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Figure 1. EgoLines supports the investigation of temporal patterns in dynamic ego-networks. Here, a 2-level ego-network of academic collaborations
is shown for the author P. Dragicevic (PD). Collaborations between the author, his co-authors, and their co-authors are displayed, indicating how PD
interacts with the other authors during his academic career. Using a subway map metaphor, authors are shown as actor lines across time steps (years;
data absent for 2009). Colors indicate clusters of co-authors who collaborated more frequently with one another. Actor lines are tightly packed to
create blocks of line segments at each time step akin to adjacency matrices. Authors directly connected to PD are indicated using a light-gray convex
hull, similar to fare zones in a subway map. For 2013, the shortest path between the hovered-over author (MA) and PD is traced using curved arrows,
revealing that WW is the connection between them.

ABSTRACT
The egocentric analysis of dynamic networks focuses on
discovering the temporal patterns of a subnetwork around a
specific central actor (i.e., an ego-network). These types of
analyses are useful in many application domains, such as
social science and business intelligence, providing insights
about how the central actor interacts with the outside world.
We present EgoLines, an interactive visualization to sup-
port the egocentric analysis of dynamic networks. Using
a “subway map” metaphor, a user can trace an individual
actor over the evolution of the ego-network. The design of
EgoLines is grounded in a set of key analytical questions
pertinent to egocentric analysis, derived from our interviews
with three domain experts and general network analysis tasks.
We demonstrate the effectiveness of EgoLines in egocentric
analysis tasks through a controlled experiment with 18 par-
ticipants and a use-case developed with a domain expert.
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INTRODUCTION
A network is a ubiquitous data structure found in a range of
application domains that can be used to describe concepts
such as social networks, mobile device connections, and
neural pathways. Many of these networks are dynamic, i.e.,
the topology of a network and/or the attributes of its nodes
and links vary over time, revealing relationship dynamics
in real-world systems. Information visualization techniques
have been shown effective in many scenarios, helping people
understand how these networks change over time [7]. One
key method of dynamic network analysis uses an egocentric
approach. In contrast to whole-network analysis, egocentric
analysis focuses on the local subnetwork around a particular
node, the ego, and its surrounding neighbors, the alters [29].
The ego is the central actor of interest in a particular domain
(e.g., an individual, a device, or a synapse). This subnetwork
is called an ego-network and its boundary is defined in terms
of levels. For example, a 1-level ego-network includes
only alters directly connected to the ego, while a 2-level
ego-network includes all alters within a path distance of two,
and all connections between them. In practice, only 1-level
and 2-level ego-networks are typically considered [29].

The temporal dynamics of ego-networks can provide insight
into how an ego affects, or is affected by alters over time.
For example, medical experts have shown that an individ-
ual’s health is strongly associated with many social factors
(e.g., number of friends) [27]; analysts in management and
business intelligence have made informed decisions about
marketing strategies by identifying and observing the most
influential people in social networks [15]; and computer



networking researchers have enhanced situational awareness
by tracing and studying the context of specific devices in a
mobile ubiquitous system [8]. Each of these insights can be
demonstrated using dynamic ego-network visualizations.

However, most dynamic network visualizations are designed
for analyzing the network as a whole, i.e., at the macro-level
(e.g., [6, 10, 21]), making them ill-suited to egocentric
analysis tasks that are at the micro-level. While one could
partition network data into multiple ego-networks and vi-
sualize each individually, it is difficult to switch between
different ego-networks and perform in-depth comparisons.
Moreover, macro-level visualizations mainly focus on track-
ing changes of the entire network rather than characteristics
of ego-networks. Thus, some egocentric analytical questions
are cumbersome to answer, for example: how do specific ego-
alter relationships (e.g., alter levels) change over time; how do
alter communities evolve (e.g., splitting and merging); what
is the stability of 1-level or 2-level ego-networks?

In this paper, we present EgoLines, an interactive visual-
ization system that supports egocentric analysis of dynamic
networks. As shown in Figure 1, we extract and encode
the 2-level ego-network of a particular actor from a dynamic
network dataset using a subway map metaphor. Much like
a subway map represents individual routes as lines (with
rectangles and circles indicating major and minor stops),
each actor in the ego-network is represented as an actor
line traveling across time steps. Actor lines are carefully
packed together to minimize crossings, whilst revealing the
network topology at each time step in a compact block, akin
to an adjacency matrix. Compared to the basic approach that
shows a dynamic network with a series of matrices (e.g., [6,
4]), EgoLines allows users to better track individual actors
along time (e.g., joining/leaving the network, and switching
between communities). EgoLines also provides an overview
that shows the entire network aggregated across all time
steps, as well as a tabular view with rows displaying the
major characteristics of each extracted ego-network (e.g.,
network sizes and densities). Rich interactions, such as
linking, filtering, and reordering, are incorporated to assist
data exploration in the main visualization (Figure 1), as well
as facilitate coordination across different visualization views.

We distill important egocentric analysis tasks of dynamic
networks from our interviews with three domain experts and
task taxonomies of static and dynamic graph analyses in the
literature [25, 38]. The design of EgoLines is grounded in
these tasks. We conducted a controlled experiment to com-
pare EgoLines with two alternatives: a node-link variation
of EgoLines similar to [19] and a traditional small-multiple
representation (a series of node-link diagrams). Additionally,
a use-case scenario was developed with a domain expert to
demonstrate the usage of EgoLines in performing an egocen-
tric analysis of email communications within an organization.

RELATED WORK
A large body of research has focused on visualizing networks.
Node-link diagrams and adjacency matrices are the two most
common methods for representing static networks. Node-link
diagrams are better suited to topological tasks, since edges are

explicitly encoded, but suffer from increased visual occlusion
when the network becomes larger and denser [23]. While
adjacency matrices have been shown effective and more scal-
able in many graph analysis tasks [18], the abstract encoding
of topology makes it difficult to trace paths between nodes.

Node-link diagrams and adjacency matrices have been ex-
tended to visualize dynamic networks (see [7] for a compre-
hensive survey). In general, there are three main approaches:
animation-based, timeline-based, and a hybrid of the two.

Animation-based techniques were first used to show tran-
sitions across individual snapshots of dynamic networks in
node-link diagrams. Staged animations, i.e., dividing the
animation into several steps such as (i) fading-out removed
elements, (ii) transforming topology, then (iii) fading-in new
elements, are widely employed to reduce the effort required
in tracking changes between time steps [5, 17]. Highlighting
key events (e.g., node or link removal) can also be incorpo-
rated into the staged animations to ease the understanding of
changes [5]. Showing dynamic networks amongst a sequence
of animations, however, could impose a high cognitive load
on users, forcing them to remember the network at different
time steps [3]. This becomes more pronounced when viewing
changes over longer periods of time.

In timeline-based approaches, one method of extending
node-link diagrams is to show each time step as a vertical
line of nodes with arcs indicating links between them [19].
Similarly, parallel edge splatting draws links between two
consecutive lines of nodes and reduces visual clutter using
a pixel-based method [10]. Alternatively, nodes can be
positioned using a circular layout to display time steps on
concentric rings [35]. Although these techniques scale well
for large numbers of time steps, they do not visualize the net-
work topology well due to the restrictive positioning of nodes.
Adjacency matrices have also been used with timeline-based
techniques. For example, MultiPiles represents a dynamic
network as a series of matrices, where each matrix could be
a single time step or an aggregation of several time steps [4].
Cubix employs a 3D cube metaphor to encode time in a third
dimension, and users can interactively spread out slices of
networks [6]. Organizing the matrices in a zigzag manner has
also been proposed [41]. Unlike these techniques, EgoLines
is more space efficient because only the subset of relevant
actors is shown at each time step. Alternatively, Brandes et al.
encoded temporal information within each matrix cell using
Gestalt-lines to reveal bi-directed edge weight changes [9].

There are a few visualizations using the hybrid approach. For
example, DiffAni allows users to divide the whole network
sequence into several aggregation views to show time steps
with differences, animations, and small multiples [31]. Had-
lak et al. proposed an in-situ exploration of dynamic networks
that combined many different visualization techniques such
as node-link diagrams and adjacency matrices [21].

However, all the above techniques are designed for visualiz-
ing temporal variations over an entire network. The nature of
egocentric analysis is to browse specific subnetworks, where
the primary focus of the analyst is on the dynamics between



the individual ego and their alters rather than the overall
topology. Only a few projects have investigated visualizing
dynamic ego-networks, adopting a radial layout where alters
are positioned around the ego and the temporal relationship
between the ego and an alter is encoded along the radius [14,
30]. These visualizations are inappropriate to show 2-level
ego-networks, and alter-alter connections are either missing
or difficult to reveal. This makes certain egocentric analyses
difficult to perform, such as determining where the ego-alter
relationships come from (e.g., one alter introduced by another
alter) or how 2-level alters become 1-level (e.g., sharing more
common friends with the ego) [20]. In contrast to these
techniques, EgoLines better supports such tasks by showing
all connections in dynamic 2-level ego-networks.

Unlike the radial layout, Shi et al. proposed a timeline-based
method to show an aggregated ego-network across time steps
in 1.5D, by drawing node-link diagrams of alters along the
ego’s timeline [33]. However, this makes it difficult to track
specific ego-alter relationships, such as when an alter leaves
or rejoins the network, due to edge crossings. Along the same
line, egoSlider uses glyphs to facilitate the overall comparison
of dynamic ego-networks, but it fails to reveal the network
topologies [39]. ManyNets, which displays decomposed
subnetworks in a table, may be adapted to egocentric analysis
[16], but it does not support temporal information.

Our work is also related to techniques using lines to show
temporal patterns. StoryFlow [26] and StoryLine [34] vi-
sualize entities in a story as timeline paths to illustrate their
dynamic interactions. A similar design was used in TimeNets
for genealogical data [24]. NeuroLines shows branching pat-
terns in synaptic pathways of human brains using a subway
map metaphor [1]. However, these techniques are not suitable
to show dense and dynamic connections among different line
entities, which is required for network analysis.

ANALYTICAL QUESTIONS
To better understand the egocentric analysis of dynamic net-
works, we carried out interviews with three domain experts.
Two of them were computer scientists focusing on graph min-
ing techniques, and one was a management school professor
specializing on social network analysis. With the help of the
experts, we familiarized ourselves with the background and
high-level questions of ego-network analysis. Their focuses
were investigating the temporal evolutions of ego-alter and
alter-alter relationships and of topological change patterns.
Based on these insights, we found there existed some overlap
with the general network analysis tasks discussed in the
literature [25, 38]. Thus, to concretize the tasks, we derived
a set of ego-network analytical questions in corresponding
to the task lists in [25, 38]. Next, we conducted another
round of interviews with the experts to validate the tasks. The
consolidated and revised analytical questions are as follows.

A. On dynamic ego-network evolutions
A1. Birth, death, and recurrence: How long is the lifespan
of an alter in the ego-network? When do alters join, leave,
and rejoin the ego-network?

A2. Convergence and divergence: Do several alter clusters
(i.e., communities of alters) converge into a single cluster?
Does an alter cluster diverge into multiple clusters?
A3. Stability and replacement: Are alters in the ego-
network stable? Are they frequently replaced by new
alters? How often do alters come and go?
A4. Attributes trending: Does the overall size of the
ego-network grow or contract over time? How about the
numbers of 1-level and 2-level alters? Does a specific
attribute value (e.g., betweenness centrality [29]) of the
ego or an alter increase or decrease? Are there peaks and
valleys in these trends?

B. On specific ego-network time steps
B1. Adjacency and accessibility: Who is directly con-
nected to the ego or an alter? What are the shortest paths
connecting the ego and an alter, or two different alters?
B2. Connectivity: Who are the common connections of the
ego and an alter, or two different alters? What clusters
of alters exist in the ego-network? Who are the bridges
between clusters?
B3. Accessing attributes: What is a specific attribute value
(e.g., betweenness centrality) of the ego or an alter? What
about attributes on a connection?

C. On the whole network
C1. Overview, focus, and context: What does the entire
network look like? Where is the current ego-network with
respect to the entire the network? What other ego-networks
are near the current ego-networks? How about the above
questions at a specific time step?
C2. Distributions: What are the overall temporal distribu-
tions of certain metrics (e.g., the number of actors) of an
ego-network? What do the distributions look like across
all ego-networks extracted from the whole network? Are
there similarities between two ego-networks in terms of
these metrics?

EGOLINES
Here, we describe the design of EgoLines that was guided
by the aforementioned analytical questions. The EgoLines
interface consists of three interactively coordinated views
(Figure 2): (a) a main view showing the selected ego-
network, (b) an overview of the entire network, and (c) a table
view summarizing all ego-networks and their characteristics.

Core Visualization
We employ a subway map metaphor to reveal the evolution-
ary patterns of a dynamic ego-network (Figure 1). Each actor
(the ego and alters) in the network is represented as an actor
line from the time step when the actor first joins the network
to the time step when he/she last appears, where dashed
lines indicate temporary absences. Representing temporal
information as lines has proven intuitive and effective [26,
34]. It allows a user to identify the lifespan of an actor in the
ego-network and pinpoint the events of entering and leaving
the network (A1). Users can also observe the stability of an
ego-network by viewing the lengths of the lines (A3). For
example, a large number of shorter actor lines indicates that
there are frequent turnovers of alters in the ego-network.



CZ
MG
DK
AS
GW
DL
HL
SS

ZW
AG
TG

WD
TB

ES

RK

RC

CZ

WR
DHJ

HL
FS

BF

DK
TG

WD
TB

ES

RK

RC

CZ

WR
DHJ

HL
FS

ME

RR

MH

XW

WD
TB

ES

RK

RC

CZ

WR
DHJ

HL
FS

LH

SS
JF
SJ
AL
JL

XW

WD
TB

RC

CZ

WR
DHJ

LH
EB
RC
EB
AY

RJ
HG
CG
CB
AL
JL
RC
CZ
LH
EB
RC
AO
SG
DL

2008

ZW AG TG W
D

TB ES RKRC CZW
R

DH
J

HL FS BF

2009

DK TG W
D

TB ES RKRC CZW
R

DH
J

HL FS M
E

2010

RRM
H

XWW
D

TB ES RKRC CZW
R

DH
J

HL FS LH

2011

SS JF SJ AL JL XWW
D

TBRC CZW
R

DH
J

LH EB RC EB AY

2012

RJ HG CG CB AL JL RC CZ LH EB RC AO SG DL

a

b
c

d
i

ii

iii

RK
CZ

ZW
AG
TG

WD
TB

ES

RC

WR

HL
FS

2008

JF
JY
ES
RC

WR

2007

JF JY ES ES RKRC CZW
R

M
G

DK AS GW DL HL SS

20072007 new actor

pre-existing actor

temporally absent actor

connectionconnectionconnectionconnectionconnectionconnectionconnectionconnectionJYconnectionJY ESconnectionES ESconnectionES RKconnectionRKRCconnectionRC CZconnection CZW
R

connectionW
R

JY actor lineactor lineactor lineactor lineactor lineactor lineactor lineactor lineactor lineactor lineactor lineactor lineactor line

temporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor linetemporally absent actor line

ES0ES0ES 1 222 3 444 actor clusteractor clusteractor clusteractor clusteractor clusteractor clusteractor clusteractor clusteractor clusteractor clusteractor clusteractor clusteractor clusteractor clusteractor cluster

W
D

TB

Figure 2. The EgoLines interface consists of four UI components: a) a main view showing the current selected ego-network, b) an overview displaying
the entire network, c) a table view listing all the extracted ego-networks, and d) a toolbar for accessing different system functions. In the main view,
line colors indicate the clusters of actors in the ego-network. In 2010, lines are sorted by clusters, which illustrates that the orange and purple clusters
merged into one in the next year. Also, it indicates the highlighted actor (WD) was a bridge that connected all the clusters.

Actor lines are color-coded with different actor attributes
on demand, including both categorical and numerical (dis-
crete or continuous) attribute values. This allows a user
to observe changes in attributes over time. For example,
when encoded with alter cluster categories, which represent
alter communities in the ego-network, Figure 2-a(ii,iii) shows
that the orange and purple clusters in 2010 merged into one
big (purple) cluster in 2011 (A2). Color gradients are also
used to ease the viewing of cluster transitions. Moreover,
when colored with betweenness centrality—which reflects
an actor’s influence on the transfer of items through the
network [29]—interesting temporal patterns can emerge. For
example, in Figure 4 JF (the second actor from the top) had a
valley of the metric in 2013, suggesting that JF’s impact was
lower than usual in that year (A4).

At each time step of an actor line, the actor is indicated as
white rectangles (actor nodes), similar to the major stops of
a subway. For the actor nodes, a squared-corner rectangle
indicates the start of the actor line (i.e., first joining into
the network), and a rounded-corner rectangle indicates a
subsequent occurrence. Further, dashed borders represent an
absence of the actor at the time step (A1). For example,

in Figure 1 that shows the academic co-authorship network
centered at PD, FC collaborated with the ego PD in 2010,
stopped for 3 years, and collaborated with PD again in
2014. The actor’s connections to others within each time
step are rendered as small white circles (connection dots),
like minor stops of a subway. Since the actor lines are tightly
packed together, they form a block of line segments at each
time step where the connection dots display the ego-network
topology in a representation akin to an adjacency matrix.
Taking advantage of the matrix representations [2, 6], users
can perform topological analysis tasks on denser and larger
networks (B1, B2). The size of these blocks also reveals
the overall growth or contraction of ego-networks (A4). To
pack actor lines for revealing network topologies in matrices
while maintaining an aesthetic layout with fewer crossings
and bends, an algorithm similar to [11] is employed using an
inside-out heuristic (Figure 5).

The design of EgoLines is sufficiently general and can repre-
sent different types of ego-networks, in addition to undirected
unweighted networks as described above (Figures 1,2). Fig-
ure 3-a shows a weighted ego-network where the connection
dots indicate their weights using color density. To enhance
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Figure 4. Visualizing the ego-network of P. Dragicevic (PD) using an
unpacked view, compared to the compact view in Figure 1. The line
colors indicate the betweenness centrality of actors at different time
steps using a white-purple color scheme. By tracing the color of the
actor line of JF, a valley of the betweenness centrality metric is observed
in 2013 (magnified here).

the perception of the connection weights, the outline color of
the actor lines is used to encode the original actor attributes,
from which users can access property values associated with
both actors and connections (B3). Moreover, Figure 3-b
shows a directed ego-network where white dots and black
crosses indicate out-going and in-coming connections respec-
tively, relative to the actor represented by the actor line.

Interaction
EgoLines incorporates rich interactions to support various
egocentric analysis tasks of dynamic networks. Smooth
animations are employed to ease a user’s understanding of
the changes between visual states.

Unpacked view. The user can split the above compact
visualization into a list of actor lines that are displayed
separately (Figure 4). The actor lines are sorted by their
starting time and then length. Since all the lines are straight,
this view is convenient for certain analysis tasks, such as
browsing characteristics of actor lifespans (A1) and tracing
specific attribute values (A4). However, it is less space
efficient and breaks-up the adjacency matrix layout.

Alter levels. To observe patterns of only 1-level or 2-level
alters, the user can reveal the alter boundary of the 1-level
ego-network with a light-gray convex hull, which is akin to
fare zones in a subway system (Figure 1). This can be used to
determine the change of the 1- or 2-level network sizes over
time (A4). The packing algorithm described above further
satisfies the restriction of placing 1-level alters closer to the
ego. However, this may introduce more crossings.

Line reordering. The user can reorder the actor lines accord-
ing to the visualized actor attribute (e.g., cluster categories) at
a given time step. Line segments of the same actors in other

Input: Actor lines Ai : (si, ni) with starting time step si and length ni
Output: Packing positions of actor lines at each time step PAi : [p1, . . . , pni ]
sort Ai by ni in descending order ; /* use stable sort */
sort Ai by si in ascending order ; /* use stable sort */
PA0 ← [0, . . . , 0] ; /* the earliest and the longest one */
S up ← 0, S down ← 0, Lup ← [0, . . . , 0], Ldown ← [0, . . . , 0];
foreach Ai in the rest of the sorted list do

if S up < S down then /* place above */
S up ← S up + ni;
for j = si to si + ni − 1 do

Lup[ j]← Lup[ j] + 1, PAi [ j − si]← −Lup[ j] ;
else /* place below */

S down ← S down + ni;
for j = si to si + ni − 1 do

Ldown[ j]← Ldown[ j] + 1, PAi [ j − si]← Ldown[ j] ;

Figure 5. Actor lines reordering algorithm.

time steps are also reordered to avoid too many crossings.
This could be useful to identify bridges of a network (B2).
For example, Figure 2-a(i) shows that the highlighted alter
WD is a bridge (other than the ego RC) connecting the
orange, green and purple alter clusters in 2010, since WD had
connections spreading across all the clusters.

Filtering. Several data filtering mechanisms allow the user to
exclude actor lines above and below user defined thresholds,
such as the alter’s lifespan length (A3), start and end time
steps (A1), or alter level (A4).

Highlighting. When the user hovers over an actor node, oc-
currences of that actor in other time steps are highlighted, as
well as the associated actor line. The corresponding column
in the matrix block is also visually emphasized. Similarly,
when a connection dot is hovered over, connections of that
actor are highlighted across the whole visualization. These
features can help users identify the presence and absence of
the same actor over time. When needed, the user can choose
to overlay grids to increase the matrix readability (Figure 2).

Paths. When an alter is hovered over, a series of curved
arrows trace the shortest paths from that alter to the ego
(B2), using a similar visualization proposed by Sheny et al.
[32]. This addresses the recognized inefficiency of adjacency
matrices for tracing paths [18]. For example, Figure 1 shows
the shortest path from the highlighted alter MA to the ego
PD via WW. The ego is the default sink for calculating these
shortest paths, but any actor can be selected as a sink to view
the shortest paths. The overlay of shortest paths can also be
locked with a right click, allowing further investigation of
actors along those paths.

Overview and Network Table
To support high-level analysis tasks, EgoLines offers an
overview of the entire network and a table view of all 2-level
ego-networks extracted from the data.
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Figure 6. Dynamic ego-networks visualization techniques compared in
the study (all showing the same data): a) EgoLines (EL), b) node-link
diagrams visualization (NL), and c) small multiples visualization (SM).

The overview shows an aggregation of the whole network
across all time steps in a node-link diagram (Figure 2-b). The
size of a node indicates the number of time steps where the
actor exists in the dataset. The thickness of a link indicates
the total occurrences of that specific connection. The selected
ego-network is highlighted with the ego in red and alters in
orange. This provides data context (C1), allowing users to
easily navigate to ego-networks of surrounding actors (by
clicking the desired node). To browse the entire network
along time steps, a user can drag a slider to fade out non-
related nodes and links with animations (C1).

EgoLines lists all the extracted ego-networks in a table similar
to [16] (Figure 2-c). Each row represents an ego-network, and
the columns show temporal distributions of different graph
metrics in small histograms, such as vertex or edge numbers,
and edge-vertex ratios. The x-axes of the histograms are
aligned by time, allowing users to spot trends, discover
similar ego-networks based on the metrics, and find missing
time steps in the data (C2). A user can then select a table row
to display the ego-network in the main view. Searches and
sorting by the metric of each column are also supported.

CONTROLLED STUDY
We conducted a user study to assess the strengths and weak-
nesses of EgoLines for the analysis of dynamic ego-networks,
comparing EgoLines against two other techniques. We
focused on the core visualization showing a specific dynamic
ego-network (i.e., addressing analytical question sets A and
B), since the node-link overview and the table view have
already been studied [5, 16]. The experiment used 2-level
ego-networks extracted from an undirected and unweighted
temporal academic co-authorship network derived from [22].

Techniques
In addition to EgoLines (EL), we considered two other
timeline-based techniques: a node-link diagram based visu-
alization similar to [19] (NL), and the most common small
multiples visualization of dynamic networks (SM). They used
the same visual language as EgoLines. In NL (Figure 6-b),
the same layout of actors was maintained and similar lines
connected the same actors at different time steps. The nodes
were color-coded, since the actor lines might be occluded by
the links. In SM (Figure 6-c), a force-directed layout was
used to display a time step with a node-link diagram.

T1 What years did person first join and last leave the network? A1
T2 Did person ever leave and rejoin the network? If so, what year

did he/she first rejoin the network?
A1

T3 Who had the longest relationship with the ego? A1
T4 Did the overall network size increase or decrease in year1–year2? A4
T5 Did the 1-level network size increase or decrease in year1–year2? A4
T6 Did cluster1 and cluster2 in year integrate into one next year A2
T7 Did cluster in year split into multiples next year? A2
T8 How many people had relationships with the ego for n+ years? A3
T9 How many people were directly connected to the ego in year? B1

T10 Was person directly connected to the ego? If not, how many
shortest paths connected him/her to the ego?

B1

T11 Who had the largest number of connections in year? B1
T12 Who were the common connections between the ego and person? B2
T13 Who bridged cluster1 and cluster2 in year? B2

Table 1. Experimental tasks (columns from left to right: task number,
task description, and analytical question type).

For simplicity, the filtering operations in all three techniques
were disabled, but interactive highlighting was supported.
For example, when hovering over an actor, all the connections
of that actor were revealed, as well as occurrences of that
actor in other time steps. With SM, a user could expose
all 1-level alters with a gray outlined region (corresponding
to the boundary of 1-level ego-network in EL and NL), and
could reposition actors to eliminate occlusions. Further, the
color gradients on actor lines in EL were removed to have a
fair comparison, as the colors in SM were rendered discretely.

Participants and Apparatus
We recruited 18 volunteers, 13 males and 5 females, aged 23–
34 (µ=27.6,σ=3.5). All of them had some familiarity with the
data domain, i.e., academic publications and co-authorships,
but not this particular dataset. Participants were from various
backgrounds, including science, engineering, humanities, and
economics. All had normal or corrected-to-normal vision
without color vision deficiency. The experiments were con-
ducted on a desktop computer (2.53GHz Intel Xeon CPU,
24GB memory) with a 24′′ monitor. The effective area of
the visualization on screen was 1600×1200 pixels.

Tasks and Design
We developed 13 tasks about the academic co-authorship
network data based on the aforementioned analytical ques-
tions for dynamic ego-networks (Table 1). We focused on
topology-centric tasks (i.e., A1-3 and B1-2) and high-level
attribute-centric tasks (i.e., A4: network size trends), since
low-level attribute retrievals (B3) are included in some other
tasks (e.g., obtaining the cluster of an alter in A2). Each
task included a multiple-choice question (with at least four
choices) and a visualization showing data specific to the ques-
tion. In addition to these choices, there was a “do not know”
option to discourage random guessing. Participants were
presented with the three techniques in a counter-balanced
order. Within each technique, they completed two repetitions
of the 13 tasks, in which the tasks were shown in a fixed order.
Thus, the whole study contained 3 techniques × 13 tasks × 2
repetitions = 68 trials. To avoid duplications, six alternative
questions with similar levels of difficulty (in terms of data size
and visual complexity) were developed for each task. The
six task sets (3 techniques × 2 repetitions) were randomly
generated from the alternatives for each participant.



Q1 Technique X was easy to learn. general
Q2 Technique X was easy to use. general
Q3 Technique X helped discover people relationship events

(joining and leaving).
A1

Q4 Technique X helped discover people relationship lengths. A2
Q5 Technique X helped discover changes in clusters (merging

and splitting).
A3

Q6 Technique X helped discover network size trends (1- and
2-level).

A4

Q7 Technique X helped discover connections of a specific
person (direct and indirect).

B1

Q8 Technique X helped discover paths between two people. B2
Q9 Please rank the three techniques with preferences. preference

Table 2. Questionnaire (X=EL/NL/SM). Responses are collected (except
Q9) using a 7-point Likert scale (strongly disagree to strongly agree).

Procedure
The study began with a brief introduction to the data domain
and the three visualizations. Participants were then asked
to try all techniques with an example ego-network to learn
the system features. After that, for each technique, they
completed a training block and then a testing block.

During training, participants were instructed to think aloud,
and the investigator helped answer questions and overcome
difficulties. The training block was the same for all partici-
pants, comprised of the same six tasks (T1, T2, what was the
network size in year, how many clusters in year, T9, T12)
on the same dataset. The training tasks and dataset were
different from those in the actual experiment. Participants
were prompted for the correct answer after every trial, and if
they answered incorrectly, they needed to go back to the same
task to figure out why.

In the testing block, participants went through 26 tasks for
the technique. There was no time limit to complete any of
the trials, but to avoid frustration on difficult tasks, a dialog
popped up every minute asking participants if they needed
more time or wanted to skip the task. Task completion times
and participant answers were recorded. We also conducted
observations and screen-captured the entire session. After
the study, participants completed a post-study questionnaire
(Table 2). The study lasted around 1.5 hour.

Results
Here we report results obtained from the controlled study.
We compared the three techniques by their task completion
times, task error rates, and participants’ preferences. For
every technique, we computed the completion time (correctly
answered) and the error rate of each task for each partici-
pant by averaging corresponding trials. We then calculated
the means and 95% confidence intervals (CI) by taking all
participants into consideration (Figure 7).

Completion Time
Across all tasks, EL achieved the fastest average task com-
pletion time (17.5s, CI: [14.5, 19.6]), compared to NL (21.2s,
CI: [17.7, 23.4]), and SM (23.8s, CI: [20.0, 26.7]). There
were a larger effect between EL and SM, and a smaller effect
between EL and NL.

For temporal tasks about dynamic ego-network evolutions
(T1-8, analytical question set A), we observed time perfor-
mance effects: EL and NL were, in many cases, faster than
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Figure 7. Completion times and error rates of all three techniques
for each task. Error bars indicate 95% confidence intervals (n = 18)
estimated using bootstrap [37]. Completion times include correct trials
only, and zero error rate indicates no mistake at all.

SM (except for T4, T5, T6, for which there is no observable
effect), with strong evidence that EL and NL has a substantial
advantage over SM for tasks T3 and T8 (requiring assessment
of relationship lengths). This was reasonable as the actor lines
in EL and NL could help users discover low-level temporal
patterns (A1-3). Overall, EL and NL had similar completion
times in T1-8. This could be because the main differences
between the two techniques rests in representing the topology
of time step networks (i.e., matrices v.s. node-links), which
was not used by participants in temporal tasks.

For topological tasks about specific ego-network time steps
(T9-13, analytical question set B), there is evidence to support
that EL performed the best in T9-12, which substantiates the
benefits of adjacency matrices in browsing network topology
(B1-2) [18]. Especially in T11 (finding the most connected
actor), EL showed an important improvement in completion
time. Surprisingly, EL performed much worse than SM in
T13 which consisted of finding bridges between clusters.
We thought that the bridge pattern was obvious after cluster
sorting in EL, e.g., through observing the connections in the
WD column in Figure 2-a(i). However, this requires in-depth
understanding of adjacency matrices, which explain the lower
performance. The large confidence interval of EL also reflects
the variance of participants’ comprehension. In general, NL
performed the worst in these tasks, which could be due to
visual clutter of the links. Although visual clutter also existed
in SM, the level of complexity seemed more impactful when
aligning actors linearly in NL.

In short, EL and NL achieved similar performance in tempo-
ral tasks, but NL’s performance clearly dropped in topological
tasks. SM was not suited for temporal tasks but had advan-
tages in topological tasks. However, there is evidence that
SM is slower than EL for topological tasks.

Error Rate
Overall, EL had the lowest error rate (5.6%, CI: [3.8%,
7.4%]) compared to NL (10.3%, CI: [6.2%, 14.7%]) and SM
(12.4%, CI: [9.6%, 17.9%]), and EL had the smallest 95%
CI—revealing lower variations in error rates (Figure 7).
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Figure 8. A summary of participant responses to the questionnaire
(Table 2). The first three columns show detailed distributions of
ratings (7-point Likert scale) and rankings (from the most to the least
preferred), and the last column shows median ratings.

Within temporal tasks (T1-8), there are three tasks in which
EL had zero errors across all participants (T1, T2 and T4).
There is fair evidence that EL outperforms the two other
techniques for T6 and T8, which were related to cluster
changes (A2) and network stability (A3). The large vari-
ation in these tasks, as indicated by the large CIs, call for
further examination. In other tasks (T3, T5 and T7), the
results are largely inconclusive, with EL having comparable
performance to NL or SM, whichever had fewer errors. For
topological tasks (T9-13), there is strong evidence that EL
outperforms NL and SM on tasks T9 and T12, with a null
error rate. EL also seemed to yield fewer errors in T10, but
the effect is uncertain. These latter three tasks all related
to both accessibility and connectivity (B1-2). Overall, our
results support the advantages of adjacency matrices [18],
except for finding the shortest paths, which yielded high
performance variations. Finally, there is good evidence that
SM is the best suited for T13 (finding the bridge). It could be
because the force-directed layout made the bridge between
two densely-connected clusters visually salient. In summary,
the overall benefit of EL on accuracy is observable, but our
results suggest that a future redesign of the time step blocks
(adjacency matrices) are needed to make T13 less abstract.

Questionnaire Results
From participants’ ranking of the three techniques (Q9,
Table 2), EL was the most preferred, with 13 out of 18
users ranking it first. Figure 8 shows detailed questionnaire
results. EL and NL received similar ratings in Q1-6 which
were related to overall impressions (Q1-2) and temporal tasks
(Q3-6). Except for the ease of learning (Q1)—for which EL
and NL were rated a bit lower than SM overall, participants
consistently preferred these two techniques over SM. For
topological tasks, NL was less popular. For example, in Q7
(finding connections), EL and SM were more favored (by 1
in median rating); EL was the most preferred in identifying
paths (Q8) which might be due to the curve overlay.

USE-CASE SCENARIO
To study the effectiveness of the entire EgoLines system
in practice, we conducted two one-hour interview sessions
with a domain expert who is a professor at the management
school of a university. His research focuses on analyzing the
social dynamics of people in large organizations and online

communities. He uses many egocentric analysis methods to
study patterns of interactions between individuals and their
close social networks. In the first interview, we introduced the
EgoLines interface with the academic collaboration dataset
and discussed potential usages of the tool. In the second
session, we asked the expert to explore a dataset matching his
research interests and conducted an in-depth discussion with
him. The dataset was an email communication network of
employees at Enron, a bankrupted company due to its finan-
cial scandals, which contained emails among 142 employees
from Nov. 1998 to Jun. 2002 [13]. We constructed a dynamic
network based on email exchange with the time step set to
one month, resulting in weighted networks with connection
weights representing the numbers of emails exchanged be-
tween two people. With the help of our expert user, we
derived the following use-case of EgoLines.

From this Enron email exchange network data, the ana-
lyst aims to explore communication networks centered at
influential people of the company (i.e., ego-networks) that
reflect evolutionary patterns of people’s relationships across
time. The analyst wants to identify overall differences and
similarities of these ego-networks, as well as to investigate
career developments of these key people, social interactions
among them, and their relations to important events during
the financial scandal.

After loading the data into EgoLines, the analyst first browses
the overview by dragging the time slider (Figure 9-a) to
observe the growth of the company: the size of the whole
network becomes larger and larger (C1). Then, the analyst
sorts the ego-networks in the table view by density (Figure 9-
b). Two Enron CEOs (at different times of the company),
D. Delainey and J. Lavorato, are ranked at the top. The
analyst wonders what other CEOs’ ego-networks look like.
Using the search box, the analyst further finds two other
CEOs, J. Skilling and K. Lay, according to the company’s
profile. From the histograms that summarize distributions of
key metrics of the dynamic ego-networks, he observes that
although all four CEOs have similar lengths of tenure (20–28
months), Delainey and Lavorato seem to maintain relatively
larger and more constant ego-networks than the other two
CEOs (C2). Next, the analyst quickly examines the ego-
networks of the four CEOs in the main view. Using filtering
operations on alter levels and relationship lengths, he further
confirms the above observations and finds that Delainey and
Lavorato both have more stable 1-level ego-networks across
time than the other two CEOs (A3).

The analyst then focuses on Skilling’s 1-level ego-network,
because he is the key player in the financial scandals ac-
cording to the public information (Figure 9-c). He first
spots two anomalies of Skilling’s ego-network in terms of
size: significant peaks and more clusters in Apr. 2001 and
Aug. 2001 (A4), as shown in Figure 9-c(i,ii). The former
coincides with the incident when Skilling verbally attacked
Wall Street analyst Richard Grubman who questioned En-
ron’s unusual accounting practice; and the latter corresponds
to his resignation as the CEO. By switching the view to
show connection weights as color density, the analyst further
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Figure 9. Using EgoLines to explore a dynamic network of email communications among employees at Enron. a) The overview shows the structure of
the entire network. b) The table view reveals general patterns in temporal distributions of several network metrics. The main view visualizes the 1-level
dynamic ego-network of a specific individual: c) Jeff Skilling (JF) and d) Kenneth Lay (KL), the two Enron CEOs (in different time of the company).

identifies the most email exchanges in Apr. 2001 happened
between LK (L. Kitchen, President) and SB (S. Beck, COO)
regarding: Management Team Changes, which could reflect
Skilling’s later resignation (Figure 10). The analyst then
switches to the unpacked view that shows each actor line
in a row, and he finds that SK (S. Kean, Vice President)
and LK had the longest relationships with Skilling (A1),
where the starting and ending time steps are indicated in
Figure 9-c(iii,iv). However, the analyst is intrigued that
the actor line of KL (K. Lay, the next CEO) is very short
(Apr.-Aug. 2001), suggesting that Lay and Skilling did not
have much interaction (Figure 9-c(v)). With KL selected in
Apr. 2001, the analyst hovers over a number of actors and
reveals the shortest paths from them to KL. Although KL only
had five connections in that month, four of them connected
him to many key persons at Enron, such as DD (D. Delainey,
the former CEO) as shown in Figure 9-c(vi) (B1, B2).

Further, the analyst opens Kenneth Lay’s ego-network in
the main view, and immediately finds its size soared in
Aug. 2001 when Lay became the CEO (Figure 9-d); and so
did the number of clusters. Lay was also the central bridge,
since his connections spread across multiple clusters (B2),
as seen from the KL column in Figure 9-d(i). But only

a few coworkers (mostly in higher management level) had
continued communications with KL, who are mainly in the
light green cluster (Figure 9-d(ii)). The ego-network shrank
dramatically and ended in Jan. 2002 when Lay resigned the
CEO. One of the last emails associated with him had the
subject: A solution for Enron global financial problem. With
the unpacked view, the analyst examines people who had
the longest relationships with Lay, which turns out to also
having SK and LK (Figure 9-c(iii,iv)), similar to Skilling.
This illustrates the social science concept, ghost ties [28]:
Skilling and Lay had stronger ties than it appeared, although
they only had four months (including two months absence) in
each other’s ego-networks (Figure 9-b(v),c(v)).

DISCUSSION
Although both EL and NL were both likely to be unfamiliar
to participants, the results indicate they were not hard to
learn and much easier to use than SM (Figure 8). Still, we
observed that some participants chose suboptimal approaches
when completing certain tasks, which indicates that EL and
NL require some training to acquire the right reflex. For
example, in T5 (1-level ego-network size trends), some users
remembered the feature of showing the boundary of 1-level
networks, but some just hovered over the ego in each year to
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Figure 10. Revealing connection weights (email exchanging frequencies)
of Skilling’s ego-network with the color density of connection dots.

count its direct connections (i.e., the dots or links). Similarly,
for assessing the relationship lengths between the ego and
alters (T3 and T8), the unpacked view (Figure 4) supported in
EL and NL definitely makes the task much easier, but several
participants insisted on using the default compact view. Thus,
the learning of new visualization techniques includes not only
familiarity of novel visual encodings, but also the ability of
reasoning hand-to-hand with the visualization, which requires
a good understanding of the features and what analysis
they enable. Another interesting observation was that some
participants prompted “Wow, a subway map?” before we
even introduced the visual encodings of EgoLines. Applying
the subway map metaphor made the visualization more un-
derstandable and memorable to the general audience. Several
participants used the metaphor in solving tasks, saying to
themselves: “The green line stops here...I can change line
here”. It was also found more effective to communicate with
the visual encodings in plain terms such as “subway lines”
and “stops” rather than jargons such as “adjacency matrices”.

The results of both studies indicate the effectiveness and
usefulness of EgoLines in performing egocentric analysis on
dynamic networks. Yet, there are still several limitations.
First, EgoLines might not scale well to dynamic networks
very long in time that generate very large visualizations.
Aggregations of multiple time steps into one network with the
spirit of MultiPiles [4] could solve this issue. Second, when
the number of actors in the network becomes larger, the ma-
trix representation of each time step grows and may include
many empty rows indicating the absence of actors. However,
EgoLines could be extended with multi-scale exploration,
such as grouping actors into hierarchical clusters [12], and
an option to hide the dashed actor line segments temporarily.
Third, larger datasets may also result in more crossings of
the actor lines, so advanced layout algorithms (e.g., [34])
need to be applied to generate a clearer visualization. Fourth,
EgoLines did not show advantages in finding bridges, which
could be very effective if users understood the notion of
adjacency matrices better, suggesting that more intuitive
visual designs are warranted. Last, the overview of EgoLines
(Figure 2-b)—that is not the focus of this paper—can be
enhanced with filtering and aggregation techniques (e.g., [36,
40]) to reduce the visual clutter.

While we conducted extensive evaluation of EgoLines with
both quantitative and qualitative methods, there still exist
limitations in the studies. First, we compared three signif-
icantly different techniques in the controlled study. But it
is an interesting future work to assess the effect of Ego-

Lines’ subway map metaphor design compared to traditional
approaches using sequential adjacency matrices (e.g., [6, 4,
41]). Second, we used citation networks and email communi-
cation networks as the testing datasets, which may not reflect
experimental results with other types of networks, such as
large brain neural pathways. Third, in this paper we focus
on egocentric analysis of networks, so the study results may
have limited implication on whole network analysis for which
most existing techniques are designed.

It is also worth noting that although EgoLines is designed
for dynamic ego-networks analysis, the main visualization
(Figure 2-a) can be applied for visualizing general dynamic
networks by not differentiating ego and alters. Many of the
functions, such as sorting actor lines, filtering with lengths
and starting and ending time, remain useful in such more
general setting. Moreover, weighted and directed dynamic
networks can be visualized in the same manner introduced in
Figure 3. As a convention of egocentric analysis, we currently
only consider ego-networks containing alters up to two steps
away from the ego, but EgoLines is not restricted to visual-
izing 2-level ego-networks. Further, the visual metaphor of
alter boundary can be certainly extended to multiple levels
by placing alters with different distances gradually from the
center in different colored zones. But this may introduce
more crossings as the network size grows, and a method for
neatly aggregating actors are required.

CONCLUSION AND FUTURE WORK
We have presented EgoLines, an interactive visualization for
assisting egocentric analysis of dynamic networks. EgoLines
provides a novel visual design that represents a dynamic
ego-network using a “subway map” metaphor. In addition,
it offers an overview and a table view to support the browsing
of all extracted ego-networks with high-level context and ag-
gregations. The design of EgoLines was guided by a series of
dynamic ego-network analytical questions that were derived
from interviews of experts and the literature. An experiment
comparing different dynamic network visualizations and a
case study of real-world data suggested that EgoLines is
effective and useful in conducting ego-network analysis.

In the future, we would like to address the scalability of the
main EgoLines visualization (Figure 2-a) by developing and
integrating the techniques discussed above. We also plan to
experiment with different designs to enhance the efficiency
of EgoLines in completing tasks related to finding bridges in
networks. Moreover, we wish to conduct more case studies of
EgoLines with real-world scenarios, and evaluate the design
in visualizing more general dynamic networks.
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J. Stasko. 2015. Visualization Publication Dataset.
http://vispubdata.org.

23. R. Keller, C. M. Eckert, and P. J. Clarkson. 2006.
Matrices or Node-link Diagrams: Which Visual
Representation is Better for Visualising Connectivity
Models? Information Visualization 5, 1, 62–76. DOI:
http://dx.doi.org/10.1057/palgrave.ivs.9500116

http://dx.doi.org/10.1109/TVCG.2014.2346312
http://dx.doi.org/10.1145/2470654.2470724
http://dx.doi.org/10.1109/TVCG.2010.78
http://dx.doi.org/10.1111/cgf.12615
http://dx.doi.org/10.1109/TVCG.2013.254
http://dx.doi.org/10.1145/2556288.2557010
http://dx.doi.org/10.1145/2333112.2333119
http://dx.doi.org/10.1109/TVCG.2011.169
http://dx.doi.org/10.1109/TVCG.2011.226
http://dx.doi.org/10.1109/TVCG.2008.166
http://dx.doi.org/10.1109/PACIFICVIS.2008.4475479
http://dx.doi.org/10.1109/PACIFICVIS.2008.4475479
http://enrondata.org
http://www.thinkmind.org/download.php?articleid=achi_2011_4_20_20100
http://www.thinkmind.org/download.php?articleid=achi_2011_4_20_20100
http://dx.doi.org/10.1109/MIC.2005.114
http://dx.doi.org/10.1145/1753326.1753358
http://dx.doi.org/10.1007/3-540-44541-2_37
http://dx.doi.org/10.1057/palgrave.ivs.9500092
http://dx.doi.org/10.1111/j.1467-8659.2009.01451.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01451.x
http://dx.doi.org/10.1016/j.socnet.2004.11.004
http://dx.doi.org/10.1109/TVCG.2011.213
http://vispubdata.org
http://dx.doi.org/10.1057/palgrave.ivs.9500116


24. N. W. Kim, S. K. Card, and J. Heer. 2010. Tracing
Genealogical Data with TimeNets. In Proc.
International Conference on Advanced Visual
Interfaces. 241–248. DOI:
http://dx.doi.org/10.1145/1842993.1843035

25. B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and
N. Henry. 2006. Task Taxonomy for Graph
Visualization. In Proc. AVI workshop on BEyond time
and errors (BELIEVE). 1–5. DOI:
http://dx.doi.org/10.1145/1168149.1168168

26. S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu. 2013.
StoryFlow: Tracking the Evolution of Stories. IEEE
Transactions on Visualization and Computer Graphics
19, 12, 2436–2445. DOI:
http://dx.doi.org/10.1109/TVCG.2013.196

27. A. J. Omalley, S. Arbesman, D. M. Steiger, J. H. Fowler,
and N. A. Christakis. 2012. Egocentric social network
structure, health, and pro-social behaviors in a national
panel study of Americans. PLoS One 7, 5, e36250.
DOI:
http://dx.doi.org/10.1371/journal.pone.0036250

28. M. Papagelis, F. Bonchi, and A. Gionis. 2011.
Suggesting Ghost Edges for a Smaller World. In Proc.
International Conference on Information and
Knowledge Management. 2305–2308. DOI:
http://dx.doi.org/10.1145/2063576.2063952

29. C. Prell. 2011. Social Network Analysis: History, Theory
and Methodology. SAGE. https://us.sagepub.com/
en-us/nam/social-network-analysis/book231856

30. F. Reitz. 2010. A Framework for an Ego-centered and
Time-aware Visualization of Relations in Arbitrary Data
Repositories. CoRR - Computing Research Repository
abs/1009.5183. http://arxiv.org/abs/1009.5183

31. S. Rufiange and M. J. McGuffin. 2013. DiffAni:
Visualizing dynamic graphs with a hybrid of difference
maps and animation. IEEE Transactions on
Visualization and Computer Graphics 19, 12,
2556–2565. DOI:
http://dx.doi.org/10.1109/TVCG.2013.149

32. Z. Sheny and K.-L. Maz. 2007. Path Visualization for
Adjacency Matrices. In Proc. Joint Eurographics / IEEE
VGTC Conference on Visualization. 83–90. DOI:http:
//dx.doi.org/10.2312/VisSym/EuroVis07/083-090

33. L. Shi, C. Wang, and Z. Wen. 2011. Dynamic network
visualization in 1.5 D. In Proc. IEEE Pacific
Visualization Symposium. 179–186. DOI:http:
//dx.doi.org/10.1109/PACIFICVIS.2011.5742388

34. Y. Tanahashi, C.-H. Hsueh, and K.-L. Ma. 2015. An
Efficient Framework for Generating Storyline
Visualizations from Streaming Data. IEEE Transactions
on Visualization and Computer Graphics 21, 6,
730–742. DOI:
http://dx.doi.org/10.1109/TVCG.2015.2392771

35. S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk.
2014. Dynamic Network Visualization with Extended
Massive Sequence Views. IEEE Transactions on
Visualization and Computer Graphics 20, 8, 1087–1099.
DOI:http://dx.doi.org/10.1109/TVCG.2013.263

36. M. Wattenberg. 2006. Visual Exploration of Multivariate
Graphs. In Proc. of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’06). 811–819.
DOI:http://dx.doi.org/10.1145/1124772.1124891

37. M. Wood. 2005. Bootstrapped Confidence Intervals as
an Approach to Statistical Inference. Organizational
Research Methods 8, 4, 454–470. DOI:
http://dx.doi.org/10.1177/1094428105280059

38. J. wook Ahn, C. Plaisant, and B. Shneiderman. 2014. A
Task Taxonomy for Network Evolution Analysis. IEEE
Transactions on Visualization and Computer Graphics
20, 3, 365–376. DOI:
http://dx.doi.org/10.1109/TVCG.2013.238

39. Y. Wu, N. Pitipornvivat, J. Zhao, S. Yang, G. Huang, and
H. Qu. 2016. egoSlider: Visual Analysis of Egocentric
Network Evolution. IEEE Transactions on Visualization
and Computer Graphics 22, 1, 260–269. DOI:
http://dx.doi.org/10.1109/TVCG.2015.2468151

40. J. Zhao, C. Collins, F. Chevalier, and R. Balakrishnan.
2013. Interactive Exploration of Implicit and Explicit
Relations in Faceted Datasets. IEEE Transactions on
Visualization and Computer Graphics 19, 12,
2080–2089. DOI:
http://dx.doi.org/10.1109/TVCG.2013.167

41. J. Zhao, Z. Liu, M. Dontcheva, A. Hertzmann, and
A. Wilson. 2015. MatrixWave: Visual Comparison of
Event Sequence Data. In Proc. SIGCHI Conference on
Human Factors in Computing Systems. 259–268. DOI:
http://dx.doi.org/10.1145/2702123.2702419

http://dx.doi.org/10.1145/1842993.1843035
http://dx.doi.org/10.1145/1168149.1168168
http://dx.doi.org/10.1109/TVCG.2013.196
http://dx.doi.org/10.1371/journal.pone.0036250
http://dx.doi.org/10.1145/2063576.2063952
https://us.sagepub.com/en-us/nam/social-network-analysis/book231856
https://us.sagepub.com/en-us/nam/social-network-analysis/book231856
http://arxiv.org/abs/1009.5183
http://dx.doi.org/10.1109/TVCG.2013.149
http://dx.doi.org/10.2312/VisSym/EuroVis07/083-090
http://dx.doi.org/10.2312/VisSym/EuroVis07/083-090
http://dx.doi.org/10.1109/PACIFICVIS.2011.5742388
http://dx.doi.org/10.1109/PACIFICVIS.2011.5742388
http://dx.doi.org/10.1109/TVCG.2015.2392771
http://dx.doi.org/10.1109/TVCG.2013.263
http://dx.doi.org/10.1145/1124772.1124891
http://dx.doi.org/10.1177/1094428105280059
http://dx.doi.org/10.1109/TVCG.2013.238
http://dx.doi.org/10.1109/TVCG.2015.2468151
http://dx.doi.org/10.1109/TVCG.2013.167
http://dx.doi.org/10.1145/2702123.2702419

	Introduction
	Related Work
	Analytical Questions
	EgoLines
	Core Visualization
	Interaction
	Overview and Network Table

	Controlled Study
	Techniques
	Participants and Apparatus
	Tasks and Design
	Procedure
	Results
	Completion Time
	Error Rate
	Questionnaire Results


	Use-Case Scenario
	Discussion
	Conclusion and Future Work
	Acknowledgment
	REFERENCES 

