressed” is determined to be “high”. Finally, the
language incorporates time constructs allowing responses with
deadlines and timeouts using the “within” construct, as seen
in rule r1. In situations where a response may not occur within
the required time, the “otherwise” construct can be utilized
to specify an alternative response, such as in rule r4.

“unless’

III. REQUIREMENTS ELICITATION FRAMEWORK

As depicted in Fig. 1, FormaTive is an iterative process
that consists of four distinct stages: preliminary requirements
specification as rules, rule sanitization, SLEEC concerns iden-
tification, and rule refinement. We discuss each stage below.

A. Preliminary requirement elicitation

The goal of this stage is to systematically identify pre-
liminary normative requirements and obtain their formal and
machine-readable representations.

Identifying preliminary requirements. To systematically
identify preliminary normative requirements, FormaTive fol-
lows the approach presented in [3] to contextualize the high-
level SLEEC principles by identifying proxies and placehold-
ers for each SLEEC principle and subsequently mapping them
onto the agent capabilities. The result is preliminary normative
requirements. For the dressing robot, this process might yield
a requirement req: “when a user requests the curtains to be
opened, they must be opened within 1 minute.

Formalizing the normative requirements as rules. To enable
the use of formal reasoning to assist with early validation,
FormaTive supports formalization of the preliminary norma-
tive requirements, expressed in natural language, in a machine-
readable format. This can be done using SLEEC DSL [16] (see
Sec. II) or a similar language. For example, the preliminary
normative requirement req is formalized as a rule in SLEEC
DSL as follows: “when CurtainOpenRgt then Curtain-
sOpened within 60 seconds”.

B. Sanitizing normative requirements

In this stage, we aim to detect conflicts and unintended
redundancies between the elicited rules. A rule is redundant if
it is a logical consequence of other rules, and it is conflicting
if it cannot be triggered together with other rules.

Manual sanitization can be time-consuming and error-prone,
especially when facing a large number of normative rules. So,
we propose to automate this stage using formal techniques
(e.g., satisfiability [19] or model [20] checkers). As an ex-
ample, consider the normative rules from Tbl. I. To check
the redundancy of r5, we can check the satisfiability of the
query {-r5}u{r|reR~{r5}}, where R is the input SLEEC
DSL rule set. The query is unsatisfiable, and r5 is a logical
consequence of the R\ {r5}; hence, it is redundant.

If rules are identified as conflicting or redundant, these
conflicts and redundancies need to be addressed by refining
the rules (Stage D, described in Sec. III-D). The refined rules
must then be sanitized again to ensure that changes did not
introduce unintended redundancies or conflicts. Otherwise, the
user can proceed to Stage C to check whether the sanitized
set of rules, referred to as Ry,,, is free from SLEEC concerns.

C. Identifying SLEEC concerns

A SLEEC concern specifies behaviors that the agent must
avoid to comply with a high-level SLEEC principle. For exam-
ple, a privacy high-level concern inspired by [3] is “intrusion

TABLE I: Normative requirements for the dressing robot expressed in SLEEC DSL.

Definitions Rules
event DressingStarted rl:= when DressingStarted then DressingComplete within 2 minutes
event DressingComplete unless (roomTemperature < 19) then DressingComplete within 90 seconds
event DressingAbandoned unless (roomTemperature < 17) then DressingComplete within 60 seconds
event CurtainOpenRgt r2:= when CurtainOpenRgt then CurtainsOpened within 60 seconds
event CurtainsOpened unless userUnderDressed then RefuseRequest within 30 seconds
event RefuseRequest unless (userDistressed > medium) then CurtainsOpened within 60 seconds
event UserFallen r3:= when UserFallen then SupportCalled
event SupportCalledVideoOn unless (not assentToSupportCalls)
event RetryAgreed r4:= when DressingAbandoned then RetryAgreed within 30 minutes
measure userUnderDressed: Boolean otherwise SupportCalled unless (not assentToSupportCalls
measure roomTemperature: numeric r5:= when DressingStarted and((roomTemperature < 16) and userUnderDressed)
measure assentToSupportCalls: Boolean then DressingComplete within 1 minutes
measure userDistressed: scale(low, medium, high) r6:= when UserFallen and assentToSupportCalls
constant MAX_ RESPONSE_TIME = 60 then not SupportCalled within 2 minutes
userUnderdressed Stage B and SLEEC concerns raised in Stage C. This stage is
CurtainOpenRgs CurtainsOpened

event and measures
' 1 2 time (secondes)

s

Fig. 2: The concern diagnosis from AutoCheck.

on the personal space of the user and failure to protect user
privacy.” A SLEEC concern is considered to be raised if the
agent’s undesirable behavior is possible while adhering to all
normative requirements. In the current practice, the stage of
identifying concerns is carried out manually by a SLEEC ex-
pert who inspects the requirements. However, relying solely on
manual inspection poses the risk of errors, including potential
omissions. FormaTive automates this process using formal
techniques such as model-checking or satisfiability checking.

We first propose to systematically contextualize high-level
SLEEC concerns in the context of the operating environment
and normative capabilities. For example, given a dressing
robot who has the capability to open curtains, the aforemen-
tioned high-level privacy concern is contextualized to C,ivaey:
“when a user open curtains then the user is underdressed.”
Then, we formalize the contextualized concern using both
the domain (i.e., vocabulary) and formal language (DSL) of
Ryap. For instance, Cpivacy is formalized in SLEEC DSL using
the definitions from Tbl. I as follows: “when OpenCurtain
then UserUnderdressed”. Once a SLEEC concern C' is
formalized, we can automatically check whether is raised by
Ran, i.e., if there exists a satisfying solution to Ry, A C. If
any SLEEC concern is raised during the identification stage,
it has to be addressed by refining the requirements (Stage D).
The process continues until all concerns are addressed. For
example, consider the SLEEC DSL rules in Tbl. I where r2
is replaced by a simplified rule “when CurtainOpenRgt
then CurtainsOpened within 60 seconds”. The con-
cern Cprivacy is raised when a user requests to open the curtain
and the request is fulfilled when the user is underdressed. On
the other hand, if the r2 is refined as the one shown in Tbl. I,
then C,ivacy cannot be raised.

Addressing the raised concerns (Stage D) may also impact
the domain of Ry,,, which can subsequently impact the other
SLEEC concerns, thereby requiring re-evaluation of previously
addressed concerns. To minimize the re-evaluation effort,
concerns can be contextualized and formalized iteratively.

D. Rule refinement and concern resolution

The objective is to address the vulnerabilities identified in
the prior stages, including redundancies and conflicts found in

triggered as soon as these vulnerabilities are identified.

Resolving redundancies and conflicts. For each redundancy,
the SLEEC expert needs to determine if it was intentional (at
which point it is disregarded) or unintentional. In the latter
case, she should either identify and eliminate the redundant
rules or refine the existing rule set so as to eliminate the redun-
dancy. Each conflict should be resolved by either introducing
defeaters to the rules to prioritize the most important require-
ments or by refining the existing rules and definitions. This
process is supported in FormaTive by providing a diagnosis
(e.g., as shown in Fig. 3) highlighting the root cause of the
redundancy or conflict. For example, considering the diagnosis
shown in Fig. 3, a SLEEC expert can deduce that r5 is
redundant because r5’s triggering condition, “roomTempera-
ture < 16 and userUnderDressed”, is incorrect. To resolve
this, the SLEEC expert can update the triggering condition to
“roomTemperature < 16 Or userUnderDressed’.

Resolving raised SLEEC concerns. A raised concern might
can be spurious, i.e., not corresponding to real-life scenarios,
e.g., due to an imprecise formalization. A SLEEC expert can
address the issue by refining either the rule domain or the
rule itself, to ensure that the rules accurately capture the
intended behavior and are aligned with real-life situations.
For example, the concern “when CurtainsOpened then
userUnderdressed” would need to be refined to include
information about the user, windows and their relationship if
the operating context contains multiple users and windows.

If the raised concern does represent a feasible real-life
scenario, then the SLEEC expert must determine whether it
results from a missing normative rule or is a consequence of
existing rules. Addressing the concern in this case may involve
introducing new rules, conditions, or defeaters to handle the
priority of the rules or prevent concerns from arising.

To aid this process, FormaTive includes a diagnosis that
highlights a sequence of events where a specific concern is
feasible according to the input set of normative rules.

For example, based on the diagnosis presented in Fig. 2, a
SLEEC expert can conclude that in order to address the privacy
concern Cyivacy, ONE normative rule is missing and should be
added. Specifically, the rule to be included is: “r7:= when
CurtainOpened then not userUnderDressed”.

After resolving the vulnerabilities, the user can return to
Stage B to ensure that the refinement process did not introduce
redundancies or conflicts. To summarize, our iterative require-

Redundant SLEEC rule:
r5 when DressingStarted and (({roomTemperature} < 16) and {userUnderDressed})
then DressingComplete within 1 minutes

r1 when DressingStarted then DressingComplete within 2 minutes
unless ({roomTemperature} < 19) then DressingComplete within 90 seconds
unless ({roomTemperature} < 17) then DressingComplete within 60 seconds
Fig. 3: Screenshot of AutoCheck diagnosis obtained while check-
ing redundancy of r5, listing r1 as the cause of the redundancy and
highlighting the active parts of rules for deriving redundancy.

ments elicitation framework actively engages stakeholders

to address concerns, conflicts, and redundancies throughout

the process, resulting in a set of normative requirements

that are conflict-free, free from SLEEC concerns, and free

from unintentional redundancies. Of course, stakeholders may

intentionally retain certain redundancies as deemed necessary.
IV. IMPLEMENTATION

We implemented our automated reasoning tool
AutoCheck [18] for rule sanitization (Sec.Ill-B) and
concern identification (Sec.Ill-C) in Python, on top of the
FOL* satisfiability checker LEGOS. To assist with rule
sanitization, AutoCheck checks for redundancy and conflicts
among a given set of rules by (1) compiling each SLEEC
DSL rule into FOL*; (2) interpreting the definitions for
redundancy and conflict as FOL* constraints; (3) querying
the FOL* satisfiability checker LEGOS [17] to determine the
presence or absence of redundancies and conflicts. Similarly,
to assist with concern identification, AutoCheck interprets
the definition of a raised concern as an FOL* constraint and
queries LEGOS to obtain the satisfiability result.

For instance, while checking redundancy in the example in
Sec. III-B, AutoCheck not only detects that r5 is redundant
but also provides a diagnosis, as shown in Fig. 3, indicating
that r1 is the source of the redundancy (r1 = r5). The
diagnosis highlights the atoms of r1 and r5 that contribute
to the redundancy. More specifically, the triggering condition
of r5 (roomtemperature < 16) logically implies one of
the triggering conditions of rl (roomtemperature < 17).
Similarly, the response of r5 (DressingComplete within
1 minute) is also implied by a response of rl (Dress-
ingComplete within 60 seconds). Therefore, triggering
r5 implies triggering r1, and fulfilling the response of r5
implies fulfilling the response of r1, which confirms that r5
is redundant.

V. PRELIMINARY EVALUATION

To evaluate FormaTive, we aim to answer four research
questions: RQO0: How accessible is early formalization to non-
technical stakeholders? RQ1: How effective is AutoCheck
in detecting redundancies, conflicts, and concerns compared
to manual analysis? RQ2: How effective is the diagnosis
produced by AutoCheck in helping the user understand the
causes of redundancies, conflicts, and concerns? RQ3: How
efficient and effective is FormaTive in eliciting redundant-,
conflict-, and concern-free normative requirements?

RQO for SLEEC DsL has been answered positively in [16].
In this paper, we report on a preliminary study on two case

TABLE 1I: Elderly robot assistant and Dressing robot results

System #event #measures #rules #defeaters #redudancies #conflicts #concerns

ERA 7 5 4 6 0 0 1
DR 9 4 12 11 3 1 1

TABLE III: Redundancies, conflicts, and concerns identified manu-
ally and using AutoCheck, with incorrect answers marked in bold.

participant redundancies conflicts concerns
ground truth 0 0

Roboticist 1 0
Computer vision expert 1 0 1
Philosopher 1 0 0
Al expert 1 0 1
Roboticist 0 0 1
Sociologist 1 0 0
AutoCheck 0 0 1

studies, Elderly robot assistant (ERA) and Dressing robot
(DR) (available in [18] and Tbl. II), with six practitioners from
diverse backgrounds, including a philosopher, two roboticists,
a software engineer, and a sociologist, to answer RQ1 and
RQ2 for AutoCheck. RQ3 is left for future work.

To answer RQ1, we asked each participant to manually
analyze ERA to identify potential redundancies, conflicts, and
concerns. The manual analysis results, the automated analysis
results by AutoCheck, and the ground truth are reported in
Tbl. III. AutoCheck successfully identified all redundancies,
conflicts, and concerns, while five out of six participants
made at least one mistake during the manual analysis (on
average, 1.3 mistakes). Therefore, the answer to RQ1 is that
AutoCheck is more effective than manual analysis.

To answer RQ2, we asked each participant to explain the
causes of redundancies, conflicts, and concerns in both case
studies with the help of AutoCheck. AutoCheck completed
the analysis for ERA and DR within 1 sec. and 8 sec., re-
spectively. In 29 out of 30 cases (96%), participants were able
to correctly explain the causes given the diagnosis produced
by AutoCheck. Participant 2 was unable to correctly explain
the cause of one of two concerns. Thus, the answer to RQ2
is that AutoCheck’s diagnosis is effective in helping users
understand the causes of redundancies, conflicts, and concerns.

VI. FUTURE RESEARCH DIRECTIONS

We proposed FormaTive: a framework for iterative elic-
itation of normative requirements with formal automated
reasoning support. Our proof-of-concept implementation and
preliminary results from a user study are promising.

We plan to conduct a more extensive study to assess the
efficiency of our overall framework in terms of the number of
iterations required for eliciting requirements and their quality.
Next, we aim to explore other aspects of the normative
rule elicitation process that could be improved by integrating
automated reasoning support. Specifically, we are interested
in exploring how we can (semi-)automatically generate and
suggest patches to resolve redundancy, conflicts, and address
concerns. Lastly, based on feedback from the preliminary
evaluation, we plan to investigate providing more detailed
diagnoses for raised concerns, e.g., information on related
requirements that might enable or partially address a concern.

[1]

[2]

[4]

[5]

[6]

[7]

REFERENCES

J. Vazquez-Salceda, “Normative Agents in Health Care: Uses and
challenges,” AI Commun., vol. 18, no. 3, pp. 175-189, 2005. [Online].
Available: http://content.iospress.com/articles/ai-communications/aic345
M. S. Laursen, J. S. Pedersen, S. A. Just, T. R. Savarimuthu,
B. Blomholt, J. K. H. Andersen, and P. J. Vinholt, “Factors Facilitat-
ing the Acceptance of Diagnostic Robots in Healthcare: A Survey,”
in Proceedings of the 10th International Conference on Healthcare
Informatics, (ICHI’2022), Rochester, MN, USA. 1EEE, 2022, pp. 442—
448.

B. Townsend, C. Paterson, T. Arvind, G. Nemirovsky, R. Calinescu,
A. Cavalcanti, I. Habli, and A. Thomas, “From Pluralistic Normative
Principles to Autonomous-Agent Rules,” Minds and Machines, pp. 1-
33, 2022.

P. Bremner, L. Dennis, M. Fisher, and A. Winfield, “On proactive,
transparent, and verifiable ethical reasoning for robots,” Proceedings of
the IEEE, vol. PP, pp. 1-21, 02 2019.

S. Burton, 1. Habli, T. Lawton, J. A. McDermid, P. Morgan, and
Z. Porter, “Mind the Gaps: Assuring the Safety of Autonomous Systems
from an Engineering, Ethical, and Legal Perspective,” Artif. Intell., vol.
279, 2020.

C. Alfieri, P. Inverardi, P. Migliarini, and M. Palmiero, “Exosoul:
Ethical profiling in the digital world,” in HHAI 2022: Augmenting
Human Intellect - Proceedings of the First International Conference on
Hybrid Human-Artificial Intelligence, 13-17 June 2022, ser. Frontiers in
Artificial Intelligence and Applications, S. Schlobach, M. Pérez-Ortiz,
and M. Tielman, Eds., vol. 354. IOS Press, 2022, pp. 128-142.
[Online]. Available: https://doi.org/10.3233/FAIA220194

R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde,
“GRAIL/KAOS: an environment for goal-driven requirements
engineering,” in Pulling Together, Proceedings of the 19th International
Conference on Software Engineering, Boston, Massachusetts, USA,
May 17-23, 1997, W. R. Adrion, A. Fuggetta, R. N. Taylor, and
A. I. Wasserman, Eds. ACM, 1997, pp. 612-613. [Online]. Available:
https://doi.org/10.1145/253228.253499

A. Sleimi, M. Ceci, M. Sabetzadeh, L. C. Briand, and J. Dann,
“Automated recommendation of templates for legal requirements,” in
28th IEEE International Requirements Engineering Conference, RE
2020, Zurich, Switzerland, August 31 - September 4, 2020, T. D. Breaux,
A. Zisman, S. Fricker, and M. Glinz, Eds. IEEE, 2020, pp. 158-168.
[Online]. Available: https://doi.org/10.1109/RE48521.2020.00027

[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

L. A. Dennis, M. Fisher, and A. F. T. Winfield, “Towards verifiably
ethical robot behaviour,” in Proceedings of the Workshop on Artificial
Intelligence and Ethics (AAAI’2015), Austin, Texas, USA, ser. AAAI
Technical Report, vol. WS-15-02. AAAI Press, 2015. [Online]. Avail-
able: http://aaai.org/ocs/index.php/WS/AAAIW 15/paper/view/10119

C. L. Pacheco, I. A. Garcia, and M. Reyes, “Requirements elicitation
techniques: a systematic literature review based on the maturity of the
techniques,” IET Softw., vol. 12, no. 4, pp. 365-378, 2018.

M. Anderson and S. L. Anderson, “Machine ethics: Creating an ethical
intelligent agent,” Al Mag., vol. 28, no. 4, pp. 15-26, 2007. [Online].
Available: https://doi.org/10.1609/aimag.v28i4.2065

H. Meth, M. Brhel, and A. Maedche, “The state of the art in automated
requirements elicitation,” Inf. Softw. Technol., vol. 55, no. 10, pp. 1695—
1709, 2013.

D. Zowghi and C. Coulin, “Requirements Elicitation: A Survey of Tech-
niques, Approaches, and Tools,” Engineering and managing software
requirements, 2005.

A. Knoks, “Defeasibility in Epistemology,” Ph.D. dissertation, Univer-
sity of Maryland, College Park, 2020.

J. Brunero, “Reasons and Defeasible Reasoning,” The Philosophical
Quarterly, vol. 72, no. 1, pp. 41-64, 2022.

S. Getir-Yaman, C. Burholt, M. Jones, R. Calinescu, and A. Cavalcanti,
“Specification and Validation of Normative Rules for Autonomous
Agents,” in Proceedings of the 26th International Conference on Fun-
damental Approaches to Software Engineering (FASE’2023), Paris,
France., ser. Lecture Notes in Computer Science. Springer, 2023.

N. Feng, L. Marsso, M. Sabetzadeh, and M. Chechik, “Early verification
of legal compliance via bounded satisfiability checking,” in Proceedings
of the 34th international conference on Computer Aided Verification
(CAV’23), Paris, France., ser. Lecture Notes in Computer Science.

Springer, 2023.
. Feng, L. Marsso, S. G. Yaman, B. Townsend, A. Cavalcanti,

R. Calinescu, and M. Chechik, “Supplementary material for: Towards
a Formal Framework for Normative Requirements Elicitation,” 2023,
https://github.com/NickF0211/SD.

D. Kroening and O. Strichman, Decision Procedures - An Algorithmic
Point of View, Second Edition, ser. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2016.

E. M. Clarke, “Model checking,” in Proceedings of the 17th Conference
on Foundations of Software Technology and Theoretical Computer Sci-
ence, Kharagpur, India, 1997, ser. Lecture Notes in Computer Science,
vol. 1346. Springer, 1997, pp. 54-56.

