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ABSTRACT
Client-specific equivalence checking (CSEC) is a technique pro-

posed previously to perform impact analysis of changes to down-

stream components (libraries) from the perspective of an unchanged

system (client). Existing analysis techniques, whether general (re-

gression verification, equivalence checking) or special-purpose,

when applied to CSEC, either require users to provide specifica-

tions, or do not scale. We propose a novel solution to the CSEC

problem, called 2clever, that is based on searching the control-flow

of a program for impact boundaries. We evaluate a prototype im-

plementation of 2clever on a comprehensive set of benchmarks

and conclude that our prototype performs well compared to the

state-of-the-art.
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1 INTRODUCTION
Software systems are often composed of multiple independently

developed but related components. Upgrades to these components,

even those that do not alter APIs, can hinder the stability of the

system [31], making component upgrades a complex and time-

consuming task. Several existing techniques, such as ModDiff [34],

RVT [17], SymDiff [24], and Rêve [15], can be used for validating

behavioral equivalence between two versions of a program or for

identifying the precise set of changes between them. Yet, these

techniques do not exploit the usage pattern of a particular library

component within its client.

In our earlier work [27], we argued that the equivalence check-

ing problem becomes more tractable when the usage pattern is

considered. We further defined the client-specific equivalence check-
ing (CSEC) problem as that of determining the impact of changes

to downstream components (libraries) from the perspective of an
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unchanged system (client). We also argued for the practical rele-

vance of CSEC in an applicability study, and proposed a solution to

CSEC in a symbolic execution-based tool called Clever.

While Clever performs better than the general-purpose differen-

tial program analysis techniques on instances of the CSEC problem,

it is still unable to handle realistic programs. Specifically, Clever

struggles in cases of complex clients, multiple library calls, and

cases where a finite set of paths is insufficient to solve the CSEC

problem. Existing techniques share this scalability issue because

they produce monolithic queries that their reasoning engine can’t

handle, e.g., Rêve; they are path-based, e.g., ModDiff; or they depend

on expensive invariant inference techniques, e.g., SymDiff. Instead

of generating one difficult query to an underlying reasoning engine,

we propose an approach that generates a sequence of smaller, sim-

pler queries. These smaller queries frequently have a finite-number

of paths, can be handled by invariant inference techniques, and

imply overall equivalence.

Illustrative Example. Consider the client and two libraries in

Fig. 1. Fig. 1a shows the client, sum_primes, which takes an integer

x and returns the sum of all primes between 0 and x. sum_primes
depends on a library, composite, to check if numbers are prime.

Figs. 1b and 1c show two versions of composite. The first library
version, composite_0, returns 0 if its input is prime, and the num-

ber of factors of the input otherwise. The second, composite_1,
returns 0 if its input is prime, and 1 otherwise.

Existing techniques—in particular, Clever, ModDiff, SymDiff,

RVT, and Rêve—fail to prove that composite_0 and composite_1
are client-specific equivalent for sum_primes. Clever and Mod-

Diff struggle because the problem has an infinite number of paths;

SymDiff and Rêve’s reasoning engines are unable to identify a re-

lational invariant that is strong enough to prove equivalence; and

RVT’s bottom-up approach fails to use the crucial client context.

In this paper, we propose a novel approach, 2clever, that scales

better than existing tools. 2clever hinges on two key observations:

(1) in practice, a small portion of client control-flow graph (CFG)

is often sufficient to prove that a library call does not affect the

client—we call such a sub-CFG an impact boundary; and (2) if all

library calls have an impact boundary, then the library update does

not affect the client.

For example, 2clever determines that sum_primes in Fig. 1a is

unaffected by the change to composite in Figs. 1b and 1c by bound-

ing the impact of the library call in sum_primes. More specifically,

2clever proves that the impact is contained within the loop, i.e., that

there does not exist a value for x, j, and sum such that a single pass of

https://doi.org/10.1145/3324884.3416634
https://doi.org/10.1145/3324884.3416634


ASE ’20, September 21–25, 2020, Virtual Event, Australia Nick Feng, Federico Mora, Vincent Hui, and Marsha Chechik

int sum_primes(int x){

int sum = 0;

int j = 0;

while (j < x){

if (composite(j) == 0)

sum = sum + j;

j++;}

return sum}
(a) sum_primes in C.

int composite_0(int num) {

int count = 0;

int i = 2;

while(i < num) {

if(num%i==0)

count++;

i++;}

return count;}

(b) composite_0 in C.

int composite_1(int num) {

int i = 2;

while(i < num) {

if(num%i==0)

return 1;

i++;}

return 0;}

(c) composite_1 in C.

Figure 1: The client, sum_primes, returns the sum of all primes less than x. The client calls composite to check for primality.
The original version, composite_0, returns the number of factors of its input; the new verison, composite_1, returns 1 if it finds
a factor, and 0 otherwise. The client is unaffected by their difference.

the loop using composite_0 produces different values for x, j, and
sum at the end of the loop compared to using composite_1. Since no
library call affects the client, 2clever concludes that composite_0
and composite_1 are client-specific equivalent. Using the same

strategy, 2clever is able to efficiently solve many other instances

that other existing tools are unable to handle. Furthermore, 2clever

can be implemented as a strategy on top of existing techniques

with relatively low overhead. This means that, in general, 2clever

can handle any instance that existing tools can handle.

Contributions. This paper makes the following contributions.

(1) We observe that the CSEC problem can usually be solved using

limited portions of the client CFG. These portions are extractable
sub-CFGs that imply equivalence; we call them impact boundaries.
(2)We develop an approach, 2clever, that searches for impact bound-

aries. It makes a novel connection between the classic literature on

procedure extraction and equivalence checking. (3) We describe an

efficient realization of 2clever with two important components: an

algorithm for finding extractable sub-CFGs and a bespoke equiv-

alence checking algorithm. (4) We report on a prototype imple-

mentation of 2clever and empirically evaluate it on a suite of 568

benchmarks taken or constructed from related work.

Organization. The rest of this paper is organized as follows. Sec. 2
gives the necessary formal background. Sec. 3 describes our ap-

proach at a high level, including the definition of impact boundaries

and a naive impact boundary search strategy. Sec. 4 describes an

advanced impact boundary search. Sec. 5 reports on the implemen-

tation of these ideas. Sec. 6 evaluates the performance of 2clever

compared to state-of-the-art techniques. Sec. 7 surveys related ap-

proaches. We conclude in Sec. 8 with the summary of the paper

and discussion of future research directions.

2 FORMAL BACKGROUND
This section describes control-flow automaton (CFA), formally de-

fines the CSEC problem in terms of CFAs, and defines the CFA

analyses that we use in Sec. 3 to describe our approach.

2.1 Control-Flow Automaton (CFA)
We borrow the definition of CFAs from Beyer et al. [5]. Since the

original definition does not handle function calls, we extend CFAs

to allow us to express and reason about libraries and clients. In

particular, we make five small changes: (𝑀1) add a final location;

(𝑀2) add a vector of inputs; (𝑀3) add a vector of outputs; (𝑀4) al-

low calls to other CFAs; and (𝑀5) allow more data types than just

rational numbers. We use (𝑀1)–(𝑀3) to enable (𝑀4). We use (𝑀4)

to formalize the notions of client and library: clients are CFAs that

call other CFAs; libraries are CFAs that are called by other CFAs.

Syntax. A CFA (𝐿, 𝑙𝑖 , 𝑙𝑓 , ®𝑥, ®𝑟,𝐺) is a finite set of program locations

𝐿, an initial location 𝑙𝑖 , a final location 𝑙𝑓 , a vector of input variables

®𝑥 , a vector of output variables ®𝑟 , and a finite set 𝐺 ⊆ 𝐿 ×𝑂 × 𝐿 of

control-flow edges. The set 𝑂 of program operations consists of

assignment and assumption operations. Assignments are denoted

by 𝑥 ← 𝑡 , where 𝑥 is a variable in ®𝑥 or ®𝑟 and 𝑡 is a term of the same

type. Assumptions are denoted by [𝑏], where 𝑏 is a Boolean term.

The set of terms is defined inductively. Every constant is a term,

every variable in ®𝑥 or ®𝑟 is a term, and if 𝑓 is a CFA and ®𝑡 is a vector
of terms matching the input type of 𝑓 , then 𝑓 (®𝑡) is a term. In other

words, a call to the CFA 𝑓 with the arguments ®𝑡 is a term, and this

term is represented by 𝑓 (®𝑡).
For example, the CFAs of the C functions in Fig. 1 are depicted

in Fig. 2, where locations are numbered nodes, initial locations are

shaded, final locations are double circled, and operations appear as

labels on edges. In particular, the CFA of the client, sum_primes,
has 𝐿 = [1, 10], 𝑙0 = 1, 𝑙𝑓 = 10, ®𝑥 = ⟨𝑥⟩, ®𝑟 = ⟨𝑟 ⟩, and uses 𝑓 as a

placeholder for either composite_0 or composite_1.

Semantics. Let 𝑓 = (𝐿, 𝑙𝑖 , 𝑙𝑓 , ®𝑥, ®𝑟,𝐺) be a CFA. A concrete state of
𝑓 is a pair (𝑙, 𝜎), where 𝑙 ∈ 𝐿 is a location and 𝜎 is a variable

assignment. When the location of a concrete state is obvious or

irrelevant we abuse notation and omit it. Every edge𝑔 ∈ 𝐺 defines a

transition relation between concrete states
𝑔
−→⊆ 𝐶 × {𝑔} ×𝐶 , where

𝐶 is the set of all concrete states of 𝑓 . For any two concrete states,

𝑎 and 𝑏, we write 𝑎
𝑔
−→ 𝑏 if (𝑎,𝑔, 𝑏) ∈ 𝑔

−→, and we use 𝑎 → 𝑏 to mean

that there exists some 𝑔 ∈ 𝐺 such that 𝑎
𝑔
−→ 𝑏 holds. For example,

for the CFA of composite_1 in Fig. 2c,

𝑎20 = (20, {num ↦→ 0, 𝑟 ↦→ 0, 𝑖 ↦→ 0})
𝑏21 = (21, {num ↦→ 0, 𝑟 ↦→ 0, 𝑖 ↦→ 2})

are concrete states, 𝑔 = (20, 𝑖 ← 2, 21) is a control-flow edge, and

we can write 𝑎20 → 𝑏21, since 𝑎20
𝑔
−→ 𝑏21 holds.

Let 𝑐1, 𝑒1, ..., 𝑒𝑛−1, 𝑐𝑛 be a sequence of alternating concrete states

and edges such that

∧𝑛−1
𝑖=1 𝑐𝑖

𝑒𝑖−→ 𝑐𝑖+1 holds.We call 𝑐1, 𝑒1, ..., 𝑒𝑛−1, 𝑐𝑛
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[c 6= 0]

j ← j + 1

sum← 0 j ← 0

[j < x]

c← f(j)

[c = 0]

sum← sum + j

[j ≥ x]

r ← sum

(a) sum_primes CFA.
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[num%i 6= 0]

i← i+ 1

count← 0 i← 2

[i < num]

[num%i = 0]
count← count + 1

[i ≥ num]

r ← count

(b) composite_0 CFA.

19 20 21

22

23

24

25

[num%i 6= 0]

i← i+ 1

r ← 0 i← 2

[i < num]

[num%i = 0]
r ← 1

[i ≥ num]

(c) composite_1 CFA.

Figure 2: CFAs corresponding to C functions in Fig. 1, where locations are nodes, initial locations are shaded, final locations
are double circled, operations are labels on edges, and f stands for either a call to the CFA in 2b or to the CFA in 2c.

a trace if the location of 𝑐1 is 𝑙0 and the location of 𝑐𝑛 is 𝑙𝑓 . We call

𝑐1, 𝑒1, ..., 𝑒𝑛−1, 𝑐𝑛 a run otherwise. For a trace 𝑐1, 𝑒1, ..., 𝑒𝑛−1, 𝑐𝑛 we

call the pair (𝑐1, 𝑐𝑛) an i/o pair and denote it 𝑐1 ⇒ 𝑐𝑛 . In other

words, if 𝑐1 ⇒ 𝑐𝑛 is an i/o pair of 𝑓 , then executing 𝑓 starting at

𝑐1 will result in 𝑐2. For example, for the CFA of composite_1 in

Fig. 2c and concrete states

𝑐19 = (19, {num ↦→ 0, 𝑟 ↦→ 0, 𝑖 ↦→ 0})
𝑐25 = (25, {num ↦→ 0, 𝑟 ↦→ 0, 𝑖 ↦→ 2})

𝑐19 ⇒ 𝑐25 is an i/o pair because 19 is the initial location, 25 is the fi-

nal location, and there is a sequence of concrete states that connects

𝑐19 and 𝑐25 (following the sequence of locations 19, 20, 21, 25).

Given a concrete state 𝜎 , the term 𝑓 (®𝑡) denotes 𝜎 ′′(®𝑟 ), where
𝜎 ′ ⇒ 𝜎 ′′ is an i/o pair of 𝑓 and 𝜎 ′( ®𝑥) = 𝜎 (®𝑡) is true. In other words,

𝑓 (®𝑡) represents the return value of a call to 𝑓 with the arguments

®𝑡 , using call by value semantics. For example, at the concrete state

(4, { 𝑗 ↦→ 0, ...}) in the CFA of sum_primes, the meaning of the

term 𝑓 ( 𝑗) is 0, regardless of the version of composite that you

plug in for 𝑓 (both composite_0 and composite_1 will return 0

when given the input 0).

2.2 Formal Problem Definition
The CSEC problem is that of determining whether a change to a

library affects its calling client. In this paper, we focus on functional

effects: the input/output behaviour of the client.

Formally, let 𝑓 , 𝑓 ′, 𝑔, and 𝑔′ be CFAs such that (1) 𝑓 calls 𝑔, and

(2) 𝑓 ′ is the same as 𝑓 but with calls to 𝑔 replaced by calls to 𝑔′. We

call 𝑓 the client, and we call 𝑔 and 𝑔′ two versions of the library.
We say that 𝑔 and 𝑔′ are functionally client-specific equivalent (CSE)
for 𝑓 iff ∀𝜎, ®𝑡 𝑓 (®𝑡) = 𝑓 ′(®𝑡). In other words, we say that the libraries

are CSE for the client, if the input/output behaviour of the client is

unaffected by the version of the library that it uses.

The general functional equivalence checking problem is the same

as CSEC but without restrictions (1) and (2). In other words, the gen-

eral functional equivalence checking problem is to check whether

two functions will always return the same output when given the

same input. This means that we can use equivalence checkers to

solve the CSEC problem. However, we argue that using the CSEC

problem restrictions improves performance and makes many pre-

viously infeasible cases solvable. For example, our approach fully

automatically proves that composite_0 and composite_1 are CSE

for sum_primes, while ModDiff, SymDiff, RVT, and Rêve all fail

to prove the corresponding general equivalence checking problem

within a day.

There are two crucial insights behind our approach. First, we

often only need a portion of the client to prove that the client is

unaffected by the library change. We call such a portion of the client

an impact boundary. Second, certain candidate impact boundaries

are (relatively) easy to check. Our approach combines these insights

by searching the CFA of the client for (relatively) easy to check

candidate impact boundaries. The search stops when it finds a true

impact boundary or a counterexample to equivalence. This search

requires a guarantee that the client remains unchanged.

2.3 CFA Properties
Before describing our approach, we provide a few CFA definitions

culminating in the definition of a hammock. Hammocks are parts of

a CFA that are “extractable.” That is, there is a semantics preserving

transformation that replaces hammocks with calls to new, stan-

dalone CFAs. We use hammocks to define the structure of impact

boundaries in Sec. 3.

The first set of definitions—path, simple path, domination, post-
domination, backedge, and reducible—are standard graph theory

terms used in program analysis [1]. Let 𝑓 be a CFA (𝐿, 𝑙𝑖 , 𝑙𝑓 , ®𝑥, ®𝑟,𝐺).
A path in the CFA is a sequence of locations in 𝐿 that are connected

by edges in 𝐺 . A path is a simple path if no location appears more

than once in the path. We say that a location 𝑖 ∈ 𝐿 dominates a
location 𝑗 ∈ 𝐿 if every path from 𝑙0 to 𝑗 passes through 𝑖 . We

say that a location 𝑗 ∈ 𝐿 post-dominates a location 𝑖 ∈ 𝐿 if every

path from 𝑖 to 𝑙𝑓 passes through 𝑗 . An edge 𝑗 → 𝑖 is a backedge
if 𝑖 dominates 𝑗 . A graph 𝐺 is reducible if 𝐺 becomes acyclic after

removing all backedges.

For example, in Fig. 2a, the label 3 dominates the label 7, the

label 8 post-dominates the label 3, the edge between 7 and 3 is a
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backedge, and the entire graph is reducible, since removing the

edge between 7 and 3 gives an acyclic graph.

We use the second set of definitions—strongly connected compo-
nent, entry point, and exit point—in our impact boundary search

algorithm of Sec. 4. Let 𝑓 = (𝐿, 𝑙𝑖 , 𝑙𝑓 , ®𝑥, ®𝑟,𝐺) be a CFA. A strongly
connected component (SCC) 𝑆 of 𝑓 is the maximal sub-graph of 𝐺

with the property that there is a path from every location in 𝑆 to

every other location in 𝑆 . We call a location 𝑖 an entry point of 𝑆 if

𝑖 ∈ 𝑆 and there exists a location 𝑛 ∉ 𝑆 such that 𝑛 → 𝑖 holds. We

call a location 𝑗 an exit point of 𝑆 if 𝑗 ∈ 𝑆 and there exists a location

𝑛 ∉ 𝑆 such that 𝑗 → 𝑛 holds.

For example, in Fig. 2a, the sub-graph containing locations 3, 4, 5,

6, and 7, and all edges between these locations, is an SCC. For this

SCC, the locations 3 and 8 are the entry and exit point,respectively.

The third set of definitions—sub-CFA and induced sub-CFA—
depend on the first set, and will give us the main structure of

impact boundaries. Let 𝑓 = (𝐿, 𝑙𝑖 , 𝑙𝑓 , ®𝑥, ®𝑟,𝐺) be a CFA. A sub-CFA of

𝑓 is a CFA ℎ = (𝐿ℎ, 𝑖, 𝑗, ®𝑣, ®𝑣,𝐺ℎ) such that 𝐿ℎ ⊆ 𝐿, 𝑗 ∈ 𝐿ℎ , 𝑖 ∈ 𝐿ℎ ,

®𝑣 ⊆ ®𝑥 ∪ ®𝑟 , and 𝐺ℎ ⊆ 𝐺 . If ®𝑣 = ®𝑥 ∪ ®𝑟 and 𝐺ℎ is exactly the set of

edges of 𝑓 that connect pairs of locations in 𝐿ℎ , then we say that

ℎ is the sub-CFA of 𝑓 induced by 𝐿ℎ , 𝑖 , and 𝑗 . When 𝐺ℎ is an SCC

of 𝐺 , the entry point of 𝐺 is 𝑖 , and the exit point of 𝐺 is 𝑗 , then we

call ℎ an SCC of 𝑓 .

For example, for the CFA in Fig. 2a, the sub-CFA induced by the

subset of locations {1, 3, 7}, initial location 3, and final location 1

does not contain the locations 2, 4, 5, 6, 8 or 9, or any edges touching

them. In fact, it only contains the edge from 7 to 3. This example

demonstrates the problem with induced sub-CFAs: they are too

unrestricted for our needs. This can make their behaviour too hard

to reason about and make the guarantees they can give too weak.

The final definition, hammock, comes from Komondoor and Hor-

witz [22], but is adapted to our context. Hammocks are related to

the foldable sub-graphs of Lakhotia and Deprez [26]. Intuitively,

both are portions of a CFA that can be extracted into a standalone

CFA. A sub-CFA ℎ = (𝐿ℎ, 𝑖, 𝑗, ®𝑣, ®𝑣,𝐺ℎ) induced by 𝐿ℎ , 𝑖 , and 𝑗 is a

hammock iff the following hold: (1) for every 𝑙 ∈ 𝐿ℎ , 𝑖 dominates 𝑙

in 𝑓 ; (2) for every 𝑙 ∈ 𝐿ℎ , 𝑗 post-dominates 𝑙 in 𝑓 ; (3) every location

on every simple path from 𝑖 to 𝑗 is in 𝐿ℎ ; and (4) for every 𝑙 ∈ 𝐿ℎ ,
every simple path in 𝑓 between 𝑗 and 𝑙 contains 𝑖 .

For example, for the CFA in Fig. 2a, we can define a sub-CFA

induced by the subset of locations {3, 4, 5, 6, 7}, initial location 3,

and final location 3. This induced sub-CFA is a hammock since 3

dominates and post-dominates exactly the locations 4, 5, 6, and 7,

there is no “missing” location that can be reached from the initial

location and leads to the final location, and there is no path from

the final location to the sub-CFA that evades the initial location.

Intuitively, a hammock is easier to reason about because it acts

like a a standalone CFA. We use this fact in the soundness proof

in Sec. 3. Specifically, we use the fact that if ℎ is a hammock of 𝑓 ,

then all traces of 𝑓 are of the form

(𝑙0, 𝜎0), ..., ((𝑖, 𝜎𝑘𝑖 ), ...( 𝑗, 𝜎
𝑘
𝑗 ), ...)

∗, ...(𝑙𝑓 , 𝜎𝑓 ),

where
∗
is the standard Kleene star, (𝑖, 𝜎𝑘

𝑖
) and ( 𝑗, 𝜎𝑘

𝑗
) are the 𝑘th

concrete states at location 𝑖 and 𝑗 , respectively, and locations 𝑖 and

𝑗 do not appear in any ellipses. In other words, every trace of 𝑓 has

zero or more runs with locations in ℎ, and every such run starts at 𝑖

4
5

c
←

f
(j
)

(a)

45

6

7

[c 6= 0]

c← f(j)

[c = 0]

sum← sum + j

(b)

Figure 3: The two smallest candidate impact boundaries of
sum_primes from Fig. 2a. Both are induced sub-CFAs.

and always leaves ℎ exactly at the location 𝑗 . Since every trace of 𝑓

has these properties, we can think of the runs from 𝑖 to 𝑗 as calls to

an external CFA. We use this trace pattern to reduce the analysis of

a trace of 𝑓 to one of the candidate impact boundary runs inside.

3 2CLEVER AT A HIGH LEVEL
In this section, we formally define impact boundaries, provide a

simple impact boundary search strategy, and prove the soundness

and relative completeness of our approach. The completeness is

relative because our search strategy depends on an equivalence

checking oracle. Intuitively, our approach decomposes the CFA of

the client into smaller equivalence checking queries. This query

size reduction can often make intractable problems tractable.

For simplicity of presentation, we assume that every client CFA

contains only one call to the library, and that every client CFA is

reducible. We relax the first assumption in Sec 4, and note that the

second assumption is innocuous since irreducible control-flow is

rare in practice [33]. For the remainder of this section, let 𝑔 be the

old version of the library CFA, 𝑔′ be the new version of the library

CFA, and 𝑓 be the client CFA with a single library call on an edge 𝑒 .

3.1 Impact Boundaries
A candidate impact boundary ℎ = (𝐿ℎ, 𝑖, 𝑗, ®𝑣, ®𝑣,𝐺ℎ) is a hammock of

𝑓 = (𝐿, 𝑙0, 𝑙𝑓 , ®𝑥, ®𝑟,𝐺) such that ℎ contains 𝑒 . Intuitively, a candidate

impact boundary is a portion of the client with the special property

that if the candidate impact boundary is unaffected by the library

change, then the client is unaffected by the library change.

An impact boundary is a candidate impact boundary ℎ such that

𝑔 and 𝑔′ are CSE for ℎ. For example, Fig. 3 depicts the two smallest

candidate impact boundaries of sum_primes from Fig. 1a. The CFA

in Fig. 3b is a true impact boundary, while the CFA in Fig. 3a is not.

3.2 Impact Boundary Search
We call our boundary search algorithm 2clever. It takes in a client

and two versions of one of the client’s libraries. It returns “CSE”

if it finds an impact boundary and “Not CSE” otherwise. In this

section, we describe a simple realization of 2clever, called 2clever-

naive, and reason about its correctness and completeness. The more

sophisticated realization is described in Sec. 4.

2clever-naive enumerates every sub-CFA of the client, filters out

those that are not candidate impact boundaries, and then checks

each candidate for CSE using an existing equivalence checker. For
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example, when given the client and libraries from Fig. 2, 2clever-

naive will enumerate the two candidate impact boundaries in Fig 3

(among others), check each for CSE, and return “CSE”, since the CFA

in Fig. 3b is a true impact boundary. In the next section, we prove the

soundness of this strategy. For now, we assume correctness and note

that it is cheaper to check if composite_0 and composite_1 are

CSE for the CFA in Fig. 3b using an existing equivalence checker

than to check the original problem. In fact, the CFA in Fig. 3b

corresponds to removing an entire unbounded while loop from the

original CFA in Fig. 2a.

3.3 Analysis
In this section, we prove two theorems about 2clever: if 2clever

claims 𝑔 and 𝑔′ are CSE for 𝑓 , then they truly are (soundness) and

if 𝑔 and 𝑔′ are not CSE for 𝑓 and our equivalence checking oracle

terminates on every query, then 2clever will terminate (relative

completeness).

Theorem 1 (Soundness). If 2clever finds an impact boundary,
then 𝑔 and 𝑔′ are CSE for 𝑓 .

Proof. Let 𝑓 = (𝐿, 𝑙0, 𝑙𝑓 , ®𝑥, ®𝑟,𝐺) be the client, let 𝑓 ′ be 𝑓 but with
the call to𝑔 replaced by a call to𝑔′. Similarly, letℎ = (𝐿ℎ, 𝑖, 𝑗, ®𝑣, ®𝑣,𝐺ℎ)
be the impact boundary, and letℎ′ beℎ but with the call to𝑔 replaced
by a call to 𝑔′. By the definition of candidate impact boundaries, all

traces of 𝑓 and 𝑓 ′ are of the form

(𝑙0, 𝜎0), ..., ((𝑖, 𝜎𝑘𝑖 ), ...( 𝑗, 𝜎
𝑘
𝑗 ), ...)

∗, ...(𝑙𝑓 , 𝜎𝑓 ) (𝑇1)

(𝑙0, 𝜃0), ..., ((𝑖, 𝜃𝑘𝑖 ), ...( 𝑗, 𝜃
𝑘
𝑗 ), ...)

∗, ...(𝑙𝑓 , 𝜃 𝑓 ) . (𝑇2)

We want to prove that if 𝜎0 = 𝜃0 then 𝜎𝑓 = 𝜃 𝑓 .

Since the client is unchanged apart from the call to the library,

we know that if 𝜎0 = 𝜃0 then 𝜎1
𝑖
= 𝜃1

𝑖
. We also know that, for any

𝑚 and 𝑛, if 𝜎𝑚
𝑗

= 𝜃𝑛
𝑗
then every concrete state in (𝑇1) after ( 𝑗, 𝜎𝑚𝑗 )

is guaranteed to be equal to the corresponding concrete state in (𝑇2)

after ( 𝑗, 𝜃𝑛
𝑗
) until both traces reach a concrete state with location

𝑖 . In other words, all the “code” outside of the impact boundary

remains untouched, and two copies of syntactically identical code

that start at the same concrete state will produce identical traces.

Given these two facts, we need to prove that the runs

(𝑖, 𝜎𝑘𝑖 ), ...( 𝑗, 𝜎
𝑘
𝑗 ) (𝑇3)

(𝑖, 𝜃𝑘𝑖 ), ...( 𝑗, 𝜃
𝑘
𝑗 ) (𝑇4)

inside of (𝑇1) and (𝑇2), respectively, are equal. By the semantics of

function application, every run (𝑇3) is equivalent to the term ℎ(®𝑣).
Similarly, every run (𝑇4) is equivalent to the term ℎ′(®𝑣). Since 𝑔 and

𝑔′ are CSE for ℎ, ℎ(®𝑣) = ℎ′(®𝑣); therefore, (𝑇3) and (𝑇4) are equal. □

Theorem 2 (Relative Completeness). If 𝑔 and 𝑔′ are CSE for
𝑓 , then there is an impact boundary. Furthermore, if every call to
an equivalence checker oracle terminates, 2clever finds an impact
boundary.

Proof. If 𝑔 and 𝑔′ are CSE for 𝑓 , then 𝑓 is an impact boundary.

Since the set of locations of a CFA is finite, the number of candidate

impact boundaries 2clever checks is finite. □

4 REALIZING 2CLEVER
In this section, we describe the actual impact boundary search

algorithm used by 2clever, a bespoke equivalence checker that we

use inside the search algorithm, and a resource (time) allocation

scheme to improve 2clever’s chance of termination. 2clever also

extends 2clever-naive to handle clients that call the library multiple

times. At a high level, 2clever confirms the CSE only if it finds an

impact boundary for every call-site of the library.

4.1 Impact Boundary Search Revisited
Finding and checking every candidate impact boundary is imprac-

tical for complex clients. In practice, 2clever focuses on finding and

checking a subset of candidate impact boundaries. Some of these

are still difficult to reason about, so we transform them to cycle-
broken candidates. While easier to check, confirming a cycle-broken
candidate implies confirming the impact boundary that it replaced.

Given this, and since 2clever keeps the client 𝑓 in the subset of

candidate impact boundaries to check, the proofs of soundness

(Thm. 1) and completeness (Thm. 2) still hold.

Given a candidate impact boundary, ℎ, whose initial and final

locations are the same location, 𝑙 , we produce a cycle-broken can-

didate ℎ𝑐𝑏 by separating 𝑙 in ℎ𝑐𝑏 . For example, the CFA shown in

Fig. 4b is a cycle-broken candidate of the client 𝑓 (see Fig. 2a) whose

initial and final locations both belong to location 3 in 𝑓 . Locations

3, 4, 5, 6 and 7 form a strongly connected component (shown in

Fig. 4a), which is hard to check for CSE. On the other hand, the

cycle-broken candidate ℎ𝑐𝑏 breaks all cycles involving location 3

(the final location does not have outgoing edges), hence makes

checking CSE on ℎ𝑐𝑏 easier. Even though ℎ𝑐𝑏 is technically not a

sub-CFA of the client 𝑓 , we still refer to it as a candidate impact

boundary for the rest of the paper because it is a sub-CFA of an

equivalent client 𝑓 ∗ where the common location 𝑙 is extended to

𝑙 → 𝑙𝑖 and 𝑙𝑓 → 𝑙 .

4.1.1 Candidate Search. The extended search algorithm, Search*
(Alg. 1), identifies a sequence of cycle-broken candidates, BoundSeq,
for each library call-site 𝑒 . BoundSeq includes the call-site 𝑒 itself
and the client 𝑓 as its first and last element, respectively (line 15

and 6). To identify cycle-broken candidates for a call-site 𝑒 , the

algorithm first looks for the strongly connected component (SCC)

𝑆 that contains 𝑒 . Search* uses an auxiliary procedure, Normalize,
to transform 𝑆 into an SCC 𝑆∗ with a unique entry and exit point, 𝑖 .

The algorithm then constructs a cycle-broken candidate ℎ𝑐𝑏 from

𝑆∗, and adds ℎ𝑐𝑏 to BoundSeq. Finally, the algorithm updates the

search context ℎ ← ℎ𝑐𝑏 (line 13) and recursively looks for a new

cycle-broken candidate inℎ, untilℎ has no SCC containing 𝑒 (line 8).

The discovered ℎ𝑐𝑏 is always pushed to the head of the sequence.

For example, for the client 𝑓 in Fig. 2a, Search* identifies the

SCC 𝑆 in Fig. 4a containing the call-site 4

𝑔
−→ 5. Location 3 is the

unique entry and exit of 𝑆 , and it is replaced with 𝑙𝑖 and 𝑙𝑓 in cycle-
broken candidateℎ𝑐𝑏 , where 𝑙𝑖 is a copy of 3with only outgoing edge
(𝑙𝑖 → 4), and 𝑙𝑓 is another copy of 3 with only internal incoming

edges (7→ 𝑙𝑓 ). The resulting cycle-broken candidate ℎ𝑐𝑏 is shown

in Fig. 4b. 2clever then attempts to find an SCC inside ℎ𝑐𝑏 but fails.

Finally, the call-site and the client are added to BoundSeq.
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Algorithm 1 Search*

Require: Client CFA 𝑓 and library CFAs 𝑔 and 𝑔′

Ensure: BoundaryMap contains a sequence of candidate impact

boundaries for each call-site

1: procedure Search*(𝑓 ,𝑔)

2: 𝐸 ← call-sites of 𝑔 in 𝑓

3: BoundaryMap← Dict()
4: for each 𝑒 ∈ 𝐸 do ⊲ For each call-site

5: BoundSeq← stack ⊲ first in last out sequence

6: BoundSeq.push (𝑓 )

7: ℎ ← 𝑓 ⊲ search on hammock ℎ

8: while ℎ has SCC containing 𝑒 do
9: 𝑆 ← SCC containing 𝑒 in ℎ

10: 𝑆∗, 𝑖 ← Normalize(𝑆, ℎ)
11: ℎ𝑐𝑏 ← hammock induced from 𝑆∗ and 𝑖
12: BoundSeq.push (ℎ𝑐𝑏 )
13: ℎ ← ℎ𝑐𝑏 ⊲ update cycle-broken candidate

14: end while
15: BoundSeq.push (𝑒)
16: BoundaryMap [𝑒]← BoundSeq
17: end for
18: return BoundaryMap
19: end procedure

3

45

6

7

[c = 0]

j ← j + 1

[j < x]

c← lib(j)

[c 6= 0]

sum← sum + j

(a)

li45

6

7 lf

[c = 0]

j ← j + 1

[j < x]c← lib(j)

[c 6= 0]

sum← sum + j

(b)

Figure 4: 4b shows the cycle-broken candidate constructed
from the strongly connected component in 4a.

Theorem 3 (Correctness). Every sub-CFA ℎ in BoundSeq re-
turned by Search* is a candidate impact boundary.

Proof. BoundSeq contains the client 𝑓 , the call-site 𝑒 , and cycle-
broken candidates ℎ𝑐𝑏 . Both 𝑓 and 𝑒 are trivially candidate impact

boundaries. Every ℎ𝑐𝑏 ∈ BoundSeq is constructed from an SCC 𝑆∗
with a unique entry and exit 𝑖 . Therefore, 𝑖 dominates and post-

dominates every node in 𝑆∗, including the source and target of 𝑒 .

Moreover, every path from 𝑖 to 𝑒 must go through 𝑖 . Therefore, 𝑆∗
is a candidate impact boundary, and ℎ𝑐𝑏 is a cycle-broken candidate

constructed from 𝑆∗. □

Theorem 4 (Monotonicity). For every BoundSeq = [ℎ1 ...ℎ𝑁 ]
returned by Search*, for all 𝑖 in range 0 ≤ 𝑖 < 𝑁 , ℎ𝑖 is a candidate
impact boundary for ℎ𝑖+1.

Proof. For 0 ≤ 𝑖 < 𝑁 , ℎ𝑖 is the cycle-broken candidate con-

structed from the SCC 𝑆∗, where 𝑆∗ is a sub-CFA of ℎ𝑖+1. Search*

Algorithm 2 Check*

Require: BoundaryMap is returned by Search*
Ensure: 𝑟𝑒𝑡 = ⊤ iff 𝑔 and 𝑔′ is CSE for 𝑓

1: procedure Check*(BoundaryMap, 𝑓 ,𝑔, 𝑔′)
2: 𝐸 ← call-sites of 𝑔 in 𝑓

3: Contained← ∅
4: for each 𝑒 ∈ 𝐸 do ⊲ For each call-site

5: BoundSeq← BoundaryMap [𝑒]

6: while BoundSeq ≠ ∅ ∧ 𝑒 ∉ Contained do
7: ℎ ← BoundSeq.pop()
8: if EQ (ℎ, 𝑔, 𝑔′) then
9: for each call-site 𝑒 ′𝑔 in ℎ do
10: Contained.add(𝑒 ′𝑔 )
11: end for
12: end if
13: end while
14: end for
15: 𝑟𝑒𝑡 ← Contained = 𝐸

16: return 𝑟𝑒𝑡

17: end procedure

ensures that 𝑆∗ has a unique entry and exit location in ℎ𝑖+1. There-
fore, ℎ𝑖 satisfies the conditions of cycle-broken candidate for ℎ𝑖+1.
The last item in BoundSeq ℎ𝑁 is the client 𝑓 . By correctness of

Search* (Thm. 3), ℎ𝑁−1 is a candidate impact boundary for 𝑓 . □

Monotonicity suggests a good checking order of candidates: ℎ𝑖
is smaller and likely easier to check than ℎ𝑖+1, and confirming ℎ𝑖 is

sufficient for proving CSE.

4.1.2 Checking Candidates. After finding candidate impact bound-

aries with Search*, 2clever uses Check* to check each. Specifically,
for each call-site 𝑒 in 𝑓 , Check* fetches the corresponding sequence
of candidate impact boundaries, BoundSeq, from BoundaryMap (line 5),
and iterates through the sequence to find a true impact boundary

for 𝑒 (lines 6-13). During each iteration, Check* checks whether 𝑔
and 𝑔′ are CSE for ℎ by calling an equivalence checker, EQ (line 8).
If EQ determines equivalence, then ℎ is an impact boundary for

every call-site 𝑒𝑔 (including 𝑒) in ℎ. Therefore, the algorithm adds

𝑒𝑔 into the set Contained (line 10), which represents the set of

call-sites with confirmed impact boundaries. Check* stops iterat-
ing over BoundSeq when it either reaches the end, or the target

call-site 𝑒 is added to Contained (line 6). Finally, the algorithm

determines whether every call-site has an impact boundary by

comparing Contained and 𝐸 (line 15), and returns the result.

Theorem 5 (Partial Correctness of Check*). If Check* ter-
minates, then 𝑔 and 𝑔′ are CSE for 𝑓 iff Contained = 𝐸 at line 15.

Proof Sketch. Forward: if 𝑔 and 𝑔′ is CSE for 𝑓 , then 𝑓 is an impact

boundary for all call-sites. Since 𝑓 is in the BoundSeq for every

call-site, then every call-site is eventually added to Contained.
Backward: 𝑒 is added to Contained only if it has an impact

boundary in BoundSeq. When Contained = 𝐸, every call-site has

an impact boundary. By Thm. 1, for every call-site 𝑒 , the state

difference caused by visiting edge 𝑒 is contained before reaching

the final location 𝑙𝑓 . □
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Algorithm 3 2clever-EQ

Require: ℎ is a candidate impact boundary of 𝑔.

Require: every SCC in ℎ has single entry and single exit.

Ensure: Returns proof or counterexample.

1: procedure 2clever-EQ(ℎ, 𝑔, 𝑔′)
2: 𝐸 ← call-sites of 𝑔 in ℎ

3: callee← Merge (𝐸)
4: pre-caller← before (ℎ, callee)
5: post-caller← after (ℎ, callee)
6: Pre← pre_condition(summary(pre-caller))
7: Post← post_condition(summary(post-caller))
8: callee× ← product(callee, callee′)
9: return verify (Pre, callee×, Post)
10: end procedure

4.2 Bespoke Equivalence Checking Algorithm
Check* calls procedure EQ to confirm or reject candidate impact

boundaries. While any sound equivalence checker can be used for

EQ, we developed an in-house algorithm, 2clever-EQ, that exploits
the structure of our queries to achieve the best performance.

2clever-EQ is given in Alg. 3. It takes the caller ℎ and two

versions of the callee, 𝑔 and 𝑔′, and requires that every strongly-

connected component (SCC) in ℎ has a single entry and a single

exit. 2clever-EQ first identifies all call-sites in ℎ and then merges

them into a single call-site callee (line 3). Specifically, the proce-
dure Merge finds the smallest hammock, 𝑤 , that contains all the

call-sites and then returns the largest SCC containing 𝑤 in ℎ (or

returns 𝑤 if no SCC exists). Intuitively, ℎ is an impact boundary

for all call-sites if and only if it is an impact boundary for𝑤 , since

𝑤 contains all call-sites. The SCC returned by Merge is the next

smallest possible impact boundary and it is called at most once

in ℎ. We know the former since, by monotonicity (Thm. 4), at the

time of checking ℎ, Check* * has already checked the cycle-broken
candidate constructed from callee (the previous candidate impact

boundary in BoundSeq), and failed. We use the latter to partition ℎ

by callee, as discussed next.

2clever-EQ partitionsℎ into pre-caller and post-caller: the
portions of ℎ before and after callee, respectively (lines 4 and

5). 2clever-EQ then summarizes pre-caller and post-caller
(lines 6 and 7) and converts the summaries into a pre-condition Pre
and a post-condition Post as described in Sec. 4.2.1. 2clever-EQ
then creates a product function callee× via self-composition [3]

(line 8). When the summaries of pre-caller and post-caller are
defined for all possible inputs, candidate ℎ is an impact boundary if

and only if {Pre}callee × {Post} is a valid Hoare triple [19]. We

check this Hoare triple using conditional modeling checking [6]

by combining three existing program verifiers. We describe the

detailed workflow in Sec. 5.

4.2.1 Summary, Pre- and Post-condition Computation. A function
summary of 𝑓 is a first-order formula 𝜑 over ®𝛼 and

®𝛽 if

∀𝑀 |= 𝜑, (𝑀 [ ®𝛼] = ®𝑥) =⇒ (𝑀 [𝛽] = 𝑓 ( ®𝑥)),

where ®𝑥 and 𝑓 ( ®𝑥) are input and output of 𝑓 , and 𝑀 [ ®𝛼] is the in-
terpretation of ®𝛼 in the model 𝑀 . A function summary is com-
plete if it is defined for all possible inputs. Similar to Clever [27],

2clever-EQ computes summaries by symbolically executing [21]

pre-caller and post-callerwhile recording programs’ path con-

ditions and effects. During symbolic execution, calls to callee are

uninterrupted. If pre-caller and post-caller have finite execu-

tion paths, then the summary by symbolic execution is complete.

Otherwise, other procedure summarization techniques (e.g. abstrac-

tion refinement) may be used.

Given 𝜑𝑝𝑟𝑒
—the complete function summary of pre-caller—

the pre-condition of callee× is

assume(∃®𝛼 · 𝜑𝑝𝑟𝑒 ( ®𝛼, ®𝑥)),
where ®𝛼 is the input of pre-caller, and ®𝑥 is the the output of

pre-caller and the input of callee×. Intuitively, the pre-condition
captures the possible invocations of callee×. Given 𝜑𝑝𝑜𝑠𝑡

—the

complete function summary of post-caller—the post-condition
of callee× is

assert(∀ ®𝛽 · 𝜑𝑝𝑜𝑠𝑡 (®𝑟, ®𝛽) ↔ 𝜑𝑝𝑜𝑠𝑡 (®𝑟 ′, ®𝛽)),
where ®𝑟 and ®𝑟 ′ are the outputs from callee and callee′, respec-
tively, and

®𝛽 is set to be the output of post-caller on input ®𝑜 and

®𝑜 ′. Intuitively, a post-condition asserts that post-caller mitigates

the difference, if any, in the outputs of callee and callee′.
For example, consider the candidate of impact boundary ℎ in

Fig. 3b, and the libraries 𝑔, 𝑔′ in Fig. 2b and Fig. 2c, respectively.

We know that ℎ is an impact boundary because the Hoare triple,

{Pre}product(𝑔,𝑔′){Post}, is valid, where the pre-condition Pre
is assume ( 𝑗 < 𝑥 ∧𝑛𝑢𝑚 = 𝑗 ), and the post-condition Post after sim-

plification (removing ⊤ and ⊥ from conjunctions and disjunctions,

respectively) is

assert((𝑙𝑖𝑏 ( 𝑗) = 𝑙𝑖𝑏 ′( 𝑗) = 0) ∨ ((𝑙𝑖𝑏 ( 𝑗) ≠ 0 ∧ 𝑙𝑖𝑏 ′( 𝑗) ≠ 0))).

4.3 Time-Bounded Equivalence Checking
The procedure EQ may not terminate due to the undecidability of

equivalence checking. Since Check* calls EQ multiple times over

BoundSeq, we need a strategy for resource (time) allocation to maxi-

mize the chance of termination.We achieve this by adding a timeout

argument 𝑡 to every EQ call, and managing 𝑡 heuristically. We use

the following time allocation scheme: for a candidate sequence

BoundSeq, we start by calling EQ with some initial 𝑡 , e.g., 30 sec-

onds. If a timeout occurs, we double the value of 𝑡 for the next call.

If EQ produces an answer within half of 𝑡 , we reduce 𝑡 by half for

the next call. When EQ is called on the last candidate 𝑓 , we set 𝑡 to

the maximum possible value.

Intuitively, the time allocation scheme uses the result from the

previous EQ call to predict the difficulty of the next call. We use

this scheme because candidates in BoundSeq have monotonically

increasing contexts. Therefore, the difficulty of the previous call

usually correlates with the difficulty of the next one.

5 IMPLEMENTATION
We implemented a prototype of 2𝑐𝑙𝑒𝑣𝑒𝑟 using 3000 lines of Python

code [16]. The prototype (see Fig. 5) consists of three main compo-

nents, denoted I - III : the front-end C_to_CFA and the implementa-

tion of algorithm, Search* (Alg. 1) and Check* (Alg. 2), respectively.
C_to_CFA translates C99 [20] source programs (shown as A ) to

CFA 𝑓 , 𝑔, 𝑔′ (shown as B ). It uses pycparser[13] for source parsing

andAbstract Syntax Tree (AST) transformation.We chose pycparser
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because, like our implementations of Search* and Check*, it is
written in Python.

The Search* implementation ( II in Fig. 5) identifies a sequence

of candidate impact boundaries for every call-site. Analyzing the

sequences allows Search* to identify dependent and redundant

equivalence checking tasks across different call-sites when their

BoundSeq overlap, enabling optimizations through task planning

and redundancy pruning. In addition, independent equivalence

checking tasks on different sequences are parallelizable.

Check* ( III in Fig. 5) uses EQ for equivalence checking of in-

dividual candidate. In addition to Rêve [15], we also implement

2clever-EQ– the in-house checker for EQ, illustrated in Fig. 6.

2clever-EQ uses conditional model checking [6] to combine three

distinct verification approaches: bounded model checking using

CBMC [11], symbolic execution using KLEE [7], and IC3/PDR using

Seahorn [23]. Effectively, 2clever-EQ combines the strengths of

the supported verifiers by allowing them to communicate their

progress on a verification problem through a common information

exchange method.

Before checking for equivalence, 2clever-EQ applies self- compo-
sition [4] on the inputs to express the equivalence checking problem

as a verification problem ( D in Fig. 6 and line 8 in Alg. 3) against pre-

and post-conditions computed from the caller’s summary (shown

as E ). Self-composition facilitates mutual invariant learning on the

merged program ( F ) for proving relational properties, and in our

case, functional equivalence.

During the equivalence verification (line 9 in Alg. 3), 2clever-EQ
calls the verifiers in turn, with a timeout ( G in Fig. 6). When a ver-

ifier times out, its progress is saved as program conditions and

passed to the next verifier to guide the exploration towards the un-

verified state space (step H ). The verification process terminates if

2clever-EQ answers the equivalence question (step I ) or exhausts

all of the verifiers (step J ).

Limitations. Our CFA model assumed the input functions are non-

recursive (see Sec. 2) and reducible (see Sec. 3). Additional con-

straints may be introduced by the equivalence checker for EQ. The
implementation of the in-house checker 2clever-EQ has the follow-
ing constraints, due to source level self-composition and conditional

model checking, respectively: (1) functions must be well-structured,

and they must exit from their last statement; and (2) datatypes are

limited to chars, integers, booleans and non-parametric arrays. We

use 2clever-EQ as the default checker and automatically switch

to Rêve for any instances that do not satisfy these constraints.

6 EVALUATION
In this section, we present a set of CSEC benchmarks, and compare

our prototype implementation of 2clever to the state-of-the-art. We

aim to answer the following research questions. RQ1: How does

2clever’s performance compare to state-of-the-art on benchmarks

from related work?RQ2: How does 2clever scale compared to state-

of-the-art as the algorithmic complexity of the input programs

varies? RQ3: How does 2clever scale compared to state-of-the-art

as the number of library calls in the input programs increases?

6.1 Subjects and Setup
We compare 2clever, Clever and Rêve on 568 benchmarks. Each

benchmark consists of a pair of C programs before and after some

changes to the library. At a high level, Clever generates logical sum-

maries of the client and the libraries, composes them, and checks

for CSE using an SMT solver. Clever’s performance depends on

two main features: eager counterexample detection and lazy library
summarization. The former is a method to disprove equivalence

while generating the logical summaries; the latter is a method for

only summarizing those parts of the libraries used by the client.

The original Clever tool checks Python programs. We use a our

reimplementation of Clever for C programs.

Rêve [15] translates the equivalence checking problem into a

constrained Horn clause query that can be discharged by an off-

the-shelf solver. At a high level, Rêve uses a solver to find coupling

predicates over the two input programs. For optimal performance,

we evaluate Rêve on the benchmarks with library calls inlined.

We started with 29 publicly accessible benchmarks collected

from related work [27, 34] that followed the client-library format.

We removed five cases that had recursive calls and included the

example from Sec. 1. Most cases in the resulting set were too simple

and therefore insufficient as test subjects for performance evalu-

ation: 75% of the cases are solved by all three tools in under five
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seconds. This set also has no nested loops; all loops iterate fewer

than 20 times, and each case has only one library call. We thus

added 15 benchmarks that Rêve’s authors sourced from glibc imple-

mentations. These benchmarks did not fit our client-library format,

but we were able to find client functions for these benchmarks on

GitHub. This yielded the set B-Orig of 40 cases—32 equivalent and

eight non-equivalent.

To further increase B-Orig’s difficulty, we systematically gener-

ate 528 benchmarks, referring to the resulting set as B-Hard. B-Hard
consists of combinations of B-Orig benchmarks involving at least

one applicable B-Orig case from the 75th percentile of the slowest

cases (i.e., those that timed out or had a solution time of > 5 sec-

onds for at least one tool). Below, we describe the two templates,

SeqMerge and NestMerge, that we use to generate the various com-

binations.

SeqMerge takes an arithmetic operator Θ ∈ {+,−} two clients,

𝑓1 and 𝑓2, and their corresponding libraries, 𝑔1 and 𝑔2, respectively.

SeqMerge returns two merged clients: 𝑓𝑚1 = 𝑓1 Θ 𝑓2 [𝑔2 ← 𝑔1] and
𝑓𝑚2 = 𝑓1 [𝑔1 ← 𝑔2]Θ 𝑓2, where the substitution 𝑓1 [𝑔1 ← 𝑔2] means

replacing every call to 𝑔1 in 𝑓1 with 𝑔2. This process guarantees

that the resulting programs have two library calls, mitigating for

the absence of multiple library calls in B-Orig. It also creates new
examples with library calls under different client contexts.

NestMerge takes the same input as SeqMerge, but returns client
functions computed by 𝑓𝑐1 = 𝑓1 [𝑔1 ← 𝑓2] and 𝑓𝑐2 = 𝑓2 [𝑔2 ← 𝑓1].
Intuitively, NestMerge uses one client’s context to call the other

client function as its library. NestMerge creates additional cases

with library calls under more complex client contexts, and increases

the variety of control flow patterns in benchmarks.

We ran experiments on Ubuntu 18.04 with an Intel® Core™ i7

CPU processor and 8 GB of RAM. Each case was run with timeout

set to 300 seconds, and memory limit set to 10 GB.

6.2 RQ1: Performance of 2clever
We evaluate the overall performance of 2clever relative to Clever

and Rêve by comparing their running times on all 568 benchmarks

– both the 40 B-Orig cases and 528 B-Hard cases.

Results. The cactus plot in Fig. 7 shows the number of benchmark

cases correctly solved by each tool under the specified time limit.

Time is measured in seconds and plotted on a logarithmic scale. Un-

der a 300-second time limit, 2clever, Clever and Rêve respectively

solved 40, 21, and 19 of the 40 B-Orig cases. On B-Hard benchmarks,

2clever solved 498 of 528 cases with 30 instances timing out, Clever

solved 368, and did not solve 160, while Rêve solved 231, and was

unable to solve 297. Rêve timed out on 55 cases, and did not provide

correct solutions on 242. Individually, 2clever, Clever, and Rêve

solved 236, 179, 100 out of 264 SeqMerge instances, and 262, 189,

131 out of 264 NestMerge instances, respectively. In particular, on

equivalent benchmarks, every case correctly solved by either Rêve

or Clever was also solved by 2clever, with one exception. 2clever

remained competitive with Clever on non-equivalent benchmarks,

solving 152 vs. Clever’s 156 despite the early detection of coun-

terexamples feature of the latter. As the average solution time for

cases increased, 2clever significantly outperformed Rêve and Clever.

Even though CC2’s static analysis for searching candidate of im-

pact boundaries (see Alg. 1) adds a near constant time cost, its
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Figure 7: All benchmarks, sorted by the solution time.

benefit in restricting client context significantly outweighs the cost

on non-trivial instances, and ultimately makes CC2 scale better.

Beyond performing well on our new benchmarks, 2clever also cor-

rectly handled the four original cases that contained unbounded

loops, ultra_prime_sum, pos, pos2 and odd [16], which no previous

tool was able to solve under the given time limit. 2clever’s success

on these cases supports our claim that impact boundary search

is more effective than prior techniques whenever input programs

have unbounded loops with a non-trivial loop condition.

Answer to RQ1. 2clever’s performance on solving hard client-

specific equivalence instances is superior to state-of-the-art, while

its performance on easy instances remains competitive.

6.3 RQ2: Varying Program Complexity
We now study how 2clever scales with respect to the total pro-
gram complexity of the input programs. Complexity objectively

categorizes variation in control-flow patterns, while having exter-

nal validity. Intuitively, we take complexity to be a rough estimate

of the difficulty of equivalence checking for the benchmark cases.

To investigate, we present the results from the experiment con-

ducted in Sec. 6.2 but this time, we sort the benchmark cases by

the total benchmark complexity (as a function of 𝑁 – the size of

input to each program) and organize them into four complexity

classes. Whenever an input program pair has two different com-

plexities, the benchmark is assigned the higher one. The first class,

denoted Constant, contains 359 𝑂 (1) cases. The second class, de-

noted Linear, contains 100 𝑂 (𝑁 ) cases, two 𝑂 (𝑁𝑙𝑜𝑔𝑁 ) cases and
38𝑂 (𝑙𝑜𝑔𝑁 ) cases. The third class, denotedQuadratic, contains 50

𝑂 (𝑁 2) cases. The fourth class, denoted Higher-Order, contains

19 cases, and includes four 𝑂 (𝑁 3) cases, as well as cases with non-

terminating program paths. We compare the percentage of cases

solved by each tool across the complexity classes.

Results. Fig. 8 displays the number and the percentage of instances

solved by 2clever, Clever and Rêve, over each complexity class. The

mean solution time for each tool, over all solved cases, is shown

underneath each complexity class. Time is measured in seconds,

and all cases where tools time out or do not provide a solution are
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disregarded. We observe that 2clever outperforms Clever and Rêve

on every benchmark complexity class. Although 2clever solves a

smaller percentage of cases as complexity grows, as expected, its ad-

vantage over Clever and Rêve, in terms of difference in solved cases,

increases. In particular, while Clever and Rêve remain competitive

on lower complexity cases, 2clever significantly outperforms exist-

ing tools on higher complexity benchmarks; this provides further

evidence that our impact boundary search scales more effectively

to difficult cases than do Rêve and Clever. Specifically, Clever does

not scale to benchmarks with higher complexities because it is

path-based and terminates only when exploring a finite number

of program paths is sufficient to produce an answer; this is not

the case whenever unbounded loops exist anywhere in the input

programs. Rêve’s scalability is limited instead by its underlying rea-

soning engine—while verification conditions are produced quickly,

the resulting monolithic queries cannot be handled by the reason-

ing engine. 2clever’s ability to both handle unbounded client loops

and decompose large queries is key to explaining its significant

performance advantage on higher complexity benchmarks.

Answer to RQ2. 2clever scales more effectively than existing tools

as the complexity of the input program increases. In particular,

2clever’s relative performance, in terms of the percentage of solved

cases, improves as complexity grows.

6.4 RQ3: Scaling Library Calls
We now study how 2clever scales as the number of library calls in

the input programs increases, since real software clients can call

their libraries at multiple program locations. We believe that the

number of library calls correlates with the difficulty of equivalence

verification because each library call site can be a potential source

of difference that splits the input programs’ control and data flows.

For this study, we generate another set of benchmarks with the

SeqMerge template, focusing specifically on the number of calls.

To do so, we merge B-Orig cases (see Sec. 6.1) with themselves,

sequentially applying SeqMerge from one to fifteen times. This

yields fifteen new cases for every applicable B-Orig case, with

Figure 9: Scaling number of library calls over B-MultCall.

each new case containing a different number of library calls. The

resulting benchmark, denoted B-MultCall, consists of 25 × 15 = 375

cases. Our experiment compares 2clever’s performance to Clever

and Rêve on B-MultCall in terms of the percentage of cases solved

by each tool.

Results. Fig. 9 plots the percentage of B-MultCall cases solved cor-

rectly and indexed by the number of library calls in the benchmark.

2clever not only always solves the highest percentage of cases but it

also extends its lead over Clever and Rêve as the number of calls in-

creases. Specifically, 2clever’s lead over Clever and Rêve grows from

16% to 36%, and from 36% to 44%, respectively. Moreover, a regres-

sion line [28] fit to each tool’s performance data (see Fig. 9) suggests

2clever’s rate of performance decrease is not only smaller over the

observed range of library calls, but will stay smaller even outside

the range. 2clever’s regression line has a greater slope coefficient

(-1.49) compared to Clever’s (-2.53) and Rêve’s (-2.49). These results

show a noticeable performance advantage of 2clever compared to

other tools, as the number of library calls increases.

Answer to RQ3. 2clever’s performance scales better than the state

of the art, in terms of the percentage of solved cases, as the number

of library calls increases.

6.5 Threats to Validity
Our strategies for determining ground truth and program complex-

ities of 528 new benchmarks are possible threats to validity.

To mitigate the absence of ground truth, two authors first man-

ually classified equivalence of all possible combinations of client

contexts and libraries from the original benchmarks, and recorded

results as known facts. We then automatically established ground

truth of each merged case using conservative inference rules and

these known facts. For example, we say that a SeqMerge case (see
Sec. 6.1) is equivalent if both arguments to the chosen arithmetic op-

erator are equivalent. Similarly, we say that a NestMerge case (see

Sec. 6.1) is equivalent if its inner function is unaffected by the library

change. These inference rules applied to 229 out of 264 SeqMerge,
and 191 out of 264 NestMerge cases. We determined ground truth

of the remaining 35 SeqMerge cases and 71 NestMerge cases by
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examining consensus, if reached, between the different tools. Dis-

agreements and random instances were manually inspected. In

cases where disagreements arose from tool’s differences in defini-

tions of equivalence (e.g., the equivalence relation over error states),

or modeling semantics (e.g., whether integer overflows can occur),

both answers were accepted as correct. Modelling and definitions

of equivalence are important considerations, but we do not focus

on them here.

We determined complexities by first analyzing the complexity

of each client context and library separately, and then combining

results to determine the complexity of the composed benchmark

cases.

Finally, we note that our combined benchmarks could give an

unfair advantage to our technique if either our original benchmark

cases, or our templates for combining them (i.e., SeqMerge and

NestMerge) favor it. We mitigate the former threat by generating

new examples exclusively from benchmarks found in related work.

We mitigate the latter by using templates, i.e., sequential and nested

compositions, that reflect how real programs are constructed.

7 RELATEDWORK
In this section, we describe the tools and techniques most related to

2clever. After revisiting Clever [27], we describe tools that perform

general equivalence checking, dividing them into those that priori-

tize proving equivalence, those that prioritize disproving equiva-

lence, and those that deal with similar input programs. We end by

examining incremental verification, a related verification technique.

Client-Specific Equivalence Checking. Clever is the only other

tool that specifically targets the CSEC problem.We described Clever

in Sec. 6.1, and analyzed it extensively in Sec. 6. Clever is effective

when there is a single library call per client path, and when a finite

number of paths is sufficient to solve the CSEC problem. The main

difference between 2clever and Clever is that 2clever targets more

realistic programs, i.e., those with multiple library calls and non-

constant time complexity.

Proving Program Equivalence. Barthe et al. [3] reduce equiva-
lence checking to the task of verifying a product program. Many

others extend this work. For a recent example, Churchill et al. [10]

optimize the construction of the product program by comparing

program traces. We incorporate the reduction idea into our ap-

proach (see Sec. 4.2). However, unlike Barthe et al., our formulation

avoids the need for human input, and unlike Churchill et al., our

main contribution is in the identification of impact boundaries.

SymDiff [24] uses mutual function summaries to check partial

equivalence of two procedures by discharging verification condi-

tions to Boogie [2]. More recent improvements [25] lessen SymD-

iff’s user burden by automatically inferring common invariants.

Unfortunately, SymDiff with this extension is unable to automati-

cally solve our examples. We do not compare 2clever with Barthe

et al., Churchill et al., or SymDiff because they do not disprove

equivalence.

Disproving Program Equivalence. Differential symbolic execu-
tion (DSE) by Person et al. [29] uses symbolic execution to char-

acterize the difference between two programs. DSE is similar to

Clever, but it does not specifically target CSEC. Directed incremental

Symbolic Execution (DiSE) [30] extends DSE. It uses static analy-
sis to guide symbolic execution to areas of the program that are

likely to differ. Shadow Symbolic Execution (SSE) [8] is similar to

DiSE in that it is based on symbolic execution and it prioritizes

the exploration of paths that are likely to expose a difference in

the two input programs. In contrast to DiSE, SSE’s heuristics are

dynamic. Like Clever, none of DSE, DiSE, or SSE are able to prove

equivalence of infinite path programs. For this reason, we do not

compare 2clever with these tools.

Regression Verification.We described Rêve [15] in Sec. 6.1 and

evaluated its performance in Sec. 6. Rêve is similar to the work

by Barthe et al. [3] and Churchill et al. [10]. However, unlike the

former, Rêve is fully automatic; unlike the latter, Rêve is more

sensitive to the syntactic similarity of the input programs; unlike

both, it is able to disprove equivalence. RVT [17] uses a fixed set of

proof rules to prove the equivalence of two related programs. RVT

deals with function calls bottom up, making it difficult to reason

about client contexts. We do not compare against RVT because

it does not disprove equivalence. ModDiff [34] extends DSE with

modular symbolic execution and abstraction. ModDiff is similar

to Clever, but it does not target the CSEC problem, and thus does

not take advantage of the top-down exploration. We also do not

compare against ModDiff because it is unable to handle programs

with multiple library calls.

Incremental Verification. Incremental verification tools aim to

reduce the cost of verifying a system over time by reusing veri-

fication results of previous versions [9, 12, 14, 18, 32]. For exam-

ple, eVolCheck [32] maintains function summaries—logical over-

approximations of the input system’s functions that satisfy the

system’s specification—that are updated if necessary for each new

version of the system. The goal of incremental verification tools

is related to client-specific equivalence checking, but the problem

differs in that it requires specifications.

8 CONCLUSION
In this paper, we defined the notion of impact boundary, and pre-

sented an algorithm, 2clever, that solves the functional CSEC prob-

lem by searching for impact boundaries. We implemented a proto-

type for 2clever and compared it against the state-of-the-art on a

novel set of 568 benchmarks. We found that 2clever’s performance

scales better than the state-of-the-art in terms of the computational

complexity and number of library calls of the input programs.

In the future, we intend to extend 2clever’s applicability, scalabil-

ity, and interface even further. Specifically, we aim to support the

analysis of recursive programs and programs containing variability.

In terms of scalability, we intend to equip 2clever with parallel solv-

ing capabilities. When candidate impact boundaries do not overlap,

they can be checked independently, in parallel, with a potential

of improving performance on inputs with more than one library

call. 2clever’s naive parallelization approach is promising [16], and

we intend to further our explorations in this direction. Finally, in

terms of interface, we intend to study how 2clever can use impact

boundaries to communicate the “reason” for equivalence to client

developers.
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