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} Knowledge Representation 

}  This material is covered in chapters 7—10 of the text. 
}  Chapter 7 provides a useful motivation for logic, and an 

introduction to some basic ideas. It also introduces propositional 
logic, which is a good background for first-order logic.  

}  What we cover here is mainly covered in Chapters 8 and 9. 
However, Chapter 8 contains some additional useful examples of 
how first-order knowledge bases can be constructed. Chapter 9 
covers forward and backward chaining mechanisms for inference, 
while here we concentrate on resolution.  

}  Chapter 10 covers some of the additional notions that have to be 
dealt with when using knowledge representation in AI.  

CSC384h: Intro to Artificial Intelligence 
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}  Consider the task of understanding a simple 
story.  

}  How do we test understanding?  

}  Not easy, but understanding at least entails 
some ability to answer simple questions about 
the story. 

Knowledge Representation 
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Example. 
}  Three little pigs 
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Example. 
}  Three little pigs 
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}  Why couldn’t the wolf blow down the house 
made of bricks? 

}  What background knowledge are we applying 
to come to that conclusion? 
}  Brick structures are stronger than straw and stick 

structures. 
}  Objects, like the wolf, have physical limitations. The wolf 

can only blow so hard. 

Example. 
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}  Large amounts of knowledge are used to understand 
the world around us, and to communicate with others.  

}  We also have to be able to reason with that knowledge. 
}  Our knowledge won’t be about the blowing ability of 

wolfs in particular, it is about physical limits of objects in 
general. 

}  We have to employ reasoning to make conclusions 
about the wolf. 

}  More generally, reasoning provides an exponential or 
more compression in the knowledge we need to store. 
I.e., without reasoning we would have to store a 
infeasible amount of information: e.g., Elephants can’t fit 
into teacups.  

Why Knowledge Representation? 
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Logical Representations 

}  AI typically employs logical representations of 
knowledge. 

}  Logical representations useful for a number of 
reasons: 
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Logical Representations 

}  They are mathematically precise, thus we can analyze 
their limitations, their properties, the complexity of 
inference etc.  

}  They are formal languages, thus computer programs 
can manipulate sentences in the language. 

}  They come with both a formal syntax and a formal 
semantics.  

}  Typically, have well developed proof theories: formal 
procedures for reasoning at the syntactic level 
(achieved by manipulating sentences). 
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Set theoretic semantics 
}  Suppose our knowledge is represented in our program 

by some collection of data structures. We can think of 
these as a collection of strings (sentences). 

}  We want a clear mapping from this set of sentences to 
features of the environment. What are sentences 
asserting about environment? 
 
}  In other words, we want to be able to provide an intuitive 

interpretation of any piece of our representation. 
}  Similar in spirit to having an intuitive understanding of 

what individual statements in a program mean. It does 
not mean that it is easy to understand the whole, but it 
provides the means to understand the whole by 
understanding the parts. 
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Set theoretic semantics 
}  Set theoretic semantics facilitates both goals. 

}  It is a formal characterization, and it can be used to 
prove a wide range of properties of the 
representation. 

}  It maps arbitrarily complex sentences of the logic 
down into intuitive assertions about the real world. 

}  It is based on notions that are very close to how we 
think about the real world. Thus it provides the 
bridge from the syntax to an intuitive understanding 
of what is being asserted. 
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Set theoretic semantics 

Representation Set Theoretic 
Semantics 

The Agent’s 
Environment 
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Semantics Formal Details 
}  A set of objects. These are objects in the environment 

that are important for your application.  

}  Distinguished subsets of objects. Properties.  

}  Distinguished sets of tuples of objects. Relations. 

}  Distinguished functions mapping tuples of objects to 
objects. Functions. 
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Example 
}  Teaching CSC384, want to represent knowledge that 

would be useful for making the course a successful 
learning experience. 

}  Objects:  
}  students, subjects, assignments, numbers. 

}  Predicates:  
}  difficult(subject), CSMajor(student).  

}  Relations:  
}  handedIn(student, assignment) 

}  Functions:  
}  Grade(student, assignment) → number 
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First Order Logic  
1.  Syntax: A grammar specifying what are legal 

syntactic constructs of the representation. 

2.  Semantics: A formal mapping from syntactic 
constructs to set theoretic assertions. 
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First Order Syntax 
Start with a set of primitive symbols. 

1.  constant symbols. 
2.  function symbols. 
3.  predicate symbols (for predicates and relations). 
4.  variables. 

 
•  Each function and predicate symbol has a specific 

arity (determines the number of arguments it takes). 
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First Order Syntax—Building up. 
} terms are used as names (perhaps complex 
nested names) for objects in the domain. 

} Terms of the language are either: 
}  a variable 
}  a constant 
}  an expression of the form f(t1, … tk) where  

}  (a) f is a function symbol;  
}  (b) k is its arity;  
}  (c) each ti is a term 

}  5 is a term—a symbol representing the number 5. John is a 
term—a symbol representing the person John. 

}  +(5,5) is a term—a symbol representing the number 10. 

 



Fahiem Bacchus, University of Toronto 17 

First Order Syntax—Building up. 
}  Note: constants are the same as functions 

taking zero arguments. 
} Terms denote objects (things in the world):  

}  constants denote specific objects;  
}  functions map tuples of objects to other objects 

}   bill,  jane,  father(jane),  father(father(jane)) 
}   X,  father(X),  hotel7,  rating(hotel7),  cost(hotel7) 

}  Variables like X are not yet determined, but they will 
eventually denote particular objects.  
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First Order Syntax—Building up. 
} Once we have terms we can build up formulas. 
Terms represent (denote) objects, formulas 
represent true/false assertions about these 
objects.  

} We start with atomic formulas these are 
}  expressions of the form    p(t1, … tk)   where  
}  (a) p is a predicate symbol;  
}  (b) k is its arity;  
}  (c) each ti is a term 
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} Atoms denote facts that can be true or false about the 
world 
}  father_of(jane, bill), female(jane), system_down() 
}  satisfied(client15),   satisfied(C)    
}  desires(client15,rome,week29),  desires(X,Y,Z) 
}  rating(hotel7, 4),  cost(hotel7, 125) 

Semantic Intuition (formalized later). 
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First Order Syntax—Building up. 
} Atomic formulas 

} The negation (NOT) of a formula is a new 
formula 
}  ¬f  (-f) 

 Asserts that f is false. 
 
} The conjunction (AND) of a set of formulas is a 
formula.  
}   f1 Λ f2 Λ … Λ fn  where each  fi  is formula 

 Asserts that each formula fi is true.  
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First Order Syntax—Building up. 
}  The disjunction (OR) of a set of formulas is a formula.  

}   f1 ∨ f2 ∨ … ∨ fn  where each  fi  is formula 
 Asserts that at least one formula fi is true.  

 
}  Existential Quantification ∃.  

}   ∃X. f where X is a variable and f is a formula.  
 Asserts there is some object such that once X is bound to 
that object, f will be true. 

 
}  Universal Quantification ∀.  

}  ∀X.f where X is a variable and f is a formula.  
 Assets that f is true for every object X can be bound to.  
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First Order Syntax—abbreviations. 
} Implication: 

}  f1→ f2 

 Take this to mean 
}  ¬f1 ∨  f2.  
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Semantics. 
}  Formulas (syntax) can be built up recursively, and can 

become arbitrarily complex. 

}  Intuitively, there are various distinct formulas (viewed as 
strings) that really are asserting the same thing 
}  ∀X,Y. elephant(X) Λ teacup(Y) → largerThan(X,Y) 
}  ∀X,Y. teacup(Y) Λ elephant(X) → largerThan(X,Y) 

}  To capture this equivalence and to make sense of 
complex formulas we utilize the semantics. 
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Semantics. 
} A formal mapping from formulas to semantic 

entities (individuals, sets and relations over 
individuals, functions over individuals). 

}  The mapping is mirrors the recursive structure of 
the syntax, so we can give any formula, no 
matter how complex a mapping to semantic 
entities.  
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Semantics—Formal Details 
}   First, we must fix the particular first-order language we are 

going to provide semantics for. The primitive symbols 
included in the syntax defines the particular language. 
L(F,P,V) 

} F = set of function (and constant symbols) 
}  Each symbol f in F has a particular arity. 

} P = set of predicate and relation symbols. 
}  Each symbol p in P has a particular arity. 

} V = an infinite set of variables. 
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Semantics—Formal Details 
} An interpretation (model) is a tuple 

 〈D, Φ, Ψ,v〉 
}  D is a non-empty set (domain of individuals) 

}   Φ is a mapping: Φ(f) → (Dk→ D) 
}  maps k-ary function symbol f, to a function from k-ary tuples of 

individuals to individuals. 

}    Ψ is a mapping:  Ψ(p) → (Dk → True/False) 
}  maps k-ary predicate symbol p, to an indicator function over k-

ary tuples of individuals (a subset of Dk) 

}  v is a variable assignment function. v(X) = d ∈ D (it maps 
every variable to some individual) 
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Intuitions: Domain 
} Domain D:  d ∈ D  is an individual 

} E.g., { craig, jane, grandhotel, le-fleabag,  
           rome, portofino, 100, 110, 120 …} 

} Underlined symbols denote domain individuals 
(as opposed to symbols of the first-order 
language) 

} Domains often infinite, but we’ll use finite models 
to prime our intuitions 
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Intuitions: Φ 
}   Φ(f) → (Dk→ D) 
Given k-ary function f, k individuals, what individual does 

f(d1, …, dk)  denote 
 
}  0-ary functions (constants) are mapped to specific 

individuals in D. 
}  Φ(client17) = craig, Φ(hotel5) = le-fleabag,  Φ (rome) = rome 

}  1-ary functions are mapped to functions in D → D  
}  Φ(minquality)=f_minquality:  

     f_minquality(craig) = 3stars     
}  Φ(rating)=f_rating:  

    f_rating(grandhotel) = 5stars 

}  2-ary functions are mapped to functions from D2 → D 
}  Φ(distance)=f_distance:  

  f_distance(toronto, sienna) = 3256 
}  n-ary functions are mapped similarly. 
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Intuitions: Ψ 
}   Ψ(p) → (Dk → True/False) 

}  given k-ary predicate, k individuals, does the relation denoted by p hold of 
these? Ψ(p)(<d1, … dk>) = true? 

 
}  0-ary predicates are mapped to true or false. 

  Ψ(rainy) = True   Ψ(sunny) = False 

}  1-ary predicates are mapped indicator functions of subsets of D.  
}  Ψ(satisfied) = p_satisfied:  

  p_satisfied(craig) = True    
}  Ψ(privatebeach) = p_privatebeach: 

  p_privatebeach(le-fleabag) = False  

}  2-ary predicates are mapped to indicator functions over D2 

}  Ψ(location) = p_location: p_location(grandhotel, rome) = True 
              p_location(grandhotel, sienna) = False 

 
}  Ψ(available) = p_available:  

                p_available(grandhotel, week29) = True 
 

}  n-ary predicates.. 
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Intuitions: v 

}  v  exists to take care of quantification. As we will 
see the exact mapping it specifies will not matter.  

 
} Notation: v[X/d] is a new variable assignment 
function.  
}  Exactly like v, except that it maps the variable X to 

the individual d.  
}  Maps every other variable exactly like v:  

     v(Y) = v[X/d](Y) 
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Semantics—Building up  
Given language L(F,P,V), and an interpretation  

I = 〈D, Φ, Ψ,v〉 
a)  Constant c (0-ary function) denotes an individual  

I(c) = Φ(c) ∈ D 
b)  Variable X denotes an individual  

I(X) = v(X) ∈ D (variable assignment function). 

c)  Ground term t  =  f(t1,…, tk) denotes an individual  
I(t) = Φ(f)(I(t1),… I(tk)) ∈ D 
 
We recursively find the denotation of each term, then 
we apply the function denoted by f to get a new 
individual. 

 
Hence terms always denote individuals under 
an interpretation I 
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Semantics—Building up  
Formulas 

a)  Ground atom a = p(t1,… tk) has truth value 

 I(a) = Ψ(p)(I(t1), …, I(tk)) ∈ { True, False } 

 

We recursively find the individuals denoted by 
the ti, then we check to see if this tuple of 
individuals is in the relation denoted by p. 
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Semantics—Building up  
Formulas 
b)  Negated formulas ¬f has truth value 

      I(¬f) = True if I(f) = False 
I(¬f) = False if I(f) = True 

 

c)  And formulas f1 Λ f2 Λ … Λ fn have truth value 

 I(f1 Λ f2 Λ … Λ fn) = True if every I(fi) = True. 
I(f1 Λ f2 Λ … Λ fn) = False otherwise. 

 

d)  Or formulas f1 ∨ f2 ∨ … ∨ fn have truth value 

 I(f1 ∨ f2 ∨ … ∨ fn) = True if any I(fi) = True. 
I(f1 ∨ f2 ∨ … ∨ fn) = False otherwise. 
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Semantics—Building up  
Formulas 

 
e)  Existential formulas ∃X. f have truth value 

 I(∃X. f) = True if there exists a d ∈ D such that 
 
I’(f) = True 
 
where I’ =  〈D, Φ, Ψ,v[X/d]〉 
 
False otherwise. 

I’ is just like I except that its variable assignment 
function now maps X to d. “d” is the individual of 
which “f” is true. 
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Semantics—Building up  
Formulas 

 
f)  Universal formulas ∀X.f have truth value 

 I(∀X.f ) = True if for all d ∈ D 
 
I’(f) = True 
 
where I’ =  〈D, Φ, Ψ,v[X/d]〉 
 
False otherwise. 

Now “f” must be true of every individual “d”. 

Hence formulas are always either True or False 
under an interpretation I 
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Example 

D = {bob, jack, fred} 
happy is true of all objects. 
I(∀X.happy(X)) 
 
1. Ψ(happy)(v[X/bob](X)) = Ψ(happy)(bob) = True 
 
2. Ψ(happy)(v[X/jack](X)) = Ψ(happy)(jack) = True 
 
3. Ψ(happy)(v[X/fred](X)) = Ψ(happy)(fred) = True 
 
Therefore I(∀X.happy(X)) = True. 
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Models—Examples. 
Language (Syntax) 

A 

B 

C E 

Environment 
§ Constants: a,b,c,e 
§ Functions: 

§ No function  

§  Predicates:  

§ on: binary 

§ above: binary 

§ clear: unary 

§ ontable: unary 
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Models—Examples. 
A possible Model I1 (semantics) 

§ D = {A, B, C, E}  

§ Φ(a) = A, Φ(b) = B, Φ(c) = 
C, Φ(e) = E. 

§ Ψ(on) = {(A,B),(B,C)} 

§ Ψ(above)= 

     {(A,B),(B,C),(A,C)} 

§ Ψ(clear)={A,E} 

§ Ψ(ontable)={C,E} 

§ Constants: a,b,c,e  

§ Predicates:  

§ on (binary) 

§ above (binary) 

§ clear (unary) 

§  ontable(unary) 

Language (syntax) 
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Models—Examples. 
Model I1 

§ D = {A, B, C, E}  

§ Φ(a) = A, Φ(b) = B, 
Φ(c) = C, Φ(e) = E. 

§ Ψ(on) = {(A,B),(B,C)} 

§ Ψ(above) = {(A,B),
(B,C),(A,C)} 

§ Ψ(clear)={A,E} 

§ Ψ(ontable)={C,E} 

A 

B 

C E 

Environment 
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Models—Formulas true or false? 
Model I1 

§ D = {A, B, C, E}  

§ Φ(a) = A, Φ(b) = B, 
Φ(c) = C, Φ(e) = E. 

§ Ψ(on) = {(A,B),(B,C)} 

§ Ψ(above) = {(A,B),
(B,C),(A,C)} 

§ Ψ(clear)={A,E} 

§ Ψ(ontable)={C,E} 

∀X,Y. on(X,Y)→above(X,Y)  

X=A, Y=B 

X=C, Y=A  
 … 

∀X,Y. above(X,Y)→on(X,Y)  

X=A, Y=B 

X=A, Y=C 
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Models—Examples. 
Model I1 

§ D = {A, B, C, E}  

§ Φ(a) = A, Φ(b) = B, 
Φ(c) = C, Φ(e) = E. 

§ Ψ(on) = {(A,B),(B,C)} 

§ Ψ(above) = {(A,B),
(B,C),(A,C)} 

§ Ψ(clear)={A,E} 

§ Ψ(ontable)={C,E} 

∀X∃Y. (clear(X) ∨ on(Y,X))  
X=A 
X=C, Y=B 
 … 

∃Y∀X.(clear(X) ∨ on(Y,X))  
Y=A ? No!  (X=C) 
Y=C?  No!  (X=B) 
Y=E?  No!  (X=B) 
Y=B ? No!  (X=B) 
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KB—many models 
KB 

1. on(b,c) 

2. clear(e) 

A 

B 

C E 

B 

C E 

B 

C E 

A 
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Models 
}  Let our Knowledge base KB, consist of a set of 

formulas. 
} We say that I is a model of KB or that I satisfies KB 

}  If, every formula f ∈ KB is true under I 

} We write  I ⊨ KB if I satisfies KB, and I⊨f  if  f  is true 
under I. 
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What’s Special About Models? 
}  When we write KB, we intend that the real 

world (i.e. our set theoretic abstraction of it) is 
one of its models. 

}  This means that every statement in KB is true in 
the real world. 

}  Note however, that not every thing true in the 
real world need be contained in KB. We might 
have only incomplete knowledge. 
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Models support reasoning. 
}  Suppose formula f is not mentioned in KB, but is true in 

every model of KB; i.e.,  
             I ⊨ KB → I ⊨ f.  

}  Then we say that f is a logical consequence of KB or 
that KB entails f . 

}  Since the real world is a model of KB, f must be true in 
the real world. 

}  This means that entailment is a way of finding new true 
facts that were not explicitly mentioned in KB. 

  
??? If KB doesn’t entail f, is f false in the real world? 
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Logical Consequence Example 
}  elephant(clyde) 

}  the individual denoted by the symbol clyde in the set 
deonted by elephant (has the property that it is an 
elephant). 

}  teacup(cup) 
}  cup is a teacup.  

}  Note that in both cases a unary predicate specifies a 
set of individuals. Asserting a unary predicate to be true 
of a term means that the individual denoted by that 
term is in the specified set. 

}   Formally, we map individuals to TRUE/FALSE (this is an 
indicator function for the set). 
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Logical Consequence Example 
}  ∀X,Y.elephant(X) Λ teacup(Y) →largerThan(X,Y) 

}  For all pairs of individuals if the first is an elephant and 
the second is a teacup, then the pair of objects are 
related to each other by the largerThan relation.  

}  For pairs of individuals who are not elephants and 
teacups, the formula is immediately true.  
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Logical Consequence Example 
}  ∀X,Y.largerThan(X,Y) → ¬fitsIn(X,Y) 

}  For all pairs of individuals if X is larger than Y (the pair 
is in the largerThan relation) then we cannot have 
that X fits in Y (the pair cannot be in the fitsIn 
relation).  

}  (The relation largerThan has a empty intersection 
with the fitsIn relation). 



Fahiem Bacchus, University of Toronto 49 

Logical Consequences 
}  ¬fitsIn(clyde,cup) 

}  We know largerThan(clyde,teacup) from the first 
implication. Thus we know this from the second 
implication. 
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Logical Consequences 

Elephants × teacups 
 

largerThan 

 (clyde    ,      cup) 

 
 
 
¬fitsIn 

fitsIn 
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Logical Consequence Example 
}  If an interpretation satisfies KB, then the set of pairs 

elephant X teacup must be a subset of largerThan, 
which is disjoint from fitsIn. 

 
}  Therefore, the pair (clyde,cup) must be in the 

complement of the set fitsIn. 

}  Hence, ¬fitsIn(clyde,cup) must be true in every 
interpretation that satisfies KB. 

}  ¬fitsIn(clyde,cup) is a logical consequence of KB.  
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Models Graphically 

a b ¬c ¬d 

a b c ¬d 

a ¬b ¬c ¬d 

Set of All  Interpretations 

Models of KB 

Consequences? a, c → b, b → c, d → b, ¬b → ¬c 
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Models and Interpretations 
}  the more sentences in KB, the fewer models 
(satisfying interpretations) there are.  

 
} The more you write down (as long as it’s all true!), 
the “closer” you get to the “real world”! Because 
Each sentence in KB rules out certain unintended 
interpretations. 

} This is called axiomatizing the domain 
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Computing logical consequences 
}  We want procedures for computing logical 

consequences that can be implemented in our 
programs. 

}  This would allow us to reason with our knowledge 
}  Represent the knowledge as logical formulas 

}  Apply procedures for generating logical consequences 

}  These procedures are called proof procedures.   
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Proof Procedures 
}  Interesting, proof procedures work by simply 

manipulating formulas. They do not know or 
care anything about interpretations.  

} Nevertheless they respect the semantics of 
interpretations! 

} We will develop a proof procedure for first-order 
logic called resolution. 
}  Resolution is the mechanism used by PROLOG 
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Properties of Proof Procedures 
}  Before presenting the details of resolution, we 

want to look at properties we would like to have 
in a (any) proof procedure. 

 
} We write KB ⊢ f to indicate that f can be proved 

from KB (the proof procedure used is implicit).  
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Properties of Proof Procedures 
}  Soundness  

}  KB ⊢ f →  KB ⊨ f 
   i.e all conclusions arrived at via the proof procedure are 

correct: they are logical consequences.  
 

}  Completeness 
}  KB ⊨ f →  KB ⊢ f 
 i.e. every logical consequence can be generated by the 

proof procedure.  

}  Note proof procedures are computable, but they might 
have very high complexity in the worst case. So 
completeness is not necessarily achievable in practice.  
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Resolution  
} Clausal form. 

}  Resolution works with formulas expressed in clausal 
form.  

}  A literal is an atomic formula or the negation of an 
atomic formula. dog(fido), ¬cat(fido)  

}  A clause is a disjunction of literals: 
}  ¬owns(fido,fred) ∨ ¬dog(fido) ∨ person(fred) 
}  We write  

   (¬owns(fido,fred), ¬dog(fido), person(fred)) 

}  A clausal theory is a conjunction of clauses.  
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Resolution  
}  Prolog Programs 

}  Prolog programs are clausal theories.  
}  However, each clause in a Prolog program is Horn.   
}  A horn clause contains at most one positive literal. 

}  The horn clause 
         ¬q1 ∨ ¬q2 ∨ … ∨ ¬qn ∨ p 
 is equivalent to  
           q1 ∧ q2 ∧… ∧ qn ⇒ p 
  and is written as the following rule in Prolog: 

                p :- q1 , q2 ,… ,qn 
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Resolution Rule for Ground Clauses 
}  The resolution proof procedure consists of only 

one simple rule:  
}  From the two clauses 

}  (P, Q1, Q2, …, Qk) 
}  (¬P, R1, R2, …, Rn) 

}  We infer the new clause 
}  (Q1, Q2, …, Qk, R1, R2, …, Rn) 

}  Example: 
}  (¬largerThan(clyde,cup), ¬fitsIn(clyde,cup) 
}  (fitsIn(clyde,cup))  
⇒  ¬largerThan(clyde,cup) 
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Resolution Proof: Forward chaining 
}  Logical consequences can be generated 

from the resolution rule in two ways: 
1.  Forward Chaining inference. 

}  If we have a sequence of clauses C1, C2, …, Ck 
}  Such that each Ci is either in KB or is the result of a 

resolution step involving two prior clauses in the 
sequence.  

}  We then have that KB ⊢ Ck. 

   Forward chaining is sound so we also have KB ⊨ Ck  
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Resolution Proof: Refutation proofs 
2.  Refutation proofs. 

}  We determine if KB ⊢ f by showing that a contradiction 
can be generated from KB Λ ¬f.  

}  In this case a contradiction is an empty clause ().  
}  We employ resolution to construct a sequence of clauses 

C1, C2, …, Cm such that 
¨  Ci is in KB Λ ¬f, or is the result of resolving two previous 

clauses in the sequence. 
¨  Cm = ()  i.e. its the empty clause.  
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Resolution Proof: Refutation proofs 
}  If we can find such a sequence C1, C2, …, 

Cm=(), we have that 
}  KB ⊢ f. 
}  Furthermore, this procedure is sound so  

}  KB ⊨ f 

} And the procedure is also complete so it is 
capable of finding a proof of any f that is a 
logical consequence of KB. I.e. 

}  If KB ⊨ f  then  we can generate a refutation from KB Λ ¬f 
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Resolution Proofs Example 
Want to prove likes(clyde,peanuts)  from: 
1.  (elephant(clyde), giraffe(clyde))  
2.  (¬elephant(clyde), likes(clyde,peanuts)) 
3.  (¬giraffe(clyde), likes(clyde,leaves)) 
4.  ¬likes(clyde,leaves) 
 
Forward Chaining Proof: 
}  3&4 → ¬giraffe(clyde) [5.] 
}  5&1 → elephant(clyde) [6.] 
}  6&2 → likes(clyde,peanuts) [7.] ü 
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Resolution Proofs Example 
1.  (elephant(clyde), giraffe(clyde))  
2.  (¬elephant(clyde), likes(clyde,peanuts)) 
3.  (¬giraffe(clyde), likes(clyde,leaves)) 
4.  ¬likes(clyde,leaves) 

Refutation Proof: 
}  ¬likes(clyde,peanuts) [5.] 
}  5&2 → ¬elephant(clyde) [6.] 
}  6&1 → giraffe(clyde) [7.] 
}  7&3 →  likes(clyde,leaves) [8.] 
}  8&4 →  ()  ü 
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Resolution Proofs 
}  Proofs by refutation have the advantage that 

they are easier to find. 
}  They are more focused to the particular 

conclusion we are trying to reach. 

}  To develop a complete resolution proof 
procedure for First-Order logic we need : 

1.  A way of converting KB and f (the query) into 
clausal form.  

2.  A way of doing resolution even when we 
have variables (unification).   
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Conversion to Clausal Form 
To convert the KB into Clausal form we perform 

the following  8-step procedure: 
 

1.  Eliminate Implications.  
2.  Move Negations inwards (and simplify ¬¬).  
3.  Standardize Variables. 
4.  Skolemize.  
5.  Convert to Prenix Form.  
6.  Distribute conjunctions over disjunctions.  
7.  Flatten nested conjunctions and disjunctions.  
8.  Convert to Clauses.  
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C-T-C-F: Eliminate implications 

We use this example to show each step: 

   ∀X.p(X) → ((∀Y.p(Y) → p(f(X,Y))) 
                   Λ ¬(∀Y. ¬q(X,Y) Λ p(Y))) 

 
1.  Eliminate implications: A→B  è  ¬A ∨ B 
 
∀X. ¬p(X)  

  ∨ (   (∀Y.¬p(Y) ∨ p(f(X,Y)))  
       Λ ¬(∀Y. ¬q(X,Y) Λ p(Y)) ) 
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C-T-C-F: Move ¬ Inwards  

∀X. ¬p(X)  

 ∨ (   (∀Y.¬p(Y) ∨ p(f(X,Y)))  

       Λ ¬(∀Y. ¬q(X,Y) Λ p(Y)) ) 
 
2. Move Negations Inwards (and simplify ¬¬) 
 
∀X. ¬p(X)  

 ∨ (   (∀Y.¬p(Y) ∨ p(f(X,Y)))  

       Λ (∃Y. q(X,Y) ∨ ¬p(Y)) ) 
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C-T-C-F: : ¬ continue… 

Rules for moving negations inwards 
}  ¬(A Λ B) è ¬A ∨ ¬B 
}  ¬(A ∨ B) è ¬A Λ ¬B 
}  ¬∀X. f     è ∃X. ¬f 
}  ¬∃X. f     è ∀X. ¬f 
}  ¬¬A      è  A 
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C-T-C-F: Standardize Variables  

∀X. ¬p(X)  

 ∨ (   (∀Y.¬p(Y) ∨ p(f(X,Y)))  

       Λ (∃Y.q(X,Y) ∨ ¬p(Y)) ) 
3. Standardize Variables (Rename variables so 

that each quantified variable is unique)  
 
∀X. ¬p(X)  

 ∨ (   (∀Y.(¬p(Y) ∨ p(f(X,Y)))  

       Λ (∃Z.q(X,Z) ∨ ¬p(Z)) )  
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C-T-C-F: Skolemize  

∀X. ¬p(X)  

 ∨ (   (∀Y.¬p(Y) ∨ p(f(X,Y)))  

       Λ (∃Z.q(X,Z) ∨ ¬p(Z)) )  
 
4. Skolemize (Remove existential quantifiers by 

introducing new function symbols). 
∀X. ¬p(X)  

 ∨ ( (∀Y.¬p(Y) ∨ p(f(X,Y)))  

       Λ (q(X,g(X)) ∨ ¬p(g(X))) ) 
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C-T-C-F: Skolemization 
     Consider  ∃Y.elephant(Y) Λ friendly(Y) 
 
}  This asserts that there is some individual (binding for Y) 

that is both an elephant and friendly. 

}  To remove the existential, we invent a name for this 
individual, say a. This is a new constant symbol not equal 
to any previous constant symbols to obtain: 

                    elephant(a) Λ friendly(a) 
 
}  This is saying the same thing, since we do not know 

anything about the new constant a.  
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C-T-C-F: Skolemization 

}  It is essential that the introduced symbol “a” is 
new. Else we might know something else about 
“a” in KB.  

}  If we did know something else about “a” we 
would be asserting more than the existential.  

}  In original quantified formula we know nothing 
about the variable “Y”. Just what was being 
asserted by the existential formula.  
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C-T-C-F: Skolemization 

       Now consider  ∀X∃Y. loves(X,Y).  
 
}  This formula claims that for every X there is some Y that X 

loves (perhaps a different Y for each X). 
 
}  Replacing the existential by a new constant won’t work 
                         ∀X.loves(X,a). 
  

Because this asserts that there is a particular individual 
“a” loved by every X.  

 
}  To properly convert existential quantifiers scoped by 

universal quantifiers we must use functions not just 
constants.  
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C-T-C-F: Skolemization 
}  We must use a function that mentions every universally 

quantified variable that scopes the existential.  
 

}  In this case X scopes Y so we must replace the existential 
Y  by a function of X 

                       ∀X. loves(X,g(X)). 
                  where g is a new function symbol. 

}  This formula asserts that for every X there is some 
individual (given by g(X)) that X loves. g(X) can be 
different for each different binding of X.  
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C-T-C-F: Skolemization Examples 

} ∀XYZ ∃W.r(X,Y,Z,W)  è ∀XYZ.r(X,Y,Z,h1(X,Y,Z))  

} ∀XY∃W.r(X,Y,g(W))   è ∀XY.r(X,Y,Z,g(h2(X,Y))) 
 
 
} ∀XY∃W∀Z.r(X,Y,W) Λ q(Z,W) 
  

            è    ∀XYZ.r(X,Y,h3(X,Y)) Λ q(Z,h3(X,Y))  
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C-T-C-F:  Convert to prenix  
∀X. ¬p(X)  

 ∨ ( ∀Y.¬p(Y) ∨ p(f(X,Y))  

       Λ q(X,g(X)) ∨ ¬p(g(X)) ) 

5. Convert to prenix form. (Bring all quantifiers to the front—
only universals, each with different name). 

 
∀X∀Y. ¬p(X)  

 ∨ (¬p(Y) ∨ p(f(X,Y))  

       Λ q(X,g(X)) ∨ ¬p(g(X)) ) 
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C-T-C-F: Conjunctions over disjunctions 

∀X∀Y. ¬p(X)  

 ∨ ((¬p(Y) ∨ p(f(X,Y)))  

            Λ (q(X,g(X)) ∨ ¬p(g(X))) ) 
6. Conjunctions over disjunctions  

 A ∨ (B Λ C) è (A ∨ B) Λ (A ∨ C) 
 
∀XY.   (¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y))) 
        Λ (¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X))) 
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C-T-C-F: flatten & convert to clauses 

7. Flatten nested conjunctions and disjunctions.  
(A ∨ (B ∨ C)) è (A ∨ B ∨ C) 

 
8. Convert to Clauses (remove quantifiers and 

break apart conjunctions). 
   ∀XY.   (¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y))) 
            Λ (¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X))) 
 

a)  ¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y))  
b)  ¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X)) 
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Unification  

}  Ground clauses are clauses with no variables in 
them. For ground clauses we can use syntactic 
identity to detect when we have a P and ¬P 
pair.  

}  What about variables can the clauses 
}  (P(john), Q(fred), R(X)) 
}  (¬P(Y), R(susan), R(Y)) 
Be resolved? 
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Unification.  

}  Intuitively, once reduced to clausal form, all 
remaining variables are universally quantified. 
So, implicitly (¬P(Y), R(susan), R(Y)) represents a 
whole set of ground clauses like 
}  (¬P(fred), R(susan), R(fred)) 
}  (¬P(john), R(susan), R(john)) 
}  … 
 

}  So there is a “specialization” of this clause that 
can be resolved with (P(john), Q(fred), R(X)) 
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Unification.  

}  We want to be able to match conflicting 
literals, even when they have variables. This 
matching process automatically determines 
whether or not there is a “specialization” that 
matches. 

 
}  We don’t want to over specialize! 
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Unification.  

}  (¬p(X), s(X), q(fred)) 
}  (p(Y), r(Y))   
}  Possible resolvants 

}  (s(john), q(fred), r(john)) {Y=X, X=john} 
}  (s(sally), q(fred), r(sally)) {Y=X, X=sally} 
}  (s(X), q(fred), r(X))          {Y=X} 

}  The last resolvant is “most-general”, the other 
two are specializations of it. 

}  We want to keep the most general clause so 
that we can use it future resolution steps. 
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Unification.  

}  unification is a mechanism for finding a “most 
general” matching. 

}  First we consider substitutions. 
}  A substitution is a finite set of equations of the form  

 
V = t 
 
where V is a variable and t is a term not containing 
V. (t might contain other variables). 
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Substitutions.  

}  We can apply a substitution σ to a formula f to 
obtain a new formula fσ by simultaneously 
replacing every variable mentioned in the left 
hand side of the substitution by the right hand 
side.  

         p(X,g(Y,Z))[X=Y, Y=f(a)] è p(Y,g(f(a),Z)) 
 
}  Note that the substitutions are not applied 

sequentially, i.e., the first Y is not subsequently 
replaced by f(a). 
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Substitutions.  

}  We can compose two substitutions. θ and σ to 
obtain a new substition θσ.  

Let θ = {X1=s1, X2=s2, …, Xm=sm} 
      σ = {Y1=t1, Y2=t2, …, Yk=sk} 
 
To compute θσ
1.  S = {X1=s1σ, X2=s2σ, …, Xm=smσ, Y1=t1, 

       Y2=t2,…, Yk=sk} 
 
we apply σ to each RHS of θ and then add all 
of the equations of σ.   
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Substitutions.  

1.  S = {X1=s1σ, X2=s2σ, …, Xm=smσ, Y1=t1, 
       Y2=t2,…, Yk=sk} 

2.  Delete any identities, i.e., equations of the 
form V=V. 

3.  Delete any equation Yi=si where Yi is equal to 
one of the Xj in θ. 

The final set S is the composition θσ. 
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Composition Example.  
          θ = {X=f(Y), Y=Z}, σ = {X=a, Y=b, Z=Y} 

 
θσ 
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Substitutions.  

}  The empty substitution ε = {} is also a substitution, 
and it acts as an identity under composition. 

}  More importantly substitutions when applied to 
formulas are associative: 
 
                        (fθ)σ = f(θσ) 

}  Composition is simply a way of converting the 
sequential application of a series of substitutions 
to a single simultaneous substitution. 
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Unifiers.  

}  A unifier of two formulas f and g is a substitution 
σ that makes f and g syntactically identical.  

}  Not all formulas can be unified—substitutions 
only affect variables.  
 
   p(f(X),a)     p(Y,f(w)) 
 

}  This pair cannot be unified as there is no way of 
making a = f(w) with a substitution. 

}  Note we typically use UPPER CASE to denote 
variables,  lower case for constants. 
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MGU.  

}  A substitution σ of two formulas f and g is a Most 
General Unifier (MGU) if 

1.   σ is a unifier.  
2.  For every other unifier θ of f and g there must 

exist a third substitution λ such that  
               θ = σλ  

§  This says that every other unifier is “more 
specialized than σ. The MGU of a pair of 
formulas f and g is unique up to renaming.  
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MGU.  
                      p(f(X),Z)    p(Y,a) 

 
1.   σ = {Y = f(a), X=a, Z=a} is a unifier. 

 
     p(f(X),Z)σ =  
     p(Y,a)σ       = 
   
But it is not an MGU. 

2.   θ = {Y=f(X), Z=a} is an MGU.  
 p(f(X),Z) θ =  

  p(Y,a) θ = 
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MGU.  
                      p(f(X),Z)    p(Y,a) 
3.  σ = θλ, where λ={X=a} 

 
 σ = {Y = f(a), X=a, Z=a} 
 λ ={X=a} 
θλ = 
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MGU.  
}  The MGU is the “least specialized” way of making 

clauses with universal variables match. 
}  We can compute MGUs. 
}  Intuitively we line up the two formulas and find 

the first sub-expression where they disagree. The 
pair of subexpressions where they first disagree is 
called the disagreement set. 

}  The algorithm works by successively fixing 
disagreement sets until the two formulas become 
syntactically identical. 
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MGU.  
To find the MGU of two formulas f and g. 
1.  k = 0; σ0 = {}; S0 = {f,g} 
2.  If Sk contains an identical pair of formulas stop, and 

return σk as the MGU of f and g.  
3.  Else find the disagreement set Dk={e1,e2} of Sk 
4.  If e1 = V a variable, and e2 = t a term not containing V (or 

vice-versa) then let 
 
σk+1 = σk {V=t}    (Compose the addital substitution) 
 
Sk+1 = Sk{V=t}    (Apply the additional substitution) 
 
k = k+1 
GOTO 2 

5.  Else stop, f and g cannot be unified. 



Fahiem Bacchus, University of Toronto 97 

MGU Example 1.  

                    S_0 = {p(f(a), g(X))  ;   p(Y,Y)} 
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MGU Example 2.  

              S0 = {p(a,X,h(g(Z)))  ;   p(Z,h(Y),h(Y))} 
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MGU Example 3.  

              S0 = {p(X,X)  ;  p(Y,f(Y))} 
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Non-Ground Resolution 

}  Resolution of non-ground clauses. From the two 
clauses 
      (L, Q1, Q2, …, Qk) 
      (¬M, R1, R2, …, Rn) 
 
Where there exists σ a MGU for L and M. 
 
We infer the new clause 
 
         (Q1σ, …, Qkσ, R1σ, …, Rnσ) 

 



Fahiem Bacchus, University of Toronto 101 

Non-Ground Resolution E.G.  
1.  (p(X), q(g(X))) 
2.  (r(a), q(Z), ¬p(a)) 

 
L=p(X); M=p(a) 
σ = {X=a} 

3.  R[1a,2c]{X=a} (q(g(a)), r(a), q(Z)) 
 
The notation is important.  
}  “R” means resolution step.  
}  “1a” means the first (a-th) literal in the first clause i.e. p(X).  
}  “2c” means the third (c-th) literal in the second clause, ¬p(a).  

}  1a and 2c are the “clashing” literals. 

}   {X=a} is the substitution applied to make the clashing literals 
identical. 
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Resolution Proof Example  

“Some patients like all doctors. No patient likes any 
quack. Therefore no doctor is a quack.” 
 
Resolution Proof Step 1.  
Pick symbols to represent these assertions. 
 
p(X): X is a patient 
d(x): X is a doctor 
q(X): X is a quack 
l(X,Y): X likes Y 
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Resolution Proof Example  

Resolution Proof Step 2.  
Convert each assertion to a first-order formula. 
 
1.  Some patients like all doctors.  
 
F1.  
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Resolution Proof Example  

2.  No patient likes any quack 
 
F2.  
 
 
3.  Therefore no doctor is a quack. 
Query.  
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Resolution Proof Example  

Resolution Proof Step 3.  
Convert to Clausal form. 
 
F1.  
 
F2. 
 
Negation of Query.  
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Resolution Proof Example  

Resolution Proof Step 4.  
Resolution Proof from the Clauses. 
1.  p(a) 
2.  (¬d(Y),  l(a,Y)) 
3.  (¬p(Z), ¬q(R), ¬l(Z,R)) 
4.  d(b) 
5.  q(b) 
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Answer Extraction.  
}  The previous example shows how we can answer true-

false questions. With a bit more effort we can also 
answer “fill-in-the-blanks” questions (e.g., what is wrong 
with the car?). 

}  As in Prolog we use free variables in the query where we 
want the fill in the blanks. We simply need to keep track 
of the binding that these variables received in proving 
the query.  
}  parent(art, jon) –is art one of jon’s parents? 
}  parent(X, jon)   -who is one of jon’s parents? 
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Answer Extraction.  

}  A simple bookkeeping device is to use an 
predicate symbol answer(X,Y,…) to keep track 
of the bindings automatically.  

}  To answer the query parent(X,jon), we construct 
the clause 

 (¬ parent(X,jon), answer(X)) 

}  Now we perform resolution until we obtain a 
clause consisting of only answer literals 
(previously we stopped at empty clauses). 
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Answer Extraction: Example 1 
1.  father(art, jon) 
2.  father(bob,kim) 
3.  (¬father(Y,Z), parent(Y,Z)) 

  i.e. all fathers are parents 

4.  (¬ parent(X,jon), answer(X)) 
          i.e. the query is: who is parent of jon? 

Here is a resolution proof: 
5.  R[4,3b]{Y=X,Z=jon}  

            (¬father(X,jon), answer(X)) 

6.  R[5,1]{X=art} answer(art) 
    so art is parent of jon 
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Answer Extraction: Example 2 
1.  (father(art, jon), father(bob,jon)  //either bob or art is parent of jon 

2.  father(bob,kim) 
3.  (¬father(Y,Z), parent(Y,Z))      //i.e. all fathers are parents 

4.  (¬ parent(X,jon), answer(X))    //i.e. query is parent(X,jon) 

 
Here is a resolution proof: 
5.  R[4,3b]{Y=X,Z=jon}  (¬father(X,jon), answer(X)) 
6.  R[5,1a]{X=art} (father(bob,jon), answer(art)) 
7.  R[6,3b] {Y=bob,Z=jon}                          

 (parent(bob,jon), answer(art)) 
8.  R[7,4] {X=bob} (answer(bob), answer(art)) 
A disjunctive answer: either bob or art is parent of jon. 
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Factoring 
1. (p(X), p(Y))              // ∀ X.∀ Y. ¬p(X)  è   p(Y)  

2. (¬p(V), ¬p(W))    // ∀ V.∀W.   p(V)  è ¬p(W)  

 

}  These clauses are intuitively contradictory, but following 
the strict rules of resolution only we obtain: 

3. R[1a,2a](X=V) (p(Y), ¬p(W)) 

  Renaming variables: (p(Q), ¬p(Z)) 
4. R[3b,1a](X=Z) (p(Y), p(Q))  
 

No way of generating empty clause! 
Factoring is needed to make resolution over non-ground 

clauses complete, without it resolution is incomplete! 
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Factoring.  
}  If two or more literals of a clause C have an mgu θ, then 

Cθ with all duplicate literals removed is called a factor of 
C. 

}  C = (p(X), p(f(Y)), ¬q(X))  
θ = {X=f(Y)} 
Cθ = (p(f(Y)), p(f(Y)), ¬q(f(Y))) è (p(f(Y)), ¬q(f(Y)) is a 
factor 

 
Adding a factor of a clause can be a step of proof: 
1.  (p(X), p(Y)) 
2.  (¬p(V), ¬p(W)) 
3.  f[1ab]{X=Y} p(Y) 
4.  f[2ab]{V=W} ¬p(W) 
5.  R[3,4]{Y=W} (). 
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Prolog  

}  Prolog search mechanism is simply an 
instance of resolution, except 

1.  Clauses are Horn (only one positive literal) 
2.  Prolog uses a specific depth first strategy when 

searching for a proof. (Rules are used first 
mentioned first used, literals are resolved away 
left to right). 
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Prolog  

}  Append: 
 
1.  append([], Z, Z) 

2.  append([E1 | R1], Y, [E1 | Rest]) :- 
            append(R1, Y, Rest) 

Note:  
§  The second is actually the clause  

   (append([E1|R1], Y, [E1|Rest]) , ¬append(R1,Y,Rest)) 

§  [ ] is a constant (the empty list) 

§  [X | Y]  is cons(X,Y). 

§  So [a,b,c] is short hand for cons(a,cons(b,cons(c,[]))) 
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Prolog: Example of proof 

}  Try to prove : append([a,b], [c,d], [a,b,c,d]): 
 
1.  append([], Z, Z) 
2.  (append([E1|R1], Y, [E1|Rest]), 

      ¬append(R1,Y,Rest)) 
3.  ¬append([a,b], [c,d], [a,b,c,d]) 

4.  R[3,2a]{E1=a, R1=[b], Y=[c,d], Rest=[b,c,d]} 
 ¬append([b], [c,d], [b,c,d]) 

5.  R[4,2a]{E1=b, R1=[], Y=[c,d], Rest=[c,d]} 
 ¬append([], [c,d], [c,d]) 

6.  R[5,1]{Z=[c,d]} () 
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Review: One Last Example! 
Consider the following English description 
 
}  Whoever can read is literate.   
}  Dolphins are not literate.   
}  Flipper is an intelligent dolphin. 

}  Who is intelligent but cannot read. 
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Example: pick symbols & convert to first-order formula 

}  Whoever can read is literate.  
∀ X. read(X) → lit(X)  

}  Dolphins are not literate. 
∀ X. dolp(X) → ¬ lit(X) 

}  Flipper is an intelligent dolphin 
dolp(flipper) ∧ intell(flipper) 

}  Who is intelligent but cannot read? 
∃ X. intell(X) ∧ ¬ read(X).  
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Example: convert to clausal form 
}  ∀X. read(X) → lit(X) 

  (¬read(X), lit(X)) 
}  Dolphins are not literate. 
∀X. dolp(X) → ¬ lit(X) 

  (¬dolp(X), ¬lit(X)) 

}  Flipper is an intelligent dolphin. 
  dolp(flipper) 
  intell(flipper) 

}  who are intelligent but cannot read? 
∃ X. intell(X) ∧ ¬read(X). 
è ∀ X. ¬ intell(X) ∨ read(X) 
è   (¬intell(X), read(X), answer(X)) 
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Example: do the resolution proof 
1.  (¬read(X), lit(X)) 
2.  (¬dolp(X), ¬lit(X)) 
3.  dolp(flip) 

4.  intell(flip) 
5.  (¬intell(X), read(X),answer(X)) 

6.  R[5a,4] X=flip.  (read(flip), answer(flip)) 
7.  R[6,1a] X=flip.  (lit(flip), answer(flip)) 

8.  R[7,2b] X=flip. (¬dolp(flip), answer(flip)) 
9.  R[8,3] answer(flip) 
so flip is intelligent but cannot read! 


