
Fahiem Bacchus, University of Toronto 1

} Knowledge Representation

}  This material is covered in chapters 7—10 of the text.
}  Chapter 7 provides a useful motivation for logic, and an

introduction to some basic ideas. It also introduces propositional
logic, which is a good background for first-order logic.

}  What we cover here is mainly covered in Chapters 8 and 9.
However, Chapter 8 contains some additional useful examples of
how first-order knowledge bases can be constructed. Chapter 9
covers forward and backward chaining mechanisms for inference,
while here we concentrate on resolution.

}  Chapter 10 covers some of the additional notions that have to be
dealt with when using knowledge representation in AI.

CSC384h: Intro to Artificial Intelligence

Fahiem Bacchus, University of Toronto 2

}  Consider the task of understanding a simple
story.

}  How do we test understanding?

}  Not easy, but understanding at least entails
some ability to answer simple questions about
the story.

Knowledge Representation

Fahiem Bacchus, University of Toronto 3

Example.
}  Three little pigs

Fahiem Bacchus, University of Toronto 4

Example.
}  Three little pigs

Fahiem Bacchus, University of Toronto 5

}  Why couldn’t the wolf blow down the house
made of bricks?

}  What background knowledge are we applying
to come to that conclusion?
}  Brick structures are stronger than straw and stick

structures.
}  Objects, like the wolf, have physical limitations. The wolf

can only blow so hard.

Example.

Fahiem Bacchus, University of Toronto 6

}  Large amounts of knowledge are used to understand
the world around us, and to communicate with others.

}  We also have to be able to reason with that knowledge.
}  Our knowledge won’t be about the blowing ability of

wolfs in particular, it is about physical limits of objects in
general.

}  We have to employ reasoning to make conclusions
about the wolf.

}  More generally, reasoning provides an exponential or
more compression in the knowledge we need to store.
I.e., without reasoning we would have to store a
infeasible amount of information: e.g., Elephants can’t fit
into teacups.

Why Knowledge Representation?

Fahiem Bacchus, University of Toronto 7

Logical Representations

}  AI typically employs logical representations of
knowledge.

}  Logical representations useful for a number of
reasons:

Fahiem Bacchus, University of Toronto 8

Logical Representations

}  They are mathematically precise, thus we can analyze
their limitations, their properties, the complexity of
inference etc.

}  They are formal languages, thus computer programs
can manipulate sentences in the language.

}  They come with both a formal syntax and a formal
semantics.

}  Typically, have well developed proof theories: formal
procedures for reasoning at the syntactic level
(achieved by manipulating sentences).

Fahiem Bacchus, University of Toronto 9

Set theoretic semantics
}  Suppose our knowledge is represented in our program

by some collection of data structures. We can think of
these as a collection of strings (sentences).

}  We want a clear mapping from this set of sentences to
features of the environment. What are sentences
asserting about environment?

}  In other words, we want to be able to provide an intuitive

interpretation of any piece of our representation.
}  Similar in spirit to having an intuitive understanding of

what individual statements in a program mean. It does
not mean that it is easy to understand the whole, but it
provides the means to understand the whole by
understanding the parts.

Fahiem Bacchus, University of Toronto 10

Set theoretic semantics
}  Set theoretic semantics facilitates both goals.

}  It is a formal characterization, and it can be used to
prove a wide range of properties of the
representation.

}  It maps arbitrarily complex sentences of the logic
down into intuitive assertions about the real world.

}  It is based on notions that are very close to how we
think about the real world. Thus it provides the
bridge from the syntax to an intuitive understanding
of what is being asserted.

Fahiem Bacchus, University of Toronto 11

Set theoretic semantics

Representation Set Theoretic
Semantics

The Agent’s
Environment

Fahiem Bacchus, University of Toronto 12

Semantics Formal Details
}  A set of objects. These are objects in the environment

that are important for your application.

}  Distinguished subsets of objects. Properties.

}  Distinguished sets of tuples of objects. Relations.

}  Distinguished functions mapping tuples of objects to
objects. Functions.

Fahiem Bacchus, University of Toronto 13

Example
}  Teaching CSC384, want to represent knowledge that

would be useful for making the course a successful
learning experience.

}  Objects:
}  students, subjects, assignments, numbers.

}  Predicates:
}  difficult(subject), CSMajor(student).

}  Relations:
}  handedIn(student, assignment)

}  Functions:
}  Grade(student, assignment) → number

Fahiem Bacchus, University of Toronto 14

First Order Logic
1.  Syntax: A grammar specifying what are legal

syntactic constructs of the representation.

2.  Semantics: A formal mapping from syntactic
constructs to set theoretic assertions.

Fahiem Bacchus, University of Toronto 15

First Order Syntax
Start with a set of primitive symbols.

1.  constant symbols.
2.  function symbols.
3.  predicate symbols (for predicates and relations).
4.  variables.

•  Each function and predicate symbol has a specific

arity (determines the number of arguments it takes).

Fahiem Bacchus, University of Toronto 16

First Order Syntax—Building up.
} terms are used as names (perhaps complex
nested names) for objects in the domain.

} Terms of the language are either:
}  a variable
}  a constant
}  an expression of the form f(t1, … tk) where

}  (a) f is a function symbol;
}  (b) k is its arity;
}  (c) each ti is a term

}  5 is a term—a symbol representing the number 5. John is a
term—a symbol representing the person John.

}  +(5,5) is a term—a symbol representing the number 10.

Fahiem Bacchus, University of Toronto 17

First Order Syntax—Building up.
}  Note: constants are the same as functions

taking zero arguments.
} Terms denote objects (things in the world):

}  constants denote specific objects;
}  functions map tuples of objects to other objects

}  bill, jane, father(jane), father(father(jane))
}  X, father(X), hotel7, rating(hotel7), cost(hotel7)

}  Variables like X are not yet determined, but they will
eventually denote particular objects.

Fahiem Bacchus, University of Toronto 18

First Order Syntax—Building up.
} Once we have terms we can build up formulas.
Terms represent (denote) objects, formulas
represent true/false assertions about these
objects.

} We start with atomic formulas these are
}  expressions of the form p(t1, … tk) where
}  (a) p is a predicate symbol;
}  (b) k is its arity;
}  (c) each ti is a term

Fahiem Bacchus, University of Toronto 19

} Atoms denote facts that can be true or false about the
world
}  father_of(jane, bill), female(jane), system_down()
}  satisfied(client15), satisfied(C)
}  desires(client15,rome,week29), desires(X,Y,Z)
}  rating(hotel7, 4), cost(hotel7, 125)

Semantic Intuition (formalized later).

Fahiem Bacchus, University of Toronto 20

First Order Syntax—Building up.
} Atomic formulas

} The negation (NOT) of a formula is a new
formula
}  ¬f (-f)

 Asserts that f is false.

} The conjunction (AND) of a set of formulas is a
formula.
}  f1 Λ f2 Λ … Λ fn where each fi is formula

 Asserts that each formula fi is true.

Fahiem Bacchus, University of Toronto 21

First Order Syntax—Building up.
}  The disjunction (OR) of a set of formulas is a formula.

}  f1 ∨ f2 ∨ … ∨ fn where each fi is formula
 Asserts that at least one formula fi is true.

}  Existential Quantification ∃.

}  ∃X. f where X is a variable and f is a formula.
 Asserts there is some object such that once X is bound to
that object, f will be true.

}  Universal Quantification ∀.

}  ∀X.f where X is a variable and f is a formula.
 Assets that f is true for every object X can be bound to.

Fahiem Bacchus, University of Toronto 22

First Order Syntax—abbreviations.
} Implication:

}  f1→ f2

 Take this to mean
}  ¬f1 ∨ f2.

Fahiem Bacchus, University of Toronto 23

Semantics.
}  Formulas (syntax) can be built up recursively, and can

become arbitrarily complex.

}  Intuitively, there are various distinct formulas (viewed as
strings) that really are asserting the same thing
}  ∀X,Y. elephant(X) Λ teacup(Y) → largerThan(X,Y)
}  ∀X,Y. teacup(Y) Λ elephant(X) → largerThan(X,Y)

}  To capture this equivalence and to make sense of
complex formulas we utilize the semantics.

Fahiem Bacchus, University of Toronto 24

Semantics.
} A formal mapping from formulas to semantic

entities (individuals, sets and relations over
individuals, functions over individuals).

}  The mapping is mirrors the recursive structure of
the syntax, so we can give any formula, no
matter how complex a mapping to semantic
entities.

Fahiem Bacchus, University of Toronto 25

Semantics—Formal Details
}  First, we must fix the particular first-order language we are

going to provide semantics for. The primitive symbols
included in the syntax defines the particular language.
L(F,P,V)

} F = set of function (and constant symbols)
}  Each symbol f in F has a particular arity.

} P = set of predicate and relation symbols.
}  Each symbol p in P has a particular arity.

} V = an infinite set of variables.

Fahiem Bacchus, University of Toronto 26

Semantics—Formal Details
} An interpretation (model) is a tuple

 〈D, Φ, Ψ,v〉
}  D is a non-empty set (domain of individuals)

}  Φ is a mapping: Φ(f) → (Dk→ D)
}  maps k-ary function symbol f, to a function from k-ary tuples of

individuals to individuals.

}  Ψ is a mapping: Ψ(p) → (Dk → True/False)
}  maps k-ary predicate symbol p, to an indicator function over k-

ary tuples of individuals (a subset of Dk)

}  v is a variable assignment function. v(X) = d ∈ D (it maps
every variable to some individual)

Fahiem Bacchus, University of Toronto 27

Intuitions: Domain
} Domain D: d ∈ D is an individual

} E.g., { craig, jane, grandhotel, le-fleabag,
 rome, portofino, 100, 110, 120 …}

} Underlined symbols denote domain individuals
(as opposed to symbols of the first-order
language)

} Domains often infinite, but we’ll use finite models
to prime our intuitions

Fahiem Bacchus, University of Toronto 28

Intuitions: Φ
}  Φ(f) → (Dk→ D)
Given k-ary function f, k individuals, what individual does

f(d1, …, dk) denote

}  0-ary functions (constants) are mapped to specific

individuals in D.
}  Φ(client17) = craig, Φ(hotel5) = le-fleabag, Φ (rome) = rome

}  1-ary functions are mapped to functions in D → D
}  Φ(minquality)=f_minquality:

 f_minquality(craig) = 3stars
}  Φ(rating)=f_rating:

 f_rating(grandhotel) = 5stars

}  2-ary functions are mapped to functions from D2 → D
}  Φ(distance)=f_distance:

 f_distance(toronto, sienna) = 3256
}  n-ary functions are mapped similarly.

Fahiem Bacchus, University of Toronto 29

Intuitions: Ψ
}  Ψ(p) → (Dk → True/False)

}  given k-ary predicate, k individuals, does the relation denoted by p hold of
these? Ψ(p)(<d1, … dk>) = true?

}  0-ary predicates are mapped to true or false.

 Ψ(rainy) = True Ψ(sunny) = False

}  1-ary predicates are mapped indicator functions of subsets of D.
}  Ψ(satisfied) = p_satisfied:

 p_satisfied(craig) = True
}  Ψ(privatebeach) = p_privatebeach:

 p_privatebeach(le-fleabag) = False

}  2-ary predicates are mapped to indicator functions over D2

}  Ψ(location) = p_location: p_location(grandhotel, rome) = True
 p_location(grandhotel, sienna) = False

}  Ψ(available) = p_available:

 p_available(grandhotel, week29) = True

}  n-ary predicates..

Fahiem Bacchus, University of Toronto 30

Intuitions: v

}  v exists to take care of quantification. As we will
see the exact mapping it specifies will not matter.

} Notation: v[X/d] is a new variable assignment
function.
}  Exactly like v, except that it maps the variable X to

the individual d.
}  Maps every other variable exactly like v:

 v(Y) = v[X/d](Y)

Fahiem Bacchus, University of Toronto 31

Semantics—Building up
Given language L(F,P,V), and an interpretation

I = 〈D, Φ, Ψ,v〉
a)  Constant c (0-ary function) denotes an individual

I(c) = Φ(c) ∈ D
b)  Variable X denotes an individual

I(X) = v(X) ∈ D (variable assignment function).

c)  Ground term t = f(t1,…, tk) denotes an individual
I(t) = Φ(f)(I(t1),… I(tk)) ∈ D

We recursively find the denotation of each term, then
we apply the function denoted by f to get a new
individual.

Hence terms always denote individuals under
an interpretation I

Fahiem Bacchus, University of Toronto 32

Semantics—Building up
Formulas

a)  Ground atom a = p(t1,… tk) has truth value

 I(a) = Ψ(p)(I(t1), …, I(tk)) ∈ { True, False }

We recursively find the individuals denoted by
the ti, then we check to see if this tuple of
individuals is in the relation denoted by p.

Fahiem Bacchus, University of Toronto 33

Semantics—Building up
Formulas
b)  Negated formulas ¬f has truth value

 I(¬f) = True if I(f) = False
I(¬f) = False if I(f) = True

c)  And formulas f1 Λ f2 Λ … Λ fn have truth value

 I(f1 Λ f2 Λ … Λ fn) = True if every I(fi) = True.
I(f1 Λ f2 Λ … Λ fn) = False otherwise.

d)  Or formulas f1 ∨ f2 ∨ … ∨ fn have truth value

 I(f1 ∨ f2 ∨ … ∨ fn) = True if any I(fi) = True.
I(f1 ∨ f2 ∨ … ∨ fn) = False otherwise.

Fahiem Bacchus, University of Toronto 34

Semantics—Building up
Formulas

e)  Existential formulas ∃X. f have truth value

 I(∃X. f) = True if there exists a d ∈ D such that

I’(f) = True

where I’ = 〈D, Φ, Ψ,v[X/d]〉

False otherwise.

I’ is just like I except that its variable assignment
function now maps X to d. “d” is the individual of
which “f” is true.

Fahiem Bacchus, University of Toronto 35

Semantics—Building up
Formulas

f)  Universal formulas ∀X.f have truth value

 I(∀X.f) = True if for all d ∈ D

I’(f) = True

where I’ = 〈D, Φ, Ψ,v[X/d]〉

False otherwise.

Now “f” must be true of every individual “d”.

Hence formulas are always either True or False
under an interpretation I

Fahiem Bacchus, University of Toronto 36

Example

D = {bob, jack, fred}
happy is true of all objects.
I(∀X.happy(X))

1. Ψ(happy)(v[X/bob](X)) = Ψ(happy)(bob) = True

2. Ψ(happy)(v[X/jack](X)) = Ψ(happy)(jack) = True

3. Ψ(happy)(v[X/fred](X)) = Ψ(happy)(fred) = True

Therefore I(∀X.happy(X)) = True.

Fahiem Bacchus, University of Toronto 37

Models—Examples.
Language (Syntax)

A

B

C E

Environment
§ Constants: a,b,c,e
§ Functions:

§ No function

§  Predicates:

§ on: binary

§ above: binary

§ clear: unary

§ ontable: unary

Fahiem Bacchus, University of Toronto 38

Models—Examples.
A possible Model I1 (semantics)

§ D = {A, B, C, E}

§ Φ(a) = A, Φ(b) = B, Φ(c) =
C, Φ(e) = E.

§ Ψ(on) = {(A,B),(B,C)}

§ Ψ(above)=

 {(A,B),(B,C),(A,C)}

§ Ψ(clear)={A,E}

§ Ψ(ontable)={C,E}

§ Constants: a,b,c,e

§ Predicates:

§ on (binary)

§ above (binary)

§ clear (unary)

§  ontable(unary)

Language (syntax)

Fahiem Bacchus, University of Toronto 39

Models—Examples.
Model I1

§ D = {A, B, C, E}

§ Φ(a) = A, Φ(b) = B,
Φ(c) = C, Φ(e) = E.

§ Ψ(on) = {(A,B),(B,C)}

§ Ψ(above) = {(A,B),
(B,C),(A,C)}

§ Ψ(clear)={A,E}

§ Ψ(ontable)={C,E}

A

B

C E

Environment

Fahiem Bacchus, University of Toronto 40

Models—Formulas true or false?
Model I1

§ D = {A, B, C, E}

§ Φ(a) = A, Φ(b) = B,
Φ(c) = C, Φ(e) = E.

§ Ψ(on) = {(A,B),(B,C)}

§ Ψ(above) = {(A,B),
(B,C),(A,C)}

§ Ψ(clear)={A,E}

§ Ψ(ontable)={C,E}

∀X,Y. on(X,Y)→above(X,Y)

X=A, Y=B

X=C, Y=A
 …

∀X,Y. above(X,Y)→on(X,Y)

X=A, Y=B

X=A, Y=C

Fahiem Bacchus, University of Toronto 41

Models—Examples.
Model I1

§ D = {A, B, C, E}

§ Φ(a) = A, Φ(b) = B,
Φ(c) = C, Φ(e) = E.

§ Ψ(on) = {(A,B),(B,C)}

§ Ψ(above) = {(A,B),
(B,C),(A,C)}

§ Ψ(clear)={A,E}

§ Ψ(ontable)={C,E}

∀X∃Y. (clear(X) ∨ on(Y,X))
X=A
X=C, Y=B
 …

∃Y∀X.(clear(X) ∨ on(Y,X))
Y=A ? No! (X=C)
Y=C? No! (X=B)
Y=E? No! (X=B)
Y=B ? No! (X=B)

Fahiem Bacchus, University of Toronto 42

KB—many models
KB

1. on(b,c)

2. clear(e)

A

B

C E

B

C E

B

C E

A

Fahiem Bacchus, University of Toronto 43

Models
}  Let our Knowledge base KB, consist of a set of

formulas.
} We say that I is a model of KB or that I satisfies KB

}  If, every formula f ∈ KB is true under I

} We write I ⊨ KB if I satisfies KB, and I⊨f if f is true
under I.

Fahiem Bacchus, University of Toronto 44

What’s Special About Models?
}  When we write KB, we intend that the real

world (i.e. our set theoretic abstraction of it) is
one of its models.

}  This means that every statement in KB is true in
the real world.

}  Note however, that not every thing true in the
real world need be contained in KB. We might
have only incomplete knowledge.

Fahiem Bacchus, University of Toronto 45

Models support reasoning.
}  Suppose formula f is not mentioned in KB, but is true in

every model of KB; i.e.,
 I ⊨ KB → I ⊨ f.

}  Then we say that f is a logical consequence of KB or
that KB entails f .

}  Since the real world is a model of KB, f must be true in
the real world.

}  This means that entailment is a way of finding new true
facts that were not explicitly mentioned in KB.

??? If KB doesn’t entail f, is f false in the real world?

Fahiem Bacchus, University of Toronto 46

Logical Consequence Example
}  elephant(clyde)

}  the individual denoted by the symbol clyde in the set
deonted by elephant (has the property that it is an
elephant).

}  teacup(cup)
}  cup is a teacup.

}  Note that in both cases a unary predicate specifies a
set of individuals. Asserting a unary predicate to be true
of a term means that the individual denoted by that
term is in the specified set.

}  Formally, we map individuals to TRUE/FALSE (this is an
indicator function for the set).

Fahiem Bacchus, University of Toronto 47

Logical Consequence Example
}  ∀X,Y.elephant(X) Λ teacup(Y) →largerThan(X,Y)

}  For all pairs of individuals if the first is an elephant and
the second is a teacup, then the pair of objects are
related to each other by the largerThan relation.

}  For pairs of individuals who are not elephants and
teacups, the formula is immediately true.

Fahiem Bacchus, University of Toronto 48

Logical Consequence Example
}  ∀X,Y.largerThan(X,Y) → ¬fitsIn(X,Y)

}  For all pairs of individuals if X is larger than Y (the pair
is in the largerThan relation) then we cannot have
that X fits in Y (the pair cannot be in the fitsIn
relation).

}  (The relation largerThan has a empty intersection
with the fitsIn relation).

Fahiem Bacchus, University of Toronto 49

Logical Consequences
}  ¬fitsIn(clyde,cup)

}  We know largerThan(clyde,teacup) from the first
implication. Thus we know this from the second
implication.

Fahiem Bacchus, University of Toronto 50

Logical Consequences

Elephants × teacups

largerThan

 (clyde , cup)

¬fitsIn

fitsIn

Fahiem Bacchus, University of Toronto 51

Logical Consequence Example
}  If an interpretation satisfies KB, then the set of pairs

elephant X teacup must be a subset of largerThan,
which is disjoint from fitsIn.

}  Therefore, the pair (clyde,cup) must be in the

complement of the set fitsIn.

}  Hence, ¬fitsIn(clyde,cup) must be true in every
interpretation that satisfies KB.

}  ¬fitsIn(clyde,cup) is a logical consequence of KB.

Fahiem Bacchus, University of Toronto 52

Models Graphically

a b ¬c ¬d

a b c ¬d

a ¬b ¬c ¬d

Set of All Interpretations

Models of KB

Consequences? a, c → b, b → c, d → b, ¬b → ¬c

Fahiem Bacchus, University of Toronto 53

Models and Interpretations
}  the more sentences in KB, the fewer models
(satisfying interpretations) there are.

} The more you write down (as long as it’s all true!),
the “closer” you get to the “real world”! Because
Each sentence in KB rules out certain unintended
interpretations.

} This is called axiomatizing the domain

Fahiem Bacchus, University of Toronto 54

Computing logical consequences
}  We want procedures for computing logical

consequences that can be implemented in our
programs.

}  This would allow us to reason with our knowledge
}  Represent the knowledge as logical formulas

}  Apply procedures for generating logical consequences

}  These procedures are called proof procedures.

Fahiem Bacchus, University of Toronto 55

Proof Procedures
}  Interesting, proof procedures work by simply

manipulating formulas. They do not know or
care anything about interpretations.

} Nevertheless they respect the semantics of
interpretations!

} We will develop a proof procedure for first-order
logic called resolution.
}  Resolution is the mechanism used by PROLOG

Fahiem Bacchus, University of Toronto 56

Properties of Proof Procedures
}  Before presenting the details of resolution, we

want to look at properties we would like to have
in a (any) proof procedure.

} We write KB ⊢ f to indicate that f can be proved

from KB (the proof procedure used is implicit).

Fahiem Bacchus, University of Toronto 57

Properties of Proof Procedures
}  Soundness

}  KB ⊢ f → KB ⊨ f
 i.e all conclusions arrived at via the proof procedure are

correct: they are logical consequences.

}  Completeness
}  KB ⊨ f → KB ⊢ f
 i.e. every logical consequence can be generated by the

proof procedure.

}  Note proof procedures are computable, but they might
have very high complexity in the worst case. So
completeness is not necessarily achievable in practice.

Fahiem Bacchus, University of Toronto 58

Resolution
} Clausal form.

}  Resolution works with formulas expressed in clausal
form.

}  A literal is an atomic formula or the negation of an
atomic formula. dog(fido), ¬cat(fido)

}  A clause is a disjunction of literals:
}  ¬owns(fido,fred) ∨ ¬dog(fido) ∨ person(fred)
}  We write

 (¬owns(fido,fred), ¬dog(fido), person(fred))

}  A clausal theory is a conjunction of clauses.

Fahiem Bacchus, University of Toronto 59

Resolution
}  Prolog Programs

}  Prolog programs are clausal theories.
}  However, each clause in a Prolog program is Horn.
}  A horn clause contains at most one positive literal.

}  The horn clause
 ¬q1 ∨ ¬q2 ∨ … ∨ ¬qn ∨ p
 is equivalent to
 q1 ∧ q2 ∧… ∧ qn ⇒ p
 and is written as the following rule in Prolog:

 p :- q1 , q2 ,… ,qn

Fahiem Bacchus, University of Toronto 60

Resolution Rule for Ground Clauses
}  The resolution proof procedure consists of only

one simple rule:
}  From the two clauses

}  (P, Q1, Q2, …, Qk)
}  (¬P, R1, R2, …, Rn)

}  We infer the new clause
}  (Q1, Q2, …, Qk, R1, R2, …, Rn)

}  Example:
}  (¬largerThan(clyde,cup), ¬fitsIn(clyde,cup)
}  (fitsIn(clyde,cup))
⇒ ¬largerThan(clyde,cup)

Fahiem Bacchus, University of Toronto 61

Resolution Proof: Forward chaining
}  Logical consequences can be generated

from the resolution rule in two ways:
1.  Forward Chaining inference.

}  If we have a sequence of clauses C1, C2, …, Ck
}  Such that each Ci is either in KB or is the result of a

resolution step involving two prior clauses in the
sequence.

}  We then have that KB ⊢ Ck.

 Forward chaining is sound so we also have KB ⊨ Ck

Fahiem Bacchus, University of Toronto 62

Resolution Proof: Refutation proofs
2.  Refutation proofs.

}  We determine if KB ⊢ f by showing that a contradiction
can be generated from KB Λ ¬f.

}  In this case a contradiction is an empty clause ().
}  We employ resolution to construct a sequence of clauses

C1, C2, …, Cm such that
¨  Ci is in KB Λ ¬f, or is the result of resolving two previous

clauses in the sequence.
¨  Cm = () i.e. its the empty clause.

Fahiem Bacchus, University of Toronto 63

Resolution Proof: Refutation proofs
}  If we can find such a sequence C1, C2, …,

Cm=(), we have that
}  KB ⊢ f.
}  Furthermore, this procedure is sound so

}  KB ⊨ f

} And the procedure is also complete so it is
capable of finding a proof of any f that is a
logical consequence of KB. I.e.

}  If KB ⊨ f then we can generate a refutation from KB Λ ¬f

Fahiem Bacchus, University of Toronto 64

Resolution Proofs Example
Want to prove likes(clyde,peanuts) from:
1.  (elephant(clyde), giraffe(clyde))
2.  (¬elephant(clyde), likes(clyde,peanuts))
3.  (¬giraffe(clyde), likes(clyde,leaves))
4.  ¬likes(clyde,leaves)

Forward Chaining Proof:
}  3&4 → ¬giraffe(clyde) [5.]
}  5&1 → elephant(clyde) [6.]
}  6&2 → likes(clyde,peanuts) [7.] ü

Fahiem Bacchus, University of Toronto 65

Resolution Proofs Example
1.  (elephant(clyde), giraffe(clyde))
2.  (¬elephant(clyde), likes(clyde,peanuts))
3.  (¬giraffe(clyde), likes(clyde,leaves))
4.  ¬likes(clyde,leaves)

Refutation Proof:
}  ¬likes(clyde,peanuts) [5.]
}  5&2 → ¬elephant(clyde) [6.]
}  6&1 → giraffe(clyde) [7.]
}  7&3 → likes(clyde,leaves) [8.]
}  8&4 → () ü

Fahiem Bacchus, University of Toronto 66

Resolution Proofs
}  Proofs by refutation have the advantage that

they are easier to find.
}  They are more focused to the particular

conclusion we are trying to reach.

}  To develop a complete resolution proof
procedure for First-Order logic we need :

1.  A way of converting KB and f (the query) into
clausal form.

2.  A way of doing resolution even when we
have variables (unification).

Fahiem Bacchus, University of Toronto 67

Conversion to Clausal Form
To convert the KB into Clausal form we perform

the following 8-step procedure:

1.  Eliminate Implications.
2.  Move Negations inwards (and simplify ¬¬).
3.  Standardize Variables.
4.  Skolemize.
5.  Convert to Prenix Form.
6.  Distribute conjunctions over disjunctions.
7.  Flatten nested conjunctions and disjunctions.
8.  Convert to Clauses.

Fahiem Bacchus, University of Toronto 68

C-T-C-F: Eliminate implications

We use this example to show each step:

 ∀X.p(X) → ((∀Y.p(Y) → p(f(X,Y)))
 Λ ¬(∀Y. ¬q(X,Y) Λ p(Y)))

1.  Eliminate implications: A→B è ¬A ∨ B

∀X. ¬p(X)

 ∨ ((∀Y.¬p(Y) ∨ p(f(X,Y)))
 Λ ¬(∀Y. ¬q(X,Y) Λ p(Y)))

Fahiem Bacchus, University of Toronto 69

C-T-C-F: Move ¬ Inwards

∀X. ¬p(X)

 ∨ ((∀Y.¬p(Y) ∨ p(f(X,Y)))

 Λ ¬(∀Y. ¬q(X,Y) Λ p(Y)))

2. Move Negations Inwards (and simplify ¬¬)

∀X. ¬p(X)

 ∨ ((∀Y.¬p(Y) ∨ p(f(X,Y)))

 Λ (∃Y. q(X,Y) ∨ ¬p(Y)))

Fahiem Bacchus, University of Toronto 70

C-T-C-F: : ¬ continue…

Rules for moving negations inwards
}  ¬(A Λ B) è ¬A ∨ ¬B
}  ¬(A ∨ B) è ¬A Λ ¬B
}  ¬∀X. f è ∃X. ¬f
}  ¬∃X. f è ∀X. ¬f
}  ¬¬A è A

Fahiem Bacchus, University of Toronto 71

C-T-C-F: Standardize Variables

∀X. ¬p(X)

 ∨ ((∀Y.¬p(Y) ∨ p(f(X,Y)))

 Λ (∃Y.q(X,Y) ∨ ¬p(Y)))
3. Standardize Variables (Rename variables so

that each quantified variable is unique)

∀X. ¬p(X)

 ∨ ((∀Y.(¬p(Y) ∨ p(f(X,Y)))

 Λ (∃Z.q(X,Z) ∨ ¬p(Z)))

Fahiem Bacchus, University of Toronto 72

C-T-C-F: Skolemize

∀X. ¬p(X)

 ∨ ((∀Y.¬p(Y) ∨ p(f(X,Y)))

 Λ (∃Z.q(X,Z) ∨ ¬p(Z)))

4. Skolemize (Remove existential quantifiers by

introducing new function symbols).
∀X. ¬p(X)

 ∨ ((∀Y.¬p(Y) ∨ p(f(X,Y)))

 Λ (q(X,g(X)) ∨ ¬p(g(X))))

Fahiem Bacchus, University of Toronto 73

C-T-C-F: Skolemization
 Consider ∃Y.elephant(Y) Λ friendly(Y)

}  This asserts that there is some individual (binding for Y)

that is both an elephant and friendly.

}  To remove the existential, we invent a name for this
individual, say a. This is a new constant symbol not equal
to any previous constant symbols to obtain:

 elephant(a) Λ friendly(a)

}  This is saying the same thing, since we do not know

anything about the new constant a.

Fahiem Bacchus, University of Toronto 74

C-T-C-F: Skolemization

}  It is essential that the introduced symbol “a” is
new. Else we might know something else about
“a” in KB.

}  If we did know something else about “a” we
would be asserting more than the existential.

}  In original quantified formula we know nothing
about the variable “Y”. Just what was being
asserted by the existential formula.

Fahiem Bacchus, University of Toronto 75

C-T-C-F: Skolemization

 Now consider ∀X∃Y. loves(X,Y).

}  This formula claims that for every X there is some Y that X

loves (perhaps a different Y for each X).

}  Replacing the existential by a new constant won’t work
 ∀X.loves(X,a).

Because this asserts that there is a particular individual
“a” loved by every X.

}  To properly convert existential quantifiers scoped by

universal quantifiers we must use functions not just
constants.

Fahiem Bacchus, University of Toronto 76

C-T-C-F: Skolemization
}  We must use a function that mentions every universally

quantified variable that scopes the existential.

}  In this case X scopes Y so we must replace the existential
Y by a function of X

 ∀X. loves(X,g(X)).
 where g is a new function symbol.

}  This formula asserts that for every X there is some
individual (given by g(X)) that X loves. g(X) can be
different for each different binding of X.

Fahiem Bacchus, University of Toronto 77

C-T-C-F: Skolemization Examples

} ∀XYZ ∃W.r(X,Y,Z,W) è ∀XYZ.r(X,Y,Z,h1(X,Y,Z))

} ∀XY∃W.r(X,Y,g(W)) è ∀XY.r(X,Y,Z,g(h2(X,Y)))

} ∀XY∃W∀Z.r(X,Y,W) Λ q(Z,W)

 è ∀XYZ.r(X,Y,h3(X,Y)) Λ q(Z,h3(X,Y))

Fahiem Bacchus, University of Toronto 78

C-T-C-F: Convert to prenix
∀X. ¬p(X)

 ∨ (∀Y.¬p(Y) ∨ p(f(X,Y))

 Λ q(X,g(X)) ∨ ¬p(g(X)))

5. Convert to prenix form. (Bring all quantifiers to the front—
only universals, each with different name).

∀X∀Y. ¬p(X)

 ∨ (¬p(Y) ∨ p(f(X,Y))

 Λ q(X,g(X)) ∨ ¬p(g(X)))

Fahiem Bacchus, University of Toronto 79

C-T-C-F: Conjunctions over disjunctions

∀X∀Y. ¬p(X)

 ∨ ((¬p(Y) ∨ p(f(X,Y)))

 Λ (q(X,g(X)) ∨ ¬p(g(X))))
6. Conjunctions over disjunctions

 A ∨ (B Λ C) è (A ∨ B) Λ (A ∨ C)

∀XY. (¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y)))
 Λ (¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X)))

Fahiem Bacchus, University of Toronto 80

C-T-C-F: flatten & convert to clauses

7. Flatten nested conjunctions and disjunctions.
(A ∨ (B ∨ C)) è (A ∨ B ∨ C)

8. Convert to Clauses (remove quantifiers and

break apart conjunctions).
 ∀XY. (¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y)))
 Λ (¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X)))

a)  ¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y))
b)  ¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X))

Fahiem Bacchus, University of Toronto 81

Unification

}  Ground clauses are clauses with no variables in
them. For ground clauses we can use syntactic
identity to detect when we have a P and ¬P
pair.

}  What about variables can the clauses
}  (P(john), Q(fred), R(X))
}  (¬P(Y), R(susan), R(Y))
Be resolved?

Fahiem Bacchus, University of Toronto 82

Unification.

}  Intuitively, once reduced to clausal form, all
remaining variables are universally quantified.
So, implicitly (¬P(Y), R(susan), R(Y)) represents a
whole set of ground clauses like
}  (¬P(fred), R(susan), R(fred))
}  (¬P(john), R(susan), R(john))
}  …

}  So there is a “specialization” of this clause that
can be resolved with (P(john), Q(fred), R(X))

Fahiem Bacchus, University of Toronto 83

Unification.

}  We want to be able to match conflicting
literals, even when they have variables. This
matching process automatically determines
whether or not there is a “specialization” that
matches.

}  We don’t want to over specialize!

Fahiem Bacchus, University of Toronto 84

Unification.

}  (¬p(X), s(X), q(fred))
}  (p(Y), r(Y))
}  Possible resolvants

}  (s(john), q(fred), r(john)) {Y=X, X=john}
}  (s(sally), q(fred), r(sally)) {Y=X, X=sally}
}  (s(X), q(fred), r(X)) {Y=X}

}  The last resolvant is “most-general”, the other
two are specializations of it.

}  We want to keep the most general clause so
that we can use it future resolution steps.

Fahiem Bacchus, University of Toronto 85

Unification.

}  unification is a mechanism for finding a “most
general” matching.

}  First we consider substitutions.
}  A substitution is a finite set of equations of the form

V = t

where V is a variable and t is a term not containing
V. (t might contain other variables).

Fahiem Bacchus, University of Toronto 86

Substitutions.

}  We can apply a substitution σ to a formula f to
obtain a new formula fσ by simultaneously
replacing every variable mentioned in the left
hand side of the substitution by the right hand
side.

 p(X,g(Y,Z))[X=Y, Y=f(a)] è p(Y,g(f(a),Z))

}  Note that the substitutions are not applied

sequentially, i.e., the first Y is not subsequently
replaced by f(a).

Fahiem Bacchus, University of Toronto 87

Substitutions.

}  We can compose two substitutions. θ and σ to
obtain a new substition θσ.

Let θ = {X1=s1, X2=s2, …, Xm=sm}
 σ = {Y1=t1, Y2=t2, …, Yk=sk}

To compute θσ
1.  S = {X1=s1σ, X2=s2σ, …, Xm=smσ, Y1=t1,

 Y2=t2,…, Yk=sk}

we apply σ to each RHS of θ and then add all
of the equations of σ.

Fahiem Bacchus, University of Toronto 88

Substitutions.

1.  S = {X1=s1σ, X2=s2σ, …, Xm=smσ, Y1=t1,
 Y2=t2,…, Yk=sk}

2.  Delete any identities, i.e., equations of the
form V=V.

3.  Delete any equation Yi=si where Yi is equal to
one of the Xj in θ.

The final set S is the composition θσ.

Fahiem Bacchus, University of Toronto 89

Composition Example.
 θ = {X=f(Y), Y=Z}, σ = {X=a, Y=b, Z=Y}

θσ

Fahiem Bacchus, University of Toronto 90

Substitutions.

}  The empty substitution ε = {} is also a substitution,
and it acts as an identity under composition.

}  More importantly substitutions when applied to
formulas are associative:

 (fθ)σ = f(θσ)

}  Composition is simply a way of converting the
sequential application of a series of substitutions
to a single simultaneous substitution.

Fahiem Bacchus, University of Toronto 91

Unifiers.

}  A unifier of two formulas f and g is a substitution
σ that makes f and g syntactically identical.

}  Not all formulas can be unified—substitutions
only affect variables.

 p(f(X),a) p(Y,f(w))

}  This pair cannot be unified as there is no way of
making a = f(w) with a substitution.

}  Note we typically use UPPER CASE to denote
variables, lower case for constants.

Fahiem Bacchus, University of Toronto 92

MGU.

}  A substitution σ of two formulas f and g is a Most
General Unifier (MGU) if

1.  σ is a unifier.
2.  For every other unifier θ of f and g there must

exist a third substitution λ such that
 θ = σλ

§  This says that every other unifier is “more
specialized than σ. The MGU of a pair of
formulas f and g is unique up to renaming.

Fahiem Bacchus, University of Toronto 93

MGU.
 p(f(X),Z) p(Y,a)

1.  σ = {Y = f(a), X=a, Z=a} is a unifier.

 p(f(X),Z)σ =
 p(Y,a)σ =

But it is not an MGU.

2.  θ = {Y=f(X), Z=a} is an MGU.
 p(f(X),Z) θ =

 p(Y,a) θ =

Fahiem Bacchus, University of Toronto 94

MGU.
 p(f(X),Z) p(Y,a)
3.  σ = θλ, where λ={X=a}

 σ = {Y = f(a), X=a, Z=a}
 λ ={X=a}
θλ =

Fahiem Bacchus, University of Toronto 95

MGU.
}  The MGU is the “least specialized” way of making

clauses with universal variables match.
}  We can compute MGUs.
}  Intuitively we line up the two formulas and find

the first sub-expression where they disagree. The
pair of subexpressions where they first disagree is
called the disagreement set.

}  The algorithm works by successively fixing
disagreement sets until the two formulas become
syntactically identical.

Fahiem Bacchus, University of Toronto 96

MGU.
To find the MGU of two formulas f and g.
1.  k = 0; σ0 = {}; S0 = {f,g}
2.  If Sk contains an identical pair of formulas stop, and

return σk as the MGU of f and g.
3.  Else find the disagreement set Dk={e1,e2} of Sk
4.  If e1 = V a variable, and e2 = t a term not containing V (or

vice-versa) then let

σk+1 = σk {V=t} (Compose the addital substitution)

Sk+1 = Sk{V=t} (Apply the additional substitution)

k = k+1
GOTO 2

5.  Else stop, f and g cannot be unified.

Fahiem Bacchus, University of Toronto 97

MGU Example 1.

 S_0 = {p(f(a), g(X)) ; p(Y,Y)}

Fahiem Bacchus, University of Toronto 98

MGU Example 2.

 S0 = {p(a,X,h(g(Z))) ; p(Z,h(Y),h(Y))}

Fahiem Bacchus, University of Toronto 99

MGU Example 3.

 S0 = {p(X,X) ; p(Y,f(Y))}

Fahiem Bacchus, University of Toronto 100

Non-Ground Resolution

}  Resolution of non-ground clauses. From the two
clauses
 (L, Q1, Q2, …, Qk)
 (¬M, R1, R2, …, Rn)

Where there exists σ a MGU for L and M.

We infer the new clause

 (Q1σ, …, Qkσ, R1σ, …, Rnσ)

Fahiem Bacchus, University of Toronto 101

Non-Ground Resolution E.G.
1.  (p(X), q(g(X)))
2.  (r(a), q(Z), ¬p(a))

L=p(X); M=p(a)
σ = {X=a}

3.  R[1a,2c]{X=a} (q(g(a)), r(a), q(Z))

The notation is important.
}  “R” means resolution step.
}  “1a” means the first (a-th) literal in the first clause i.e. p(X).
}  “2c” means the third (c-th) literal in the second clause, ¬p(a).

}  1a and 2c are the “clashing” literals.

}  {X=a} is the substitution applied to make the clashing literals
identical.

Fahiem Bacchus, University of Toronto 102

Resolution Proof Example

“Some patients like all doctors. No patient likes any
quack. Therefore no doctor is a quack.”

Resolution Proof Step 1.
Pick symbols to represent these assertions.

p(X): X is a patient
d(x): X is a doctor
q(X): X is a quack
l(X,Y): X likes Y

Fahiem Bacchus, University of Toronto 103

Resolution Proof Example

Resolution Proof Step 2.
Convert each assertion to a first-order formula.

1.  Some patients like all doctors.

F1.

Fahiem Bacchus, University of Toronto 104

Resolution Proof Example

2.  No patient likes any quack

F2.

3.  Therefore no doctor is a quack.
Query.

Fahiem Bacchus, University of Toronto 105

Resolution Proof Example

Resolution Proof Step 3.
Convert to Clausal form.

F1.

F2.

Negation of Query.

Fahiem Bacchus, University of Toronto 106

Resolution Proof Example

Resolution Proof Step 4.
Resolution Proof from the Clauses.
1.  p(a)
2.  (¬d(Y), l(a,Y))
3.  (¬p(Z), ¬q(R), ¬l(Z,R))
4.  d(b)
5.  q(b)

Fahiem Bacchus, University of Toronto 107

Answer Extraction.
}  The previous example shows how we can answer true-

false questions. With a bit more effort we can also
answer “fill-in-the-blanks” questions (e.g., what is wrong
with the car?).

}  As in Prolog we use free variables in the query where we
want the fill in the blanks. We simply need to keep track
of the binding that these variables received in proving
the query.
}  parent(art, jon) –is art one of jon’s parents?
}  parent(X, jon) -who is one of jon’s parents?

Fahiem Bacchus, University of Toronto 108

Answer Extraction.

}  A simple bookkeeping device is to use an
predicate symbol answer(X,Y,…) to keep track
of the bindings automatically.

}  To answer the query parent(X,jon), we construct
the clause

 (¬ parent(X,jon), answer(X))

}  Now we perform resolution until we obtain a
clause consisting of only answer literals
(previously we stopped at empty clauses).

Fahiem Bacchus, University of Toronto 109

Answer Extraction: Example 1
1.  father(art, jon)
2.  father(bob,kim)
3.  (¬father(Y,Z), parent(Y,Z))

 i.e. all fathers are parents

4.  (¬ parent(X,jon), answer(X))
 i.e. the query is: who is parent of jon?

Here is a resolution proof:
5.  R[4,3b]{Y=X,Z=jon}

 (¬father(X,jon), answer(X))

6.  R[5,1]{X=art} answer(art)
 so art is parent of jon

Fahiem Bacchus, University of Toronto 110

Answer Extraction: Example 2
1.  (father(art, jon), father(bob,jon) //either bob or art is parent of jon

2.  father(bob,kim)
3.  (¬father(Y,Z), parent(Y,Z)) //i.e. all fathers are parents

4.  (¬ parent(X,jon), answer(X)) //i.e. query is parent(X,jon)

Here is a resolution proof:
5.  R[4,3b]{Y=X,Z=jon} (¬father(X,jon), answer(X))
6.  R[5,1a]{X=art} (father(bob,jon), answer(art))
7.  R[6,3b] {Y=bob,Z=jon}

 (parent(bob,jon), answer(art))
8.  R[7,4] {X=bob} (answer(bob), answer(art))
A disjunctive answer: either bob or art is parent of jon.

Fahiem Bacchus, University of Toronto 111

Factoring
1. (p(X), p(Y)) // ∀ X.∀ Y. ¬p(X) è p(Y)

2. (¬p(V), ¬p(W)) // ∀ V.∀W. p(V) è ¬p(W)

}  These clauses are intuitively contradictory, but following
the strict rules of resolution only we obtain:

3. R[1a,2a](X=V) (p(Y), ¬p(W))

 Renaming variables: (p(Q), ¬p(Z))
4. R[3b,1a](X=Z) (p(Y), p(Q))

No way of generating empty clause!
Factoring is needed to make resolution over non-ground

clauses complete, without it resolution is incomplete!

Fahiem Bacchus, University of Toronto 112

Factoring.
}  If two or more literals of a clause C have an mgu θ, then

Cθ with all duplicate literals removed is called a factor of
C.

}  C = (p(X), p(f(Y)), ¬q(X))
θ = {X=f(Y)}
Cθ = (p(f(Y)), p(f(Y)), ¬q(f(Y))) è (p(f(Y)), ¬q(f(Y)) is a
factor

Adding a factor of a clause can be a step of proof:
1.  (p(X), p(Y))
2.  (¬p(V), ¬p(W))
3.  f[1ab]{X=Y} p(Y)
4.  f[2ab]{V=W} ¬p(W)
5.  R[3,4]{Y=W} ().

Fahiem Bacchus, University of Toronto 113

Prolog

}  Prolog search mechanism is simply an
instance of resolution, except

1.  Clauses are Horn (only one positive literal)
2.  Prolog uses a specific depth first strategy when

searching for a proof. (Rules are used first
mentioned first used, literals are resolved away
left to right).

Fahiem Bacchus, University of Toronto 114

Prolog

}  Append:

1.  append([], Z, Z)

2.  append([E1 | R1], Y, [E1 | Rest]) :-
 append(R1, Y, Rest)

Note:
§  The second is actually the clause

 (append([E1|R1], Y, [E1|Rest]) , ¬append(R1,Y,Rest))

§  [] is a constant (the empty list)

§  [X | Y] is cons(X,Y).

§  So [a,b,c] is short hand for cons(a,cons(b,cons(c,[])))

Fahiem Bacchus, University of Toronto 115

Prolog: Example of proof

}  Try to prove : append([a,b], [c,d], [a,b,c,d]):

1.  append([], Z, Z)
2.  (append([E1|R1], Y, [E1|Rest]),

 ¬append(R1,Y,Rest))
3.  ¬append([a,b], [c,d], [a,b,c,d])

4.  R[3,2a]{E1=a, R1=[b], Y=[c,d], Rest=[b,c,d]}
 ¬append([b], [c,d], [b,c,d])

5.  R[4,2a]{E1=b, R1=[], Y=[c,d], Rest=[c,d]}
 ¬append([], [c,d], [c,d])

6.  R[5,1]{Z=[c,d]} ()

Fahiem Bacchus, University of Toronto 116

Review: One Last Example!
Consider the following English description

}  Whoever can read is literate.
}  Dolphins are not literate.
}  Flipper is an intelligent dolphin.

}  Who is intelligent but cannot read.

Fahiem Bacchus, University of Toronto 117

Example: pick symbols & convert to first-order formula

}  Whoever can read is literate.
∀ X. read(X) → lit(X)

}  Dolphins are not literate.
∀ X. dolp(X) → ¬ lit(X)

}  Flipper is an intelligent dolphin
dolp(flipper) ∧ intell(flipper)

}  Who is intelligent but cannot read?
∃ X. intell(X) ∧ ¬ read(X).

Fahiem Bacchus, University of Toronto 118

Example: convert to clausal form
}  ∀X. read(X) → lit(X)

 (¬read(X), lit(X))
}  Dolphins are not literate.
∀X. dolp(X) → ¬ lit(X)

 (¬dolp(X), ¬lit(X))

}  Flipper is an intelligent dolphin.
 dolp(flipper)
 intell(flipper)

}  who are intelligent but cannot read?
∃ X. intell(X) ∧ ¬read(X).
è ∀ X. ¬ intell(X) ∨ read(X)
è (¬intell(X), read(X), answer(X))

Fahiem Bacchus, University of Toronto 119

Example: do the resolution proof
1.  (¬read(X), lit(X))
2.  (¬dolp(X), ¬lit(X))
3.  dolp(flip)

4.  intell(flip)
5.  (¬intell(X), read(X),answer(X))

6.  R[5a,4] X=flip. (read(flip), answer(flip))
7.  R[6,1a] X=flip. (lit(flip), answer(flip))

8.  R[7,2b] X=flip. (¬dolp(flip), answer(flip))
9.  R[8,3] answer(flip)
so flip is intelligent but cannot read!

