
Fahiem Bacchus, University of Toronto1

Reasoning Under Uncertainty

 This material is covered in chapters 13 and 14. 
Chapter 13 gives some basic background on 
probability from the point of view of AI. Chapter 
14 talks about Bayesian Networks, exact 
reasoning in Bayes Nets as well as approximate 
reasoning, which will be main topics for us.
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Uncertainty

 In search we viewed actions as being deterministic.

 If you are in state S1 and you execute action A you arrive 

at state S2. 

 Furthermore, there was a fixed initial state S0. So with 

deterministic actions after executing any sequence 

of actions we know exactly what state we have 

arrived at. 

 Always know what state one is in.

 These assumptions are sensible in some domains

 But in many domains they are not true. 
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Uncertainty

 We might not know exactly what state we start off in

 E.g., we can’t see our opponents cards in a poker game

 We don’t know what a patient’s ailment is.

 We might not know all of the effects of an action

 The action might have a random component, like rolling 

dice.

 We might not know all of the long term effects of a drug. 

 We might not know the status of a road when we choose 

the action of driving down it. 
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Uncertainty

 In such domains we still need to act, but we can’t 

act solely on the basis of known true facts. We have 

to “gamble”.

 E.g., we don’t know for certain what the traffic will 

be like on a trip to the airport. 
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Uncertainty

 But how do we gamble rationally? 

 If we must arrive at the airport at 9pm on a week 

night we could “safely” leave for the airport ½ hour 

before.

 Some probability of the trip taking longer, but the 

probability is low.

 If we must arrive at the airport at 4:30pm on Friday 

we most likely need 1 hour or more to get to the 

airport.

 Relatively high probability of it taking 1.5 hours. 
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Uncertainty

 To act rationally under uncertainty we must be 

able to evaluate how likely certain things are.

 By weighing likelihoods of events (probabilities) 

we can develop mechanisms for acting 

rationally under uncertainty. 
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Probability over Finite Sets. (Review)

 Probability is a function defined over a set of
atomic events U. 
 The universe of events.

 It assigns a value Pr(e) to each event e  U, in 
the range [0,1].

 It assigns a value to every set of events F by 
summing the probabilities of the members of 
that set.

Pr(F) = e F Pr(e)

 Pr(U) = 1, i.e., sum over all events is 1.

 Therefore: Pr({}) = 0 and
Pr(A  B) = Pr(A) + Pr(B) – Pr(A  B)
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Probability in General (Review)

 Given a set U (universe), a probability function 

is a function defined over the subsets of U that 

maps each subset to the real numbers and 

that satisfies the Axioms of Probability

1. Pr(U) = 1

2. Pr(A)  [0,1]

3. Pr(A  B) = Pr(A) + Pr(B) – Pr(A  B)

Note if A  B = {} then Pr(A  B) = Pr(A) + Pr(B)
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Probability over Feature Vectors

 We will work with universes of events each of 

which is a vectors of feature values.

 Like CSPs, we have 

1. a set of variables V1, V2, …, Vn

2. a finite domain of values for each variable, 

Dom[V1], Dom[V2], …, Dom[V
n
].

 The universe of events U is the set of all vectors 

of values for the variables

d1, d2, …, dn: di  Dom[Vi]
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Probability over Feature Vectors

 This event space has size

i |Dom[Vi]|
i.e., the product of the domain sizes.

 E.g., if |Dom[Vi]| = 2 we have 2n distinct 

atomic events. (Exponential!)
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Probability over Feature Vectors

 Asserting that some subset of variables have 

particular values allows us to specify a useful 

collection of subsets of U.

 E.g.

 {V1 = a} = set of all events where V1 = a

 {V1 = a, V3 = d} = set of all events where V1 = a and

V3 = d.

 …

 E.g. 

 Pr({V1 = a}) = x Dom[V3]} Pr({V1 = a, V3 = x}). 
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Probability over Feature Vectors

 If we had Pr of every atomic event (full 
instantiation of the variables) we could 
compute the probability of any other set 
(including sets can cannot be specified some 
set of variable values).

 E.g.
 {V1 = a} = set of all events where V1 = a 

Pf({V1 = a}) = 

x2 Dom[V2] x3 Dom[V3]  xn Dom[Vn]

Pr(V1=a, V2=x2,V3=x3,…,Vn=xn)
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Probability over Feature Vectors

 Problem:
 This is an exponential number of atomic probabilities 

to specify.

 Requires summing up an exponential number of 
items.

 For evaluating the probability of  sets 
containing a particular subset of variable 
assignments we can do much better. 
Improvements come from the use of 
probabilistic independence, especially 
conditional independence.
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Conditional Probabilities. (Review)

 With probabilities one can capture conditional 

information by using conditional probabilities.

 Conditional probabilities are essential for both 

representing and reasoning with probabilistic 

information.
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Conditional Probabilities (Review)

 Say that A is a set of events such that 

Pr(A) > 0. 

 Then one can define a conditional probability 

wrt the event A:

Pr(B|A) = Pr(BA)/Pr(A)
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Conditional Probabilities (Review)
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Conditional Probabilities (Review)

 Conditioning on A, corresponds to restricting 

one’s attention to the events in A.

 We now consider A to be the whole set of 

events (a new universe of events):

Pr(A|A) = 1.

 Then we assign all other sets a probability by 

taking the probability mass that “lives” in A 

(Pr(BA)), and normalizing it to the range [0,1] 

by dividing by Pr(A). 
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Conditional Probabilities (Review)
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 A conditional probability is a probability 

function, but now over A instead of over the 

entire space.

 Pr(A|A) = 1

 Pr(B|A)  [0,1]

 Pr(C  B|A) = Pr(C|A) + Pr(B|A) – Pr(C  B|A)

Conditional Probabilities (Review)
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 Useful fact about probabilities

 Say that B1, B2, …, Bk form a partition of the 

universe U.

1. Bi  Bj =  i  j (mutually exclusive)

2. B1  B2  B3 …  Bk = U (exhaustive)

 In probabilities: 

1. Pr(Bi  Bj) = 0

2. Pr(B1  B2  B3 …  Bk ) = 1

Summing out rule
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 Given any other set of events A we have that

Pr(A) = Pr(A  B1) + Pr(A  B2) + … + Pr(A  Bk)

 In conditional probabilities:

Pr(A) = Pr(A|B1)Pr(B1) + Pr(A|B2)Pr(B2) + … 

+ Pr(A|Bk)Pr(Bk)

Pr(A|Bi)Pr(Bi) = Pr(A  Bi)/Pr(Bi) * Pr(Bi)

= Pr(A  Bi)

 Often we know Pr(A|Bi), so we can compute Pr(A) 

this way. 

Summing out rule
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Properties and Sets

 Any set of events A can be interpreted as a 

property: the set of events with property A.

 Hence, we often write

 AB to represent the set of events with          

either property A or B: the set AB

 AB to represent the set of events 

both property A and B: the set AB

 A to represent the set of events that

do not have property A: the set U-A

(i.e., the complement of A wrt the

universe of events U)
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Independence (Review)

 It could be that the density of B on A is 

identical to its density on the entire set.
Density: pick an element at random from the entire set. 

How likely is it that the picked element is in the set B?

 Alternately the density of B on A could be 

much different that its density on the whole 

space.

 In the first case we say that B is independent of 

A. While in the second case B is dependent on 

A.
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Independence (Review)
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Independence Definition (Review)

A and B are independent properties

Pr(B|A) = Pr(B)

A and B are dependent.

Pr(B|A)  Pr(B)
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Implications for Knowledge

 Say that we have picked an element from the 

entire set. Then we find out that this element 

has property A (i.e., is a member of the set A).

 Does this tell us anything more about how likely it is 

that the element also has property B? 

 If B is independent of A then we have learned 

nothing new about the likelihood of the element 

being a member of B.
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Independence

 E.g., we have a feature vector, we don’t know 

which one. We then find out that it contains 

the feature V1=a. 

 I.e., we know that the vector is a member of the set 

{V1 = a}.

 Does this tell us anything about whether or not V2=a, 

V3=c, …, etc?

 This depends on whether or not these features are 

independent/dependent of V1=a.
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Conditional Independence

 Say we have already learned that the randomly 
picked element has property A.

 We want to know whether or not the element has 
property B:

Pr(B|A) expresses the 
probability of this being
true.

 Now we learn that the element also has property 
C. Does this give us more information about B-
ness?

Pr(B|AC) expresses the probability
of this being true under the
additional information.
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Conditional Independence
 If

Pr(B|AC) = Pr(B|A)

then we have not gained any additional information from 
knowing that the element is also a member of the set C.

 In this case we say that B is conditionally independent of C 
given A.

 That is, once we know A, additionally knowing C is irrelevant 
(wrt to whether or not B is true).

 Conditional independence is independence in the conditional 
probability space Pr(●|A).

 Note we could have Pr(B|C)  Pr(B). But once we learn A, C 
becomes irrelevant.
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Computational Impact of 

Independence

 We will see in more detail how independence 
allows us to speed up computation. But the 
fundamental insight is that 

If A and B are independent properties then

Pr(AB) = Pr(B) * Pr(A) 

Proof: 
Pr(B|A) = Pr(B) independence
Pr(AB)/Pr(A) = Pr(B) definition
Pr(AB) = Pr(B) * Pr(A)
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Computational Impact of 

Independence

 This property allows us to “break” up the 

computation of a conjunction “Pr(AB)” into 

two separate computations “Pr(A)” and “Pr(B)”.

 Dependent on how we express our probabilistic 

knowledge this yield great computational 

savings.
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Computational Impact of 

Independence

 Similarly for conditional independence.
Pr(B|CA) = Pr(B|A) 

Pr(BC|A) = Pr(B|A) * Pr(C|A)

Proof: 

Pr(B|CA) = Pr(B|A)

independence

Pr(BCA)/Pr(CA) = Pr(BA)/Pr(A) defn.

Pr(BCA)/Pr(A) = Pr(CA)/Pr(A) * Pr(BA)/Pr(A)

Pr(BC|A) = Pr(B|A) * Pr(C|A) defn.
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Computational Impact of 

Independence

 Conditional independence allows us to break 

up our computation onto distinct parts

Pr(BC|A) = Pr(B|A) * Pr(C|A)

 And it also allows us to ignore certain pieces of 

information

Pr(B|AC) = Pr(B|A)
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Bayes Rule (Review)

 Bayes rule is a simple mathematical fact. But it 

has great implications wrt how probabilities can 

be reasoned with.

 Pr(Y|X) = Pr(X|Y)Pr(Y)/Pr(X)

Pr(Y|X) = Pr(Y⋀X)/Pr(X) 

= Pr(Y⋀X)/Pr(X) * P(Y)/P(Y)

= Pr(Y⋀X)/Pr(Y) * Pr(Y)/Pr(X)

= Pr(X|Y)Pr(Y)/Pr(X)
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Bayes Rule
 Bayes rule allows us to use a supplied conditional probability in 

both directions.

 E.g., from treating patients with heart disease we might be 
able to estimate the value of 

Pr( high_Cholesterol | heart_disease)

 With Bayes rule we can turn this around into a predictor for 
heart disease

Pr(heart_disease | high_Cholesterol)

 Now with a simple blood test we can determine 
“high_Cholesterol” use this to help estimate the likelihood of 
heart disease.
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Bayes Rule

 For this to work we have to deal with the other 

factors as well

Pr(heart_disease | high_Cholesterol) 

= Pr(high_Cholesterol | heart_disease)

* Pr(heart_disease)/Pr(high_Cholesterol)

 We will return to this later.
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Bayes Rule Example

 Disease ∊ {malaria, cold, flu}; Symptom = fever

 Must compute Pr(D | fever) to prescribe treatment

 Why not assess this quantity directly?

 Pr(mal | fever) is not natural to assess; 

Pr(mal | fever) does not reflects the underlying 
“causal” mechanism fever  malaria

 Pr(mal | fever) is not “stable”: a malaria epidemic 

changes this quantity (for example)

 So we use Bayes rule:
 Pr(mal | fever) = Pr(fever | mal) Pr(mal) / Pr(fever)
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Bayes Rule

 Pr(mal | fever) = Pr(fever | mal)Pr(mal)/Pr(fever)

 Pr(mal)?

 This is the prior probability of Malaria, i.e., before you 

exhibited a fever, and with it we can account for 

other factors, e.g., a malaria epidemic, or recent 

travel to a malaria risk zone. 

 E.g., The center for disease control keeps track of the 

rates of various diseases.

 Pr(fever | mal)?

 This is the probability a patient with malaria exhibits a 

fever. 

 Again this kind of information is available from 

people who study malaria and its effects. 
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Bayes Rule
 Pr(fever)?

 This is typically not known, but it can be computed! 

 We eventually have to divide by this probability to get the final answer:
Pr(mal | fever) = Pr(fever | mal)Pr(mal)/Pr(fever)

 First, we find a set of mutually exclusive and exhaustive causes 
for fever:
 Say that in our example, mal, cold and flu are only possible causes of 

fever and they are mutually exclusive.

 Pr(fev| mal   cold   flu) = 0  Fever can’t happen with one of 
these causes.

 Pr(mal  cold) = Pr(mal  flu) = Pr(cold  flu) = 0  these causes can’t 
happen together. (Note that our example is not very realistic!)

 Second, we compute 

Pr(fever|mal)Pr(mal),
Pr(fever|cold)Pr(cold).
Pr(fever|flu)Pr(flu).

We know Pr(fever|cold) and Pr(fever|flu), along with Pr(cold) 
and Pr(flu) from the same sources as Pr(fever|mal) and Pr(mal)
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Bayes Rule

 Since flu, cold and malaria are exclusive, {flu, cold, malaria, mal 

cold  flu} forms a partition of the universe. So 

Pr(fever) = Pr(fever|mal)*Pr(mal) + Pr(fever|cold)*Pr(cold)

+ Pr(fever|flu)*Pr(flu) 

+ Pr(fever|mal  cold  flu)*Pr(mal  cold  flu)

 The last term is zero as fever is not possible unless one of malaria, cold, or flu is 
true. 

 So to compute the trio of numbers, Pr(mal|fever), Pr(cold|fever), 

Pr(flu|fever), we compute the trio of numbers Pr(fever|mal)*Pr(mal),  

Pr(fever|cold)*Pr(cold), Pr(fever|flu)*Pr(flu)

 And then we divide these three numbers by Pr(fever).

 That is we divide these three numbers by their sum: 

This is called normalizing the numbers.  

 Thus we never need actually compute Pr(fever) (unless we want to). 
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Normalizing

 If we have a vector of k numbers, e.g., <3, 4, 2.5, 1, 10, 21.5> 

we can normalize these numbers by dividing each number 

by the sum of the numbers:

 3 + 4 + 2.5 +1 +10 + 21.5 = 42

 Normalized vector 

= <3/42, 4/42, 2.5/42, 1/42, 10/42, 21.5/42>

= <0.071, 0.095, 0.060, 0.024, 0.238, 0.512>

 After normalizing the vector of numbers sums to 1

 Exactly what is needed for these numbers to specify a 

probability distribution. 
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Chain Rule (Review)

 Pr(A1A2…An) = 

Pr(A1| A2…An) * Pr(A2| A3 …An)
*  * Pr(An-1| An) * Pr(An)

Proof:

Pr(A1| A2…An) * Pr(A2| A3 …An)
*  * Pr(An-1| An) 

= Pr(A1A2…An)/ Pr(A2…An) *
Pr(A2…An)/ Pr(A3…An) *  * 

Pr(An-1An)/Pr(An) * Pr(An)
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Variable Independence

 Recall that we will be mainly dealing with 

probabilities over feature vectors. 

 We have a set of variables, each with a domain 

of values. 

 It could be that {V1=a} and {V2=b} are 

independent:

Pr(V1=aV2=b) = Pr(V1=a)*Pr(V2=b)

 It could also be that {V1=b} and {V2=b} are not 

independent: 

Pr(V1=bV2=b) ≠ Pr(V1=b)*Pr(V2=b)
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Variable Independence

 However we will generally want to deal with the 

situation where we have variable 

independence. 

 Two variables X and Y are conditionally 

independent given variable Z iff

 x,y,z. xDom(X)  yDom(Y)  zDom(Z)

→  X=x is conditionally independent of 

Y=y given Z = z

 Pr(X=xY=y|Z=z) 

= Pr(X=x|Z=z) * Pr(Y=y|Z=z)

 Also applies to sets of more than two variables

 Also to unconditional case (X,Y independent)
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Variable Independence

 If you know the value of Z (whatever it is), 

learning Y’s value (whatever it is) does not 

influence your beliefs about any of X’s values.

 these definitions differ from earlier ones, which talk 

about particular sets of events being  independent. 

Variable independence is a concise way of stating 

a number of individual independencies.
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What does independence buys us?

 Suppose (say, boolean) variables X1, X2,…, Xn are 

mutually independent (i.e., every subset is variable

independent of every other subset) 

 we can specify full joint distribution (probability function 

over all vectors of values) using only n parameters (linear) 
instead of 2n -1 (exponential)

 How? Simply specify Pr(X1), … Pr(Xn) (i.e., Pr(Xi=true) 

for all i)

 from this I can recover probability of any primitive event 

easily (or any conjunctive query). 

e.g. Pr(X1X2X3X4) = Pr(X1) (1-Pr(X2)) Pr(X3) Pr(X4) 

 we can condition on observed value Xk (or Xk) trivially

Pr(X1X2|X3) = Pr(X1) (1-Pr(X2))
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The Value of Independence

Complete independence reduces both 

representation of joint and inference from O(2n) 

to O(n)!

Unfortunately, such complete mutual 

independence is very rare. Most realistic 

domains do not exhibit this property.

Fortunately, most domains do exhibit a fair 

amount of conditional independence. And we 

can exploit conditional independence for 

representation and inference as well.

Bayesian networks do just this
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An Aside on Notation

 Pr(X) for variable X (or set of variables) refers to the 
(marginal) distribution over X.

 It specifies Pr(X=d) for all dDom[X]

 Note

d Dom[X] Pr(X=d) = 1 

(every vector of values must be in one of the sets 
{X=d} dDom[X])

 Also 

Pr(X=d1X=d2) = 0 for all d1,d2 Dom[X] d1 d2

(no vector of values contains two different values for 
X).
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An Aside on Notation
 Pr(X|Y) refers to family of conditional distributions over X, one 

for each y∊Dom(Y).

 For each dDom[Y], Pr(X|Y) specifies a distribution over the 
values of X: 
Pr(X=d1|Y=d), Pr(X=d2|Y=d), …, Pr(X=dn|Y=d) 

for Dom[X] = {d1,d2,…,dn}.

 Distinguish between Pr(X)—which is a distribution–and Pr(xi) 
(xiDom[X])-- which is a number. Think of Pr(X) as a function that 

accepts any xi ∊Dom(X) as an argument and returns Pr(xi).

 Similarly, think of Pr(X|Y) as a function that accepts any 

xiDom[X] and ykDom[Y] and returns Pr(xi | yk). Note that 
Pr(X|Y) is not a single distribution; rather it denotes the family of 

distributions (over X) induced by the different yk ∊Dom(Y)
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Exploiting Conditional Independence

 Let’s see what conditional independence buys us

Consider a story:

 If Craig woke up too early E, Craig probably needs 

coffee C; if C, Craig needs coffee, he's likely angry 

A. If A, there is an increased chance of an 

aneurysm (burst blood vessel) B. If B, Craig is quite 

likely to be hospitalized H.
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E C B HA

E – Craig woke too early     A – Craig is angry      H – Craig hospitalized
C – Craig needs coffee     B – Craig burst a blood vessel



Cond’l Independence in our Story

 If you learned any of E, C, A, or B, your assessment of Pr(H) 

would change. 

 E.g., if any of these are seen to be true, you would increase 

Pr(h) and decrease Pr(~h). 

 So H is not independent of E, or C, or A, or B.

 But if you knew value of B (true or false), learning value of 

E, C, or A, would not influence Pr(H). Influence these 

factors have on H is mediated by their influence on B.

 Craig doesn't get sent to the hospital because he's angry, he 

gets sent because he's had an aneurysm.

 So H is independent of E, and C, and A, given B

Fahiem Bacchus, University of Toronto51

E C B HA



Cond’l Independence in our Story

Similarly:
 B is independent of E, and C, given A

 A is independent of E, given C

This means that:

 Pr(H | B, {A,C,E} )  =  Pr(H|B)

 i.e., for any subset of {A,C,E}, this relation holds

 Pr(B | A, {C,E} ) = Pr(B | A)

 Pr(A | C, {E} ) = Pr(A | C)

 Pr(C | E)    and    Pr(E)   don’t “simplify”
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Cond’l Independence in our Story

By the chain rule (for any instantiation of H…E):

 Pr(H,B,A,C,E) = 

Pr(H|B,A,C,E) Pr(B|A,C,E) Pr(A|C,E) Pr(C|E) Pr(E)

By our independence assumptions:

 Pr(H,B,A,C,E) = 

Pr(H|B) Pr(B|A) Pr(A|C) Pr(C|E) Pr(E)

We can specify the full joint by specifying five 

local conditional distributions: Pr(H|B); Pr(B|A); 

Pr(A|C); Pr(C|E); and Pr(E) 
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Example Quantification

 Specifying the joint requires only 9 parameters (if we 
note that half of these are “1 minus” the others), 
instead of 31 for explicit representation

 linear in number of vars instead of exponential!

 linear generally if dependence has a chain structure
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Pr(c|e)     = 0.9
Pr(~c|e)   = 0.1
Pr(c|~e)   = 0.5
Pr(~c|~e) = 0.5

Pr(e)   = 0.7
Pr(~e) = 0.3

Pr(a|c)     = 0.3
Pr(~a|c)   = 0.7
Pr(a|~c)   = 1.0
Pr(~a|~c) = 0.0

Pr(h|b)     = 0.9
Pr(~h|b)   = 0.1
Pr(h|~b)   = 0.1
Pr(~h|~b) = 0.9

Pr(b|a)     = 0.2
Pr(~b|a)   = 0.8
Pr(b|~a)   = 0.1
Pr(~b|~a) = 0.9



Inference is Easy

Want to know P(a)? Use summing out rule:
 Note the set of events C=ci for ci  Dom(C) is a partition.
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These are all terms specified in our local distributions!



Inference is Easy

Computing P(a) in more concrete terms:

 P(c) = P(c|e)P(e) + P(c|~e)P(~e) 

= 0.8 * 0.7 + 0.5 * 0.3  = 0.78

 P(~c) = P(~c|e)P(e) + P(~c|~e)P(~e) = 0.22

 P(~c) = 1 – P(c), as well

 P(a) = P(a|c)P(c) + P(a|~c)P(~c) 

= 0.7 * 0.78 + 0.0 * 0.22 = 0.546

 P(~a) = 1 – P(a) = 0.454 
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Bayesian Networks

The structure above is a Bayesian network. A BN 

is a graphical representation of the direct 

dependencies over a set of variables, together 

with a set of conditional probability tables

quantifying the strength of those influences.

Bayes nets generalize the above ideas in very 

interesting ways, leading to effective means of 

representation and inference under uncertainty.
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Bayesian Networks

 A BN over variables {X1, X2,…, Xn}  consists of:

 a DAG (directed acyclic graph) whose nodes are the 

variables

 a set of CPTs (conditional probability tables)  Pr(Xi | Par(Xi))   

for each  Xi

 Key notions (see text for defn’s, all are intuitive):

 parents of a node: Par(Xi) 

 children of node

 descendents of a node

 ancestors of a node

 family: set of nodes consisting of Xi and its parents

 CPTs are defined over families in the BN 
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Example (Binary valued Variables)
 A couple of 

the CPTS are 
“shown”
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Semantics of Bayes Nets.

A Bayes net specifies that the joint distribution 

over the variable in the net can be written as the 

following product decomposition. 

Pr(X1, X2,…, Xn) 

= Pr(Xn | Par(Xn)) * Pr(Xn-1 | Par(Xn-1))
*  * Pr(X1| Par(X1))

This equation hold for any set of values d1, d2,…, 

dn for the variables X1, X2,…, Xn. 
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Semantics of Bayes Nets.

 E.g., say we have X1, X2, X3 each with domain 
Dom[Xi] = {a, b, c} and we have

Pr(X1,X2,X3) 
= P(X3|X2) P(X

2
) P(X1)

Then
Pr(X1=a,X2=a,X3=a) 
= P(X3=a|X2=a) P(X

2
=a) P(X1=a)

Pr(X1=a,X2=a,X3=b) 
= P(X3=b|X2=a) P(X

2
=a) P(X1=a)

Pr(X1=a,X2=a,X3=c) 
= P(X3=c|X2=a) P(X

2
=a) P(X1=a)

Pr(X1=a,X2=b,X3=a) 
= P(X3=a|X2=b) P(X

2
=b) P(X1=a)

…
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Example (Binary valued Variables)
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Pr(a,b,c,d,e,f,g,h,i,j,k) =

Pr(a)

x Pr(b)

x Pr(c|a)

x Pr(d|a,b)

x Pr(e|c)

x Pr(f|d)

x Pr(g)

x Pr(h|e,f)

x Pr(i|f,g)

x Pr(j|h,i)

x Pr(k|i)

 Explicit joint 
requires 
211 -1 =2047 
parmeters

 BN requires 
only 27 
parmeters
(the number 
of entries for 
each CPT is 
listed)



Semantics of Bayes Nets.

Note that this means we can compute the 

probability of any setting of the variables using 

only the information contained in the CPTs of the 

network.
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Constructing a Bayes Net

 It is always possible to construct a Bayes net to 

represent any distribution over the variables X1, 

X2,…, Xn, using any ordering of the variables.

Fahiem Bacchus, University of Toronto64

Take any ordering of the variables (say, the order given). From the 

chain rule we obtain.

Pr(X1,…,Xn) = Pr(Xn|X1,…,Xn-1)Pr(Xn-1|X1,…,Xn-2)…Pr(X1)

Now for each Xi go through its conditioning set X1,…,Xi-1, and 

iteratively remove all variables Xj such that Xi is conditionally 

independent of Xj given the remaining variables. Do this until no more 

variables can be removed.

The final product will specify a Bayes net.



Constructing a Bayes Net
 The end result will be a product 

decomposition/Bayes net
Pr(Xn | Par(Xn)) Pr(Xn-1 | Par(Xn-1))… Pr(X1)

 Now we specify the numeric values associated with each term 
Pr(Xi | Par(Xi)) in a CPT.

 Typically we represent the CPT as a table mapping each setting 
of {Xi,Par(Xi)} to the probability of Xi taking that particular value 
given that the variables in Par(Xi) have their specified values. 

 If each variable has d different values.

 We will need a table of size d|{Xi
,Par(Xi)}|.

 That is, exponential in the size of the parent set.

 Note that the original chain rule
Pr(X1,…,Xn) = Pr(Xn|X1,…,Xn-1)Pr(Xn-1|X1,…,Xn-2)…Pr(X1)
requires as much space to represent as specifying the 
probability of each individual event. 
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Causal Intuitions

 The BN can be constructed using an arbitrary 

ordering of the variables.

 However, some orderings will yield BN’s with very 

large parent sets. This requires exponential space, 

and (as we will see later) exponential time to 

perform inference. 

 Empirically, and conceptually, a good way to 

construct a BN is to use an ordering based on 

causality. This often yields a more natural and 

compact BN.
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Causal Intuitions

 Malaria, the flu and a cold all “cause” aches. So use 
the ordering that causes come before effects

Malaria, Flu, Cold, Aches

Pr(M,F,C,A) = Pr(A|M,F,C) Pr(C|M,F) Pr(F|M) Pr(M)

 Each of these disease affects the probability of 
aches, so the first conditional probability does not 
change.

 It is reasonable to assume that these diseases are 
independent of each other: having or not having 
one does not change the probability of having the 
others. So Pr(C|M,F) = Pr(C)
Pr(F|M) = Pr(F)
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Causal Intuitions

This yields a fairly simple Bayes net. 
Only need one big CPT, involving the family of 
“Aches”.
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Causal Intuitions

Suppose we build the BN for distribution P using 

the opposite ordering

 i.e., we use ordering Aches, Cold, Flu, Malaria

Pr(A,C,F,M) = Pr(M|A,C,F) Pr(F|A,C) Pr(C|A) Pr(A)

 We can’t reduce Pr(M|A,C,F). Probability of Malaria is 

clearly affected by knowing aches. What about knowing 

aches and Cold, or aches and Cold and Flu?

 Probability of Malaria is affected by both of these 

additional pieces of knowledge

Knowing Cold and of Flu lowers the probability of Aches 

indicating Malaria since they “explain away” Aches!
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Causal Intuitions

Pr(A,C,F,M) = Pr(M|A,C,F) Pr(F|A,C) Pr(C|A) Pr(A)

 Similarly, we can’t reduce Pr(F|A,C).

 Pr(C|A)  Pr(C)
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Causal Intuitions

 Obtain a much more complex Bayes net. In fact, we 

obtain no savings over explicitly representing the full 

joint distribution (i.e., representing the probability of 

every atomic event).
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Bayes Net Examples
 I'm at work, neighbor John calls to say my alarm is 

ringing, but neighbor Mary doesn't call. Sometimes 
it's set off by minor earthquakes. Is there a burglar?

 Variables: Burglary, Earthquake, Alarm, JohnCalls, 
MaryCalls

 Network topology reflects "causal" knowledge:
 A burglar can set the alarm off

 An earthquake can set the alarm off

 The alarm can cause Mary to call

 The alarm can cause John to call
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Burglary Example
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● # of Params:1 + 1 + 4 + 2 + 2 = 10  (vs. 25-1 = 31)

● A burglary can set the alarm off
● An earthquake can set the alarm off
● The alarm can cause Mary to call
● The alarm can cause John to call



Example of Constructing Bayes Network

 Suppose we choose the ordering M, J, A, B, E



P(J | M) = P(J)?
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Example continue…

 Suppose we choose the ordering M, J, A, B, E



P(J | M) = P(J)?

No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?
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Example continue…

 Suppose we choose the ordering M, J, A, B, E



P(J | M) = P(J)?

No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? 

P(B | A, J, M) = P(B)?
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Example continue…

 Suppose we choose the ordering M, J, A, B, E



P(J | M) = P(J)?

No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? Yes

P(B | A, J, M) = P(B)? No

P(E | B, A ,J, M) = P(E | A)?

P(E | B, A, J, M) = P(E | A, B)?
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Example continue…

 Suppose we choose the ordering M, J, A, B, E



P(J | M) = P(J)?

No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? Yes

P(B | A, J, M) = P(B)? No

P(E | B, A ,J, M) = P(E | A)? No

P(E | B, A, J, M) = P(E | A, B)? Yes
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Example continue…

 Deciding conditional independence is hard in non-causal directions!

 (Causal models and conditional independence seem hardwired for 
humans!)

 Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed
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Inference in Bayes Nets

 Given a Bayes net

Pr(X1, X2,…, Xn) 

= Pr(Xn | Par(Xn)) * Pr(Xn-1 | Par(Xn-1))
*  * Pr(X1| Par(X1))

 And some evidence E = {a set of values for 

some of the variables} we want to compute the 

new probability distribution 

Pr(Xk| E)

 That is, we want to figure our Pr(X_k = d |E) for 

all d Dom[Xk]
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Inference in Bayes Nets

 Other types of examples are, computing 

probability of different diseases given symptoms, 

computing probability of hail storms given 

different metrological evidence, etc. 

 In such cases getting a good estimate of the 

probability of the unknown event allows us to 

respond more effectively (gamble rationally)
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Inference in Bayes Nets

 In the Alarm example:

 Pr(Burglary,Earthquake, Alarm, JohnCalls, MaryCalls) =

Pr(Earthquake) * Pr(Burglary) *

Pr(Alarm|Earthquake,Burglary) *

Pr(JohnCalls|Alarm) * Pr(MaryCalls|Alarm)

 And, e.g., we want to compute things like
Pr(Burglary=True| MaryCalls=false, JohnCalls=true)
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Variable Elimination

 Variable elimination uses the product 

decomposition that defines the Bayes Net and 

the summing out rule to compute posterior 

probabilities from the information (CPTs) already 

in the network. 
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Example (Binary valued Variables)

84

Pr(A,B,C,D,E,F,G,H,I,J,K) =

Pr(A)

x Pr(B)

x Pr(C|A)

x Pr(D|A,B)

x Pr(E|C)

x Pr(F|D)

x Pr(G)

x Pr(H|E,F)

x Pr(I|F,G)

x Pr(J|H,I)

x Pr(K|I)
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Example

Pr(A,B,C,D,E,F,G,H,I,J,K) =  
Pr(A)Pr(B)Pr(C|A)Pr(D|A,B)Pr(E|C)Pr(F|D)Pr(G)

Pr(H|E,F)Pr(I|F,G)Pr(J|H,I)Pr(K|I)

Say that E = {H=true, I=false}, and we want to know
Pr(D|h,i)    (h: H is true, -h: H is false)

1. Write as a sum for each value of D

A,B,C,E,F,G,J,K Pr(A,B,C,d,E,F,h,-i,J,K)
= Pr(d,h,-i)

A,B,C,E,F,G,J,K Pr(A,B,C,-d,E,F,h,-i,J,K)
= Pr(-d,h,-i)
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Example

2. Pr(d,h,-i) + Pr(-d,h,-i) = Pr(h,-i)

3. Pr(  d|h,-i) = Pr(d,h,-i)/Pr(h,-i)

Pr(-d|h,-i) = Pr(-d,h,-i)/Pr(h,-i)

So we only need to compute Pr(d,h,-i) and Pr(-d,h,-i) 

and then normalize to obtain the conditional 

probabilities we want. 

86 Fahiem Bacchus, University of Toronto



Example

Pr(d,h,-i)  A,B,C,E,F,G,J,K Pr(A,B,C,d,E,F,h,-i,J,K)

Use Bayes Net product decomposition to rewrite 
summation:

A,B,C,E,F,G,J,K Pr(A,B,C,d,E,F,h,-i,J,K)

= A,B,C,E,F,G,J,K Pr(A)Pr(B)Pr(C|A)Pr(d|A,B)Pr(E|C)
Pr(F|d)Pr(G)Pr(h|E,F)Pr(-i|F,G)Pr(J|h,-i)

Pr(K|-i)

Now rearrange summations so that we are not 
summing over that do not depend on the summed 
variable.
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Example

= A,B,C,E,F,G,J,K

Pr(A)Pr(B)Pr(C|A)Pr(d|A,B)Pr(E|C)

Pr(F|d)Pr(G)Pr(h|E,F)Pr(-i|F,G)Pr(J|h,-i)

Pr(K|-i)

= A Pr(A) B Pr(B) C Pr(C|A)Pr(d|A,B) E Pr(E|C)

F Pr(F|d) G Pr(G)Pr(h|E,F)Pr(-i|F,G) J Pr(J|h,-i)

K Pr(K|-i)

= A Pr(A) B Pr(B) Pr(d|A,B) C Pr(C|A) E Pr(E|C)

F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G) J Pr(J|h,-i)

K Pr(K|-i)
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Example

 Now start computing.

A Pr(A) B Pr(B) Pr(d|A,B) C Pr(C|A) E Pr(E|C)

F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)

J  Pr(J|h,-i)

K Pr(K|-i)

K Pr(K|-i) = Pr(k|-i) + Pr(-k|-i) = c1

JPr(J|h,-i) c1 = c1 JPr(J|h,-i)
= c1 (Pr(j|h,-i) + Pr(-j|h,-i))

= c1c2
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Example



A Pr(A) B Pr(B) Pr(d|A,B) C Pr(C|A) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

c1c2 G Pr(G) Pr(-i|F,G) 
= c1c2(Pr(g)Pr(-i|F,g) + Pr(-g)Pr(-i|F,-g))

!!But Pr(-i|F,g) depends on the value of F, so 
this is not a single number.
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Example
 Try the other order of summing.

A Pr(A) B Pr(B) Pr(d|A,B) C Pr(C|A) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)   

=

Pr(a) B Pr(B) Pr(d|a,B) C Pr(C|a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

+

Pr(-a) B Pr(B) Pr(d|-a,B) C Pr(C|-a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

91 Fahiem Bacchus, University of Toronto



Example
=

Pr(a)Pr(b) Pr(d|a,b) C Pr(C|a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i) 

+

Pr(a)Pr(-b) Pr(d|a,-b) C Pr(C|a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

+

Pr(-a)Pr(b) Pr(d|-a,b) C Pr(C|-a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

+

Pr(-a)Pr(-b) Pr(d|-a,-b) C Pr(C|-a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)
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Example

=

Yikes! The size of the sum is doubling as we 

expand each variable (into –v and v). This 

approach has exponential complexity.

But let’s look a bit closer.

93 Fahiem Bacchus, University of Toronto



Example
=

Pr(a)Pr(b) Pr(d|a,b) C Pr(C|a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

+

Pr(a)Pr(-b) Pr(d|a,-b) C Pr(C|a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

+

Pr(-a)Pr(b) Pr(d|-a,b) C Pr(C|-a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

+

Pr(-a)Pr(-b) Pr(d|-a,-b) C Pr(C|-a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)
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 Repeated 
subterm

 Repeated 
subterm
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Dynamic Programming

 If we store the value of the subterms, we need 

only compute them once. 
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Dynamic Programming
=

Pr(a)Pr(b) Pr(d|a,b) C Pr(C|a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

+

Pr(a)Pr(-b) Pr(d|a,-b) C Pr(C|a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

+

Pr(-a)Pr(b) Pr(d|-a,b) C Pr(C|-a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

+

Pr(-a)Pr(-b) Pr(d|-a,-b) C Pr(C|-a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)
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= c1f1 + c2f1 +  
c3f2 + c3f2

 c1 = Pr(a)Pr(b)
Pr(d|a,b)

 c2 = Pr(a)Pr(-b)
Pr(d|a,-b)

 c3 = Pr(a)Pr(-b)
Pr(d|a,-b)

 c4 = Pr(a)Pr(-b)
Pr(d|a,-b) 

 f1

 f2
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Dynamic Programming

f1 = C Pr(C|a) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i) 

= Pr(c|a) E Pr(E|c)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

+
Pr(-c|a) E Pr(E|-c)

F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)
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 Repeated 
subterm
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Dynamic Programming

 So within the computation of the subterms we 

obtain more repeated smaller subterms.

 The core idea of dynamic programming is to 

remember all “smaller” computations, so that they 

can be reused.

 This can convert an exponential computation into 

one that takes only polynomial time. 

 Variable elimination is a dynamic programming 

technique that computes the sum from the bottom 

up (starting with the smaller subterms and working 

its way up to the bigger terms).
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Relevant (return to this later)

 A brief aside is to also note that in the sum
A Pr(A) B Pr(B) Pr(d|A,B) C Pr(C|A) E Pr(E|C)

F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i) 

we have that K Pr(K|-i) = 1 (Why?), thus 
J  Pr(J|h,-i)K Pr(K|-i) = J  Pr(J|h,-i)

Furthermore J  Pr(J|h,-i) = 1. 

So we could drop these last two terms from the 
computation---J and K are not relevant given our 
query D and our evidence –i and –h. For now we 
keep these terms.
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Variable Elimination (VE)
 VE works from the inside out, summing out K, then J, then G, 

…, as we tried to before.

 When we tried to sum out G 

A Pr(A) B Pr(B) Pr(d|A,B) C Pr(C|A) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

c1c2 G Pr(G) Pr(-i|F,G) 
= c1c2(Pr(g)Pr(-i|F,g) + Pr(-g)Pr(-i|F,-g))

we found that Pr(-i|F,-g) depends on the value of F, it wasn’t a 
single number.

 However, we can still continue with the computation by 
computing two different numbers, one for each value of F
(-f, f)!
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Variable Elimination (VE)

 t(-f) = c1c2 G Pr(G) Pr(-i|-f,G) 

t(f)   =  c1c2(G Pr(G) Pr(-i|f,G) 

 t(-f) = c1c2(Pr(g)Pr(-i|-f,g) + Pr(-g)Pr(-i|-f,-g))

 t(-f) = c1c2(Pr(g)Pr(-i|f,g) + Pr(-g)Pr(-i|f,-g))

 Now we sum out F
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Variable Elimination (VE)

 A Pr(A) B Pr(B) Pr(d|A,B) C Pr(C|A) E Pr(E|C)
F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G)
J  Pr(J|h,-i)
K Pr(K|-i)

c1c2 F Pr(F|d) Pr(h|E,F)G Pr(G) Pr(-i|F,G) 

= c1c2(Pr(f|d) Pr(h|E,f)(G Pr(G) Pr(-i|f,G))
+Pr(-f|d)Pr(h|E,-f)(G Pr(G)Pr(-i|-f,G))

= c1c2 FPr(F|d) Pr(h|E,F)t(F) 

t(f), t(-f)
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Variable Elimination (VE)

 c1c2(Pr(f|d) Pr(h|E,f)t(f)

+Pr(-f|d)Pr(h|E,-f)t(-f)

 This is a function of E, so we obtain two new 

numbers

s(e) = c1c2(Pr(f|d) Pr(h|e,f)t(f)

+Pr(-f|d)Pr(h|e,-f)t(-f)

s(-e) = c1c2(Pr(f|d) Pr(h|-e,f)t(f)

+Pr(-f|d)Pr(h|-e,-f)t(-f)
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Variable Elimination (VE)

 On summing out E we obtain two numbers, or a 

function of C. Then a function of B, then a function 

of A. On finally summing out A we obtain the single 

number we wanted to compute which is Pr(d,h,-i).

 Now we can repeat the process to compute 

Pr(-d,h,-i).

 But instead of doing it twice, we can simply regard 

D as an variable in the computation. 

 This will result in some computations depending on 

the value of D, and we obtain a different number 

for each value of D.

 Proceeding in this manner, summing out A will yield 

a function of D. (I.e., a number for each value of D). 
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Variable Elimination (VE)

 In general, at each stage VE will be compute a 

table of numbers: one number for each different 

instantiation of the variables that are in the sum. 

 The size of these tables is exponential in the number 

of variables appearing in the sum, e.g.,

FPr(F|D) Pr(h|E,F)t(F)

depends on the value of D and E, thus we will 

obtain |Dom[D]|*|Dom[E]| different numbers in 

the resulting table.
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Factors

 we call these tables of values computed by VE 
factors. 

 Note that the original probabilities that appear in 
the summation, e.g., P(C|A), are also tables of 
values (one value for each instantiation of C and 
A). 

 Thus we also call the original CPTs factors. 

 Each factor is a function of some variables, e.g., 
P(C|A) = f(A,C): it maps each value of its 
arguments to a number.
 A tabular representation is exponential in the number of 

variables in the factor.
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Operations on Factors

 If we examine the inside-out summation process 

we see that various operations occur on 

factors. 

 Notation: f(X,Y) denotes a factor over the 

variables X  Y (where X and Y are sets of 

variables)
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The Product of Two Factors

Let f(X,Y) & g(Y,Z) be two factors with variables Y

in common

The product of f and g, denoted h = f x g  (or 

sometimes just h = fg), is defined:

h(X,Y,Z) = f(X,Y) x g(Y,Z)

108

f(A,B) g(B,C) h(A,B,C)

ab 0.9 bc 0.7 abc 0.63 ab~c 0.27

a~b 0.1 b~c 0.3 a~bc 0.08 a~b~c 0.02

~ab 0.4 ~bc 0.8 ~abc 0.28 ~ab~c 0.12

~a~b 0.6 ~b~c 0.2 ~a~bc 0.48
~a~b~

c
0.12
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Summing a Variable Out of a Factor

Let f(X,Y) be a factor with variable X  (Y is a set)

We sum out variable X from  f  to produce a new 

factor h = ΣX f,  which is defined:

h(Y) = Σx∊Dom(X) f(x,Y)

109

f(A,B) h(B)

ab 0.9 b 1.3

a~b 0.1 ~b 0.7

~ab 0.4

~a~b 0.6
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Restricting a Factor

Let f(X,Y) be a factor with variable X  (Y is a set)

We restrict factor  f to X=a by setting X to the 

value  x  and “deleting” incompatible elements 

of f’s domain . Define  h = fX=a as: h(Y) = f(a,Y)

110

f(A,B)
h(B) = 
fA=a

ab 0.9 b 0.9

a~b 0.1 ~b 0.1

~ab 0.4

~a~b 0.6
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Variable Elimination the Algorithm

Given query var Q, evidence vars E (set of 

variables observed to have values e), 

remaining vars Z. Let F be original CPTs.

111

1. Replace each factor fF that mentions a variable(s) in E

with its restriction fE=e (this might yield a “constant” factor)

2. For each Zj—in the order given—eliminate Zj  Z as follows:

(a)  Compute new factor  gj = Zj
f1 x f2 x … x fk, 

where the fi are the factors in F that include Zj

(b) Remove the factors fi (that mention Zj ) from F and 

add new factor  gj to F

3. The remaining factors refer only to the query variable Q. 

Take their product and normalize to produce Pr(Q|E)
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VE: Example

Restriction: replace f4(C,D) with f5(C) = f4(C,d) 

Step 1: Compute & Add f6(A,B)= ΣC f5(C) f3(A,B,C)

Remove: f3(A,B,C), f5(C) 

Step 2: Compute & Add f7(A) = ΣB f6(A,B) f2(B) 

Remove: f6(A,B), f2(B) 

Last factors: f7(A), f1(A). The product f1(A) x f7(A) is (unnormalized) 
posterior. So… P(A|d) = α f1(A) x f7(A)
where α = 1/A f1(A)f7(A)

112

Factors: f1(A) f2(B) f3(A,B,C) 

f4(C,D) 

Query: P(A)?  

Evidence: D = d

Elim. Order: C, B

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)
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Numeric Example

Here’s the example with some numbers
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B CA
f1(A) f2(A,B) f3(B,C)

f1(A) f2(A,B) f3(B,C)
f4(B) 

ΣA f2(A,B)f1(A)

f5(C)
ΣB f3(B,C) f4(B)

a 0.9 ab 0.9 bc 0.7 b 0.85 c 0.625

~a 0.1 a~b 0.1 b~c 0.3 ~b 0.15 ~c 0.375

~ab 0.4 ~bc 0.2

~a~b 0.6 ~b~c 0.8
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VE: Buckets as a Notational Device
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6E,D,F)

Ordering: 
C,F,A,B,E,D

1. C:

2. F:

3. A:

4. B:

5. E:

6. D:
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VE: Buckets—Place Original Factors in 

first applicable bucket.
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A)

4. B: f2(B)

5. E:

6. D:
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VE: Eliminate the variables in order, placing 

new factor in first applicable bucket.
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B)

5. E:

6. D:

1. ΣC f3(A,B,C), f4(C,D), f5(C,E)
= f7(A,B,D,E)
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VE: Eliminate the variables in order, placing 

new factor in first applicable bucket.
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B)

5. E: f8(E,D)

6. D:

2. ΣF f6(E,D,F) = f8(E,D)
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VE: Eliminate the variables in order, placing 

new factor in first applicable bucket.
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D)

6. D:

3. ΣA f1(A), f7(A,B,D,E)
= f9(B,D,E)
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VE: Eliminate the variables in order, placing 

new factor in first applicable bucket.
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D), f10(D,E)

6. D:

4. ΣB f2(B), f9(B,D,E) 
= f10(D,E)
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VE: Eliminate the variables in order, placing 

new factor in first applicable bucket.
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D), f10(D,E)

6. D: f11(D)

5. ΣE f8(E,D), f10(D,E) 
= f11(D)

f11 is he final answer, once we 
normalize it.

Fahiem Bacchus, University of Toronto



Complexity of Variable Elimination

 Hypergraph of Bayes Net.

 Hypergraph has vertices just like an ordinary graph, 

but instead of edges between two vertices XY it 

contains hyperedges.

 A hyperedge is a set of vertices (i.e., potentially more than 

one)

121

A

 B

 C

D

 E
{A,B,D}
{B,C,D}
{E,D}
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Complexity of Variable Elimination

 Hypergraph of Bayes Net.

 The set of vertices are precisely the nodes of the 

Bayes net.

 The hyperedges are the variables appearing in each 

CPT.

 {Xi}  Par(Xi) 
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Complexity of Variable Elimination

 Pr(A,B,C,D,E,F) = 
Pr(A)Pr(B)

X   Pr(C|A,B)
X   Pr(E|C)
X Pr(D|C)
X Pr(F|E,D).

123

C
D

A

B

E
F

C
D

A

B

E
F
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Variable Elimination in the HyperGraph

 To eliminate variable Xi in the hypergraph we 

 we remove the vertex Xi

 Create a new hyperedge Hi equal to the union of all 

of the hyperedges that contain Xi minus Xi

 Remove all of the hyperedges containing X from the 

hypergraph.

 Add the new hyperedge Hi to the hypergraph.
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Complexity of Variable Elimination

 Eliminate C
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C
D

A

B

E
F

D

A

B

E
F
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Complexity of Variable Elimination

 Eliminate D
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C
D

A

B

E
F

C
A

B

E
F
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Complexity of Variable Elimination

 Eliminate A
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C
D

A

B

E
F

C
DB

E
F
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Variable Elimination

 Notice that when we start VE we have a set of 

factors consisting of the reduced CPTs. The 

unassigned variables for the vertices and the set of 

variables each factor depends on forms the 

hyperedges of a hypergraph H1. 

 If the first variable we eliminate is X, then we remove 

all factors containing X (all hyperedges) and add a 

new factor that has as variables the union of the 

variables in the factors containing X (we add a 

hyperdege that is the union of the removed 

hyperedges minus X).
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VE Factors

129

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6E,D,F)

Ordering: 
C,F,A,B,E,D

1. C:

2. F:

3. A:

4. B:

5. E:

6. D:

C
D

A

B

E
F
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VE: Place Original Factors in first 

applicable bucket.
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A)

4. B: f2(B)

5. E:

6. D:
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VE: Eliminate C, placing new factor f7 in 

first applicable bucket.

131

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B)

5. E:

6. D:

D

A

B

E
F
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VE: Eliminate F, placing new factor f8 in 

first applicable bucket.
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B)

5. E: f8(E,D)

6. D:

D

A

B

E
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VE: Eliminate A, placing new factor f9 in 

first applicable bucket.
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D)

6. D:

DB

E
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VE: Eliminate B, placing new factor f10 in 

first applicable bucket.
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D), f10(D,E)

6. D:

D

E
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VE: Eliminate E, placing new factor f11 in 

first applicable bucket.
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C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering: 
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D), f10(D,E)

6. D: f11(D)

D
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Elimination Width

 Given an ordering π of the variables and an initial 
hypergraph ℋ eliminating these variables yields a 

sequence of hypergraphs

ℋ = H0, H1,H2,…,Hn

 Where Hn contains only one vertex (the query 

variable).

 The elimination width π is the maximum size (number 

of variables) of any hyperedge in any of the 

hypergraphs H0,H1,…,Hn.

 The elimination width of the previous example was 4 

({A,B,E,D} in H1 and H2).
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Elimination Width

 If the elimination width of an ordering π is k, then the 
complexity of VE using that ordering is 2O(k)

 Elimination width k means that at some stage in the 
elimination process a factor involving k variables 
was generated.

 That factor will require 2O(k) space to store
 space complexity of VE is 2O(k)

 And it will require 2O(k) operations to process (either 
to compute in the first place, or when it is being 
processed to eliminate one of its variables).
 Time complexity of VE is 2O(k) 

 NOTE, that k is the elimination width of this particular 
ordering.
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Tree Width

 Given a hypergraph ℋ with vertices {X1,X2,…,Xn} 
the tree width of ℋ is the MINIMUM elimination 
width of any of the n! different orderings of the Xi 

minus 1.

 Thus VE has best case complexity of 2O() where 
 is the TREE WIDTH of the initial Bayes Net.

 In the worst case the tree width can be equal to 
the number of variables.
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Tree Width

 Exponential in the tree width is the best that VE can 
do. 
 Finding an ordering that has elimination width equal to tree 

width is NP-Hard.

 so in practice there is no point in trying to speed up VE by 
finding the best possible elimination ordering.

 Heuristics are used to find orderings with good (low) 
elimination widths.

 In practice, this can be very successful. Elimination widths 
can often be relatively small, 8-10 even when the network 
has 1000s of variables.

 Thus VE can be much!! more efficient than simply summing 
the probability of all possible events (which is exponential 
in the number of variables).

 Sometimes, however, the treewidth is equal to the number 
of variables.
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Finding Good Orderings

 A polytrees is a singly connected Bayes Net: in 

particular there is only one path between any 

two nodes.

 A node can have multiple parents, but we have 

no cycles. 

 Good orderings are easy to find for polytrees

 At each stage eliminate a singly connected node.

 Because we have a polytree we are assured that a 

singly connected node will exist at each elimination 

stage.

 The size of the factors in the tree never increase.
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Elimination Ordering: Polytrees
 Treewidth of a polytree is 1!

 Eliminating singly 
connected nodes allows VE 
to run in time linear in size of 
network

 e.g., in this network, eliminate 
D, A, C, X1,…; or eliminate 
X1,… Xk, D, A C; or mix up…

 result: no factor ever larger 
than original CPTs

 eliminating B before these 
gives factors that include all 
of A,C, X1,… Xk !!!
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Effect of Different Orderings

Suppose query variable 

is D. Consider different 

orderings for this network 

(not a polytree!)

 A,F,H,G,B,C,E:

 good

 E,C,A,B,G,H,F:

 bad
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Min Fill Heuristic

 A fairly effective heuristic is 
always eliminate next the 
variable that creates the 
smallest size factor.

 This is called the min-fill 
heuristic.

 B creates a factor of size 
k+2

 A creates a factor of size 2

 D creates a factor of size 1

 The heuristic always solves 
polytrees in linear time.
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Relevance

Certain variables have no impact on the query. 

In network ABC, computing Pr(A) with no 

evidence requires elimination of B and C. 

 But when you sum out these vars, you compute a 

trivial factor (whose value are all ones); for 

example:

 eliminating C: f4(B) = ΣC f3(B,C) = ΣC Pr(C|B)

 1 for any value of B   (e.g., Pr(c|b) + Pr(~c|b) = 1)

No need to think about B or C for this query
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Relevance

Can restrict attention to relevant variables. 

Given query q, evidence E:

 q itself is relevant

 if any node Z is relevant, its parents are relevant

 if e∊E is a descendent of a relevant node, then E is 

relevant

We can restrict our attention to the subnetwork 

comprising only relevant variables when 

evaluating a query Q

145 Fahiem Bacchus, University of Toronto



Relevance: Examples

 Query: P(F)
 relevant: F, C, B, A

 Query: P(F|E)
 relevant: F, C, B, A

 also: E, hence D, G

 intuitively, we need to compute 
P(C|E) to compute P(F|E)

 Query: P(F|H)
 relevant F,C,A,B.

Pr(A)Pr(B)Pr(C|A,B)Pr(F|C) Pr(G)Pr(h|G)Pr(D|G,C)Pr(E|D)
= … Pr(G)Pr(h|G)Pr(D|G,C) EPr(E|D) = a table of 1’s
= … Pr(G)Pr(h|G) D Pr(D|G,C) = a table of 1’s
= [Pr(A)Pr(B)Pr(C|A,B)Pr(F|C)] [Pr(G)Pr(h|G)] 

[Pr(G)Pr(h|G)]   1 but irrelevant 
once we normalize, multiplies each value of 
F equally
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Relevance: Examples

Query: P(F|E,C)
 algorithm says all vars except H are relevant; but 

really none except C, F (since C cuts of all influence 
of others)

 algorithm is overestimating relevant set
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Independence in a Bayes Net

Another piece of information we can obtain 

from a Bayes net is the “structure” of relationships 

in the domain.

The structure of the BN means: every Xi is 

conditionally independent of all of its 

nondescendants given it parents:
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Pr(Xi | S  Par(Xi)) = Pr(Xi | Par(Xi))

for any subset S  NonDescendents(Xi)
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More generally…

 Many conditional independencies hold in a given 
BN.

 These independencies are useful in computation, 
explanation, etc.

 Some of these independencies can be detected 
using a graphical condition called D-Separation.
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Approximate Inference in Bayes Nets

Often the Bayes net is not solvable by Variable 

Elimination: under any ordering of the variables 

we end up with a factor that is too large to 

compute (or store). 

Since we are trying to compute a probability 

(which only predicts the likelihood of an event 

occurring) it is natural to consider approximating 

answer.
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Sampling Techniques

Direct Sampling from the prior distribution.

Every Bayes net specifies the probability of every 

atomic event: 

 Each atomic event is a particular assignment of 

values to all of the variables in the Bayes nets.

 Let V1, …, Vn be the variables in the Bayes net. 

 Let d1, …, dn be values for these variables (di is the 

value variable Vi takes). 

 The Bayes net specifies that 

where ParVals(Vi) is the set of assignments Vk = dk for 

each Vk  Par(Vi)
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Sampling Techniques

So we want to sample atomic events in such a 

ways that the probability we select event e is 

equal to Pr(e)

1. Select an unselected variable Vi such that all 
parents of Vi in the Bayes Net have already been 
selected. 

2. Let [P1, P2, …, Pk] be the parents of Vi in the 
Bayes net. Let [b1, …, bk] be the values that have 
already been selected for these parents (Pi=bi).

3. Set Vi to the value d  Dom[Vi] with probability

Pr(Vi = d | P1=b1, P2=b2, …, Pk=bk)
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Sampling Techniques

Note that the probabilities 

Pr(V
i
= d | P

1
=b

1
, P

2
=b

2
, …, P

k
=b

k
)

are specified in Vi’s CPT in the Bayes net.

Each variable is given a value by a separate 

random selection so the probability one obtains 

a particular atomic event e (a setting of all of 

the variables) via this algorithm is exactly Pr(e) as 

specified by the Bayes Net. 
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Sampling Techniques

Say we want to evaluate Pr(V1 = d3)

We select N random samples of atomic events 

via this method

Then we compute the proportion of these N 

events in which V1 = d3

This proportion 

(Number of Events where V1 = d3)/N

is an estimate of Pr(V1 = d3).

The estimate gets better as N gets larger, and by 

the law of large numbers as N approaches 

infinity the estimate converges (becomes closer 

and closer) to the exact Pr(V1 = d3)
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Sampling Techniques

 If we want to compute a conditional probability 

like Pr(V1 = d3|V4 = d1), then we can 

 Discard all atomic events in which V4  d1

 This gives a new smaller set of N’ sampled atomic 

events. 

 From those N’ we compute the proportion in which 

V1 = d3 

 This proportion 

(Number of Events where V1 = d3 from the remaining samples)/N’

is an estimate of Pr(V1 = d3|V4 = d1)

 This is called Rejection Sampling
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Sampling Techniques

 Problem, almost all samples might be rejected if 

V4 = d1 has very low probability.

 The accuracy of the estimate depends on the size of 

N’ (the samples that remain after rejection). 

 So if very few are left our estimate is not good. 

 E.g., if Pr(V4 = d1) = 0.0000001, then if we generate 

1/ 0.0000001 = 10,000,000 samples we expect to reject 

9,999,999 of them. In that case our estimate of 

Pr(V1 = d3|V4 = d1) will be 1 or 0! (Either our sole 

remaining sample has V1 = d3 or it doesn’t).

 In most cases we want to compute posterior

probabilities, i.e., probabilities conditioned on the 

evidence. So this is a major problem.
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Sampling Techniques

 Likelihood Weighting tries to address this issue. 

 Force all samples to be compatible with the 

conditioning event.

 Don’t select a value for a variable whose value is 

specified in the evidence that we are conditioning 

on.

 Weigh each sample by its probability—some 

samples count more than others in computing the 

estimate. 
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Sampling Techniques

1. Set w = 1, let the evidence be a set of variables 
whose values are already given. 

2. While there are unselected variables

1. Select an unselected variable Vi such that all parents of 
Vi in the Bayes Net have already been selected. 

2. Let [P1, P2, …, Pk] be the parents of Vi in the Bayes net. 
Let [b1, …, bk] be the values that have already been 
selected for these parents (Pi=bi).

3. If Vi’s value is specified in the evidence and d is the 
value specified then 

w = w * Pr(Vi = d | P1=b1, P2=b2, …, Pk=bk) 

4. Else set Vi to the value d  Dom[Vi] with probability
Pr(Vi = d | P1=b1, P2=b2, …, Pk=bk)
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Sampling Techniques

 If we want to compute a conditional probability 

like Pr(V1 = d3|V4 = d1), then we can 

 Generate a collection N of likelihood weighted 

samples using the evidence V4 = d1

 Each sample (atomic event) e has a weight w. 

 We compute the sum of the weights of the samples in 

N in V1 = d3 and divide this by the sum of the weights of 

all samples in N. 

 This number 
(Sum of weights of samples in N where V1 = d3)/(sum of weights of                                

samples in N) 

is an estimate of Pr(V1 = d3|V4 = d1)
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Sampling Techniques

 Problem, many samples might have very low weight. 

Some might even have zero weight.

 Zero weight occurs when we have selected the parents of 

an evidence variable in such a way that 
Pr(Vi = d | P1=b1, P2=b2, …, Pk=bk) 

is zero (this is multiplied into the sample weight).

 The accuracy of the estimate increases as the total 

weight of the samples increases, so if each sample has 

very low weight, we may need a very large number of 

weights. 

160 Fahiem Bacchus, University of Toronto



Sampling Techniques

 Markov Chain Monte Carlo (MCMC) methods some 

of these problems. 

 The book gives a description of Gibbs Sampling (a 

form of MCMC. 
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