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CSC384:"Introduc1on"to"Ar1ficial"Intelligence"

Constraint Satisfaction Problems 
(Backtracking Search) 

 

• Chapter 6 
– 6.1: Formalism 
– 6.2: Constraint Propagation 
– 6.3: Backtracking Search for CSP 
– 6.4 is about local search which is a very 

useful idea but we won’t cover it in class. 
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Represen1ng"States"with"Feature"Vectors"

•  For each problem we have designed a new state 
representation (and designed the sub-routines 
called by search based on this representation).  

• Feature vectors provide a general state representation 
that is useful for many different problems.  

• Feature vectors are also used in many other areas of 
AI, particularly Machine Learning, Reasoning under 
Uncertainty, Computer Vision, etc.  
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Feature"Vectors"

• We have 
– A set of k variables (or features) 
–  Each variable has a domain of different values.  
– A state is specified by an assignment of a value for 

each variable.  
• height = {short, average, tall},  
• weight = {light, average, heavy} 

–  A partial state is specified by an assignment of a 
value to some of the variables.  
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Example:"Sudoku"
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• 81 variables, each representing the value of a cell. 

• Domain of Values: a single value for those cells that 
are already filled in, the set {1, …9} for those cells 
that are empty. 

• State: any completed board given by specifying 
the value in each cell (1-9, or blank). 

• Partial State: some incomplete filling out of the 
board.  

Example:"Sudoku"
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• Variables: 9 variables Cell1,1, Cell1,2, …, Cell3,3 

• Values: {‘B’, 1, 2, …, 8} 
• State: Each “Celli,j” variable specifies what is in that 

position of the tile. 
–  If we specify a value for each cell we have completely 

specified a state.  

This is only one of many ways to specify the state. 

Example:"8GPuzzle"

2 3 7 

6 4 8 

5 1 
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• Notice that in these problems some settings of 
the variables are illegal.  
–  In Sudoku, we can’t have the same number in any 

column, row, or subsquare.  
–  In the 8 puzzle each variable must have a distinct 

value (same tile can’t be in two places) 

Constraint"Sa1sfac1on"Problems"
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• In many practical problems finding which 
setting of the feature variables yields a legal 
state is difficult.  

• We want to find a state (setting of the 
variables) that satisfies certain constraints. 

Constraint"Sa1sfac1on"Problems"
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• In Suduko: The variables that form  
– a column must be distinct 
– a row must be distinct 
– a sub-square must be distinct. 

 

Constraint"Sa1sfac1on"Problems"
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• In these problems we do not care about the 
sequence of moves needed to get to a goal 
state. 

• We only care about finding a feature vector (a 
setting of the variables) that satisfies the goal. 
– A setting of the variables that satisfies some 

constraints. 

• In contrast, in the 8-puzzle, the feature vector 
satisfying the goal is given. We care about the 
sequence of moves needed to move the tiles 
into that configuration 

 

Constraint"Sa1sfac1on"Problems"

1 2 3 4 6 
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Car Factory Assembly Line—back to the days of 
Henry Ford 

 Move the items to be assembled don’t move 
the workers 

Example"Car"Sequencing"

The assembly line is divided into stations. A particular 
task is preformed at each station.  
 
 

1 sunroof 3 Heated 
seats 6 
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Example"Car"Sequencing"

Some stations install optional items…not every car in 
the assembly line is worked on in that station.  
 
As a result the factory is designed to have lower 
capacity in those stations.  
 
 



Slot1 Slot2 Slot3 Slot4 Slot5 Slot6 Slot7 

Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"Car"Sequencing"

Cars move through the factory on an assembly line 
which is broken up into slots.  
 
The stations might be able to process only a limited 
number of slots out of some group of slots that is passing 
through the station at any time. 
 
E.g., the sunroof station might accommodate 4 slots, but 
only has capacity to process 2 slots out of the 4 at any 
one time.  
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Example"Car"Sequencing"

Car1 Car2 Car3 Car4 Car5 Car6 Car7 

Max 2 

Max 2 

Max 2 

Max 2 
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Example"Car"Sequencing"

Car1 Car2 Car3 Car4 Car5 Car6 Car7 

Each car to be assembled has a list of required options. 
We want to assign each car to be assembled to a slot on 
the line. 
But we want to ensure that no sequence of 4 slots has 
more than 2 cars assigned that require a sun roof.  
Finding a feasible assignment of cars with different 
options to slots without violating the capacity constraints 
of the different stations is hard.  
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• A CSP consists of 
–  A set of variables V1, …, Vn 

–  For each variable a (finite) domain of possible 
values Dom[Vi]. 

–  A set of constraints C1,…, Cm. 

–  A solution to a CSP is an assignment of a value 
to all of the variables such that every constraint 
is satisfied. 

–  A CSP is unsatisfiable if no solution exists. 

Formaliza1on"of"a"CSP"
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•  Each variable can be assigned any value from 
its domain.  

• Vi = d where d � Dom[Vi] 

•  Each constraint C  
– Has a set of variables it is over, called its 

scope 
• E.g., C(V1, V2, V4) is a constraint over the 

variables V1, V2, and V4. Its scope is {V1, V2, V4} 

– Given an assignment to its variables 
the constraint returns: 

• True—this assignment satisfies the constraint 
• False—this assignment falsifies the constraint. 

Formaliza1on"of"a"CSP"
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• We can specify the constraint with a table 
• C(V1, V2, V4) with Dom[V1] = {1,2,3} and 

Dom[V2] = Dom[V4] = {1, 2} 

Formaliza1on"of"a"CSP"

V1 V2 V4 C(V1,V2,V4) 

1 1 1 False 

1 1 2 False 

1 2 1 False 

1 2 2 False 

2 1 1 True 

2 1 2 False 

2 2 1 False 

2 2 2 False 

3 1 1 False 

3 1 2 True 

3 2 1 True 

3 2 2 False 
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• Often we can specify the constraint 
more compactly with an expression: 
C(V1, V2, V4) = (V1 = V2+V4)  

Formaliza1on"of"a"CSP"

V1 V2 V4 C(V1,V2,V4) 

1 1 1 False 

1 1 2 False 

1 2 1 False 

1 2 2 False 

2 1 1 True 

2 1 2 False 

2 2 1 False 

2 2 2 False 

3 1 1 False 

3 1 2 True 

3 2 1 True 

3 2 2 False 

20"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

•  Unary Constraints (over one variable) 
–  e.g. C(X):X=2;  C(Y): Y>5 

•  Binary Constraints (over two variables) 
–  e.g. C(X,Y): X+Y<6 

•  Higher-order constraints: over 3 or more variables. 

Formaliza1on"of"a"CSP"
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• Variables: V11, V12, …, V21, V22, …, V91, …, V99 

• Domains: 
–  Dom[Vij] = {1-9} for empty cells 
–  Dom[Vij] = {k} a fixed value k for filled cells. 

• Constraints: 
–  Row constraints: 

• All-Diff(V11, V12, V13, …, V19) 
• All-Diff(V21, V22, V23, …, V29) 
•  ...., All-Diff(V91, V92, …, V99) 

–  Column Constraints: 
• All-Diff(V11, V21, V31, …, V91) 
• All-Diff(V21, V22, V13, …, V92) 
•  ...., All-Diff(V19, V29, …, V99) 

–  Sub-Square Constraints: 
• All-Diff(V11, V12, V13, V21, V22, V23, V31, V32, V33) 
• All-Diff(V14, V15, V16,…, V34, V35, V36) 

Example:"Sudoku"
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• Each of these constraints is over 9 variables, and they 
are all the same constraint: 

–  Any assignment to these 9 variables such that each variable 
has a different value satisfies the constraint. 

–  Any assignment where two or more variables have the same 
value falsifies the constraint. 

• This is a special kind of constraint called an ALL-DIFF 
constraint. 

–  ALL-Diff(V1, .., Vn) could also be encoded as a set of binary 
not-equal constraints between all possible pairs of variables: 
V1 ≠ V2, V1 ≠ V3, …, V2 ≠ V1, …, Vn ≠ V1, …, Vn ≠ Vn-1   

Example:"Sudoku"
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• Thus Sudoku has 3x9 ALL-DIFF constraints, one 
over each set of variables in the same row, one 
over each set of variables in the same column, 
and one over each set of variables in the same 
sub-square. 

Example:"Sudoku"
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• Because CSPs do not require finding a 
paths (to a goal), it is best solved by a 
specialized version of depth-first search.  
 

• Key intuitions: 
–  We can build up to a solution by searching through the 

space of partial assignments.  
–  Order in which we assign the variables does not matter – 

eventually they all have to be assigned. We can decide 
on a suitable value for one variable at a time! 

! This is the key idea of backtracking search. 
–  If we falsify a constraint during the process of building up a 

solution, we can immediately reject the current partial 
assignment: 

•  All extensions of this partial assignment will falsify that constraint, and 
thus none can be solutions. 

Solving"CSPs"
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CSP"as"a"Search"Problem"

A CSP could be viewed as a more traditional 
search problem  

 
•  Initial state: empty assignment 
•  Successor function: a value is assigned to 

any unassigned variable, which does not 
cause any constraint to return false. 

•  Goal test: the assignment is complete 
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BT(Level) 
 If all variables assigned 
  PRINT Value of each Variable 
  RETURN or EXIT (RETURN for more solutions)  
          (EXIT for only one solution) 
V := PickUnassignedVariable() 
Assigned[V] := TRUE 
for d := each member of Domain(V) (the domain values of V) 

 Value[V] := d 
  ConstraintsOK = TRUE 
     for each constraint C such that  

  a) V is a variable of C and 
   b) all other variables of C are assigned:  
  IF C is not satisfied by the set of current  
   assignments:  
   ConstraintsOK = FALSE   
      If ConstraintsOk == TRUE:  
  BT(Level+1) 
 
Assigned[V] := FALSE //UNDO as we have tried all of V’s values 
return  

Backtracking"Search:"The"Algorithm"BT"
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• The algorithm searches a tree of partial assignments. 

Root {} 

Vi=a Vi=b Vi=c 

Vj=1 Vj=2 

The root has the empty set 
of assignments 

Children of a node are 
all possible values of 

some (any) unassigned 
variable 

Subtree 

Search stops 
descending if the 
assignments on 
path to the node 

violate a constraint  

Backtracking"Search"
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• Heuristics are used to determine  
–  the order in which variables are assigned: 
PickUnassignedVariable() 

–  the order of values tried for each variable. 

• The choice of the next variable can vary from 
branch to branch, e.g., 

–  under the assignment V1=a we might choose to 
assign V4 next, while under V1=b we might choose 
to assign V5 next. 

• This “dynamically” chosen variable ordering has 
a tremendous impact on performance. 

 

Backtracking"Search"
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Example:"NGQueens"

•  Place N Queens on an N X N chess board so that no 
Queen can attack any other Queen. 
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Example:"NGQueens"

• Problem formulation: 
– N variables (N queens) 
– N2 values for each variable representing the 

positions on the chessboard 
• Value i is i’th cell counting from the top left as 1, 

going left to right, top to bottom. 
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Example:"NGQueens"

• Q1 = 1, Q2 = 15, Q3 = 21, Q4 = 32,  
Q5 = 34, Q6 = 44, Q7 = 54, Q8 = 59 
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Example:"NGQueens"

• This representation has (N²)N states 
(different possible assignments in the 
search space) 
–  For 8-Queens: 648 = 281,474,976,710,656 

 
•  Is  there a better way to represent the N-

queens problem? 
– We know we cannot place two queens in a 

single row " we can exploit this fact in the 
choice of the CSP representation 
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Example:"NGQueens"

• Better Modeling: 
– N variables Qi, one per row. 
– Value of Qi is the column the Queen in row i 

is placed; possible values {1, …, N}. 

• This representation has NN states: 
–  For 8-Queens: 88 = 16,777,216  

•  The choice of a representation can make the 
problem solvable or unsolvable! 
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Example:"NGQueens"

• Q1 = 1, Q2 = 7, Q3 = 5, Q4 = 8,  
Q5 = 2, Q6 = 4, Q7 = 6, Q8 = 3 
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Example:"NGQueens"

• Constraints: 
– Can’t put two Queens in same column 
 Qi ≠ Qj for all i ≠ j  

– Diagonal constraints 
 abs(Qi-Qj) ≠ abs(i-j) 

• i.e., the difference in the values assigned 
to Qi and Qj can’t be equal to the 
difference between i and j. 
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Example:"NGQueens"
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Example:"NGQueens"
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Example:"NGQueens"
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Solution! 

Example:"NGQueens"
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Example:"NGQueens"Backtracking"Search"Space"
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Problems"with"Plain"Backtracking"

Sudoku: The 3,3 cell has no possible value. 
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• In the backtracking search we won’t detect that the 
(3,3) cell has no possible value until all variables of the 
row/column (involving row or column 3) or the sub-
square constraint (first sub-square) are assigned.  
So we have the following situation: 

• Leads to the idea of constraint propagation 

Variable has no possible 
value, but we don’t 

detect this. Until we try to 
assign it a value 

Problems"with"Plain"Backtracking"
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• Constraint propagation refers to the technique 
of “looking ahead” at the yet unassigned 
variables in the search . 

•  Try to detect obvious failures: “Obvious” means 
things we can test/detect efficiently. 

•  Even if we don’t detect an obvious failure we 
might be able to eliminate some possible part 
of the future search. 

Constraint"Propaga1on"
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•  Propagation has to be applied during the 
search; potentially at every node of the search 
tree. 

•  Propagation itself is an inference step that 
needs some resources (in particular time) 
–  If propagation is slow, this can slow the search down 

to the point where using propagation makes finding 
a solution take longer! 

–  There is always a tradeoff between searching fewer 
nodes in the search, and having a higher nodes/
second processing rate. 

• We will look at two main types of propagation: 
Forward Checking & Generalized Arc 
Consistency 

Constraint"Propaga1on"
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•  Forward checking is an extension of 
backtracking search that employs a “modest” 
amount of propagation (look ahead). 

 
• When a variable is instantiated we check all 

constraints that have only one uninstantiated 
variable remaining. 

 
•  For that uninstantiated variable, we check all 

of its values, pruning those values that violate 
the constraint. 

Constraint"Propaga1on:"Forward"Checking"
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FCCheck(C,x)  
// C is a constraint with all its variables already 
// assigned, except for variable x. 
for d := each member of CurDom[x] 
   IF making x = d together with previous assignments  

    to variables in scope C falsifies C 
   THEN remove d from CurDom[x]    

 IF CurDom[x] = {} then return DWO (Domain Wipe Out) 
 ELSE return ok 

Forward"Checking"Algorithm"

• For a single constraint C: 
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FC(Level) /*Forward Checking Algorithm */ 
   If all variables are assigned 

     PRINT Value of each Variable 
     RETURN or EXIT (RETURN for more solutions)  
                    (EXIT for only one solution) 
V := PickAnUnassignedVariable() 
Assigned[V] := TRUE 
for d := each member of CurDom(V) 
     Value[V] := d 

      DWOoccured:= False 
      for each constraint C over V such that 

        a) C has only one unassigned variable X in its scope 
        if(FCCheck(C,X) == DWO)    /* X domain becomes empty*/ 

              DWOoccurred:= True 

                break /* stop checking constraints */ 
        if(not DWOoccured) /*all constraints were ok*/ 
           FC(Level+1) 
        RestoreAllValuesPrunedByFCCheck() 
 Assigned[V] := FALSE //undo since we have tried all of V’s values    

   return;  

Forward"Checking"Algorithm"
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4BQueens'Problem'
•  Encoding with Q1, …, Q4 denoting a queen per row 

–  cannot put two queens in same column  

1 

3 

2 

4 

3 2 4 1 

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 
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4BQueens'Problem'

•  Forward checking reduced the domains of all variables that are 
involved in a constraint with one uninstantiated variable: 
–  Here all of Q2, Q3, Q4 

1 

3 

2 

4 

3 2 4 1 

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 
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4BQueens'Problem'

1 

3 

2 

4 

3 2 4 1 

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 
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4BQueens'Problem'

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 

DWO 

1 

3 

2 

4 

3 2 4 1 
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4BQueens'Problem'

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 

1 

3 

2 

4 

3 2 4 1 
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4BQueens'Problem'

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 

1 

3 

2 

4 

3 2 4 1 
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4BQueens'Problem'

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 

1 

3 

2 

4 

3 2 4 1 
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4BQueens'Problem'

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 

DWO 

1 

3 

2 

4 

3 2 4 1 

•  Exhausted the subtree with Q1=1; try now Q1=2 

56"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 

1 

3 

2 

4 

3 2 4 1 
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4BQueens'Problem'

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 

1 

3 

2 

4 

3 2 4 1 
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4BQueens'Problem'

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 

1 

3 

2 

4 

3 2 4 1 
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4BQueens'Problem'

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 

1 

3 

2 

4 

3 2 4 1 
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4BQueens'Problem'

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 

1 

3 

2 

4 

3 2 4 1 
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4BQueens'Problem'

•  We have now find a solution: an assignment of all variables to 
values of their domain so that all constraints are satisfied 

Q1 
{1,2,3,4} 

Q3 
{1,2,3,4} 

Q4 
{1,2,3,4} 

Q2 
{1,2,3,4} 

1 

3 

2 

4 

3 2 4 1 
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Example:"NGQueens"FC"search"Space"

63"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• After we backtrack from the current 
assignment (in the for loop) we must restore the 
values that were pruned as a result of that 
assignment. 

•  Some bookkeeping needs to be done, as we 
must remember which values were pruned by 
which assignment (FCCheck is called at every 
recursive invocation of FC). 

FC:"Restoring"Values"
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•  FC also gives us for free a very powerful 
heuristic to guide us which variables to try next: 

–  Always branch on a variable with the smallest 
remaining values (smallest CurDom). 

–  If a variable has only one value left, that value is 
forced, so we should propagate its consequences 
immediately.  

–  This heuristic tends to produce skinny trees at the 
top. This means that more variables can be 
instantiated with fewer nodes searched, and thus 
more constraint propagation/DWO failures occur 
when the tree starts to branch out (we start 
selecting variables with larger domains)  

–  We can find a inconsistency much faster 

FC:"Minimum"Remaining"Values"Heuris1cs"(MRV)"
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MRV"Heuris1c:"Human"Analogy"

•  What variables would you try first? 

(1, 5): impossible values: 
Row: {1, 4, 5, 6, 8} 
Column: {1, 3, 4, 5, 7, 9} 
Subsquare: {5, 7, 9} 
" Domain = {2} 

Domain of each variable: 
{1, …, 9} 

(9, 5): impossible values: 
Row: {1, 5, 7, 8, 9} 
Column: {1, 3, 4, 5, 7, 9} 
Subsquare: {1, 5, 7, 9} 
" Domain = {2, 6} 

After assigning value 2 to 
cell (1,5):  Domain = {6} Most restricted variables! = MRV 
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Example"–"Map"Colouring"

•  Color the following map using red, green, and 
blue such that adjacent regions have different 
colors. 
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• Modeling 
– Variables: WA, NT, Q, NSW, V, SA, T 
– Domains: Di={red, green, blue} 
– Constraints: adjacent regions must have 

different colors. 
• E.g. WA ≠ NT   

Example"–"Map"Colouring"
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Example"–"Map"Colouring"
•  Forward checking idea: keep track of remaining legal 

values for unassigned variables. 

•  Terminate search when any variable has no legal 
values. 
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Example"–"Map"Colouring"
•  Assign {WA=red} 

•  Effects on other variables connected by constraints to 
WA 
–  NT can no longer be red 
–  SA can no longer be red 
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Example"–"Map"Colouring"
•  Assign {Q=green} (Note: Not using MRV) 
•  Effects on other variables connected by constraints with Q 

–  NT can no longer be green 
–  NSW can no longer be green 
–  SA can no longer be green 

•  MRV heuristic would automatically select NT or SA next  
 

71"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"–"Map"Colouring"
•  Assign {V=blue} (not using MRV) 

•  Effects on other variables connected by constraints with V 
–  NSW can no longer be blue 
–  SA is empty 

•  FC has detected that partial assignment is inconsistent with the 
constraints and backtracking can occur. 

DWO 
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•  FC often is about 100 times faster than BT 
•  FC with MRV (minimal remaining values) often 

10000 times faster. 
•  But on some problems the speed up can be 

much greater  
–  Converts problems that are not solvable to problems 

that are solvable. 

•  Still FC is not that powerful. Other more 
powerful forms of constraint propagation are 
used in practice. 

•  Try the previous map coloring example with 
MRV. 

Empirically"
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GAC—Generalized Arc Consistency 
1.  C(V1, V2, V3, …, Vn) is GAC with respect to 

variable Vi, if and only if 
 
For every value of Vi, there exists values of  
V1, V2, Vi-1, Vi+1,  …, Vn that satisfy C. 

Note that the values are removed from the 
variable domains during search. So variables 
that are GAC in a constraint might become 
inconsistent (non-GAC).  

 

Constraint"Propaga1on:"Generalized"Arc"Consistency"
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•  C(V1, V2, …, Vn) is GAC if and only if 
 
It is GAC with respect to every variable in its 
scope. 

•  A CSP is GAC if and only if  
 
all of its constraints are GAC. 

 

Constraint"Propaga1on:"Generalized"Arc"Consistency"
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• Say we find a value d of variable Vi that is not consistent: 
That is, there is no assignments to the other variables that 
satisfy the constraint when Vi = d  

–  d is said to be Arc Inconsistent  
–  We can remove d from the domain of Vi—this value cannot lead 

to a solution (much like Forward Checking, but more powerful).  

• e.g. C(X,Y): X>Y Dom(X)={1,5,11} Dom(Y)={3,8,15} 

–  For X=1 there is no value of Y s.t. 1>Y => so we can 
remove 1 from domain X 

–  For Y=15 there is no value of X s.t. X>15, so remove 15 
from domain Y 

–  We obtain more restricted domains Dom(X)={5,11} 
and Dom(Y)={3,8} 

Constraint"Propaga1on:"Arc"Consistency"
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• If we apply arc consistency propagation during search 
the search tree’s size will typically be much reduced in 
size.  

• Removing a value from a variable domain may trigger 
further inconsistency, so we have to repeat the 
procedure until everything is consistent. 

–  We put constraints on a queue and add new constraints to the 
queue as we need to check for arc consistency. 

 

Constraint"Propaga1on:"Arc"Consistency"
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Example:"NGQueens"GAC"search"Space"

Arc consistency stages: 
1.  V2 = {3,4}, V3 = {2,4}, V4 = {2, 3} 

V2=1,2 & V3 = 1,3 & V3 = 1,4 are 
inconsistent with V1=1. 

2.  V2 = {4}  (V2=3 is inconsistent 
with both values in CurDom[V3] 

3.  V3 = {2} (V3 = 2 is inconsistent 
with values in CurDom[V2] 

4.  V4 = {} (both values for V4 
inconsistent with values in 
CurDom[V3]  

DWO  
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Example"–"Map"Colouring"
•  Assign {WA=red} 

•  Effects on other variables connected by constraints to 
WA 
–  NT can no longer be red = {G, B} 
–  SA can no longer be red = {G, B} 

•  All other values are arc-consistent 
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Example"–"Map"Colouring"
•  Assign {Q=green} 
•  Effects on other variables connected by constraints with Q 

–  NT can no longer be green = {B} 
–  NSW can no longer be green = {R, B} 
–  SA can no longer be green = {B} 

•  DWO there is no value for SA that will be consistent with NT ≠ SA 
and NT = B 

Note Forward Checking would not have detected this DWO. 
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GAC"Algorithm"
•  We make all constraints GAC at every node of the 

search space.  
•  This is accomplished by removing from the domains of 

the variables all arc inconsistent values.  
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GAC"Algorithm,"enforce"GAC"during"search"
GAC(Level) /*Maintain GAC Algorithm */ 
   If all variables are assigned 

   PRINT Value of each Variable 
   RETURN or EXIT (RETURN for more solutions)  
                  (EXIT for only one solution) 
V := PickAnUnassignedVariable() 
Assigned[V] := TRUE 
for d := each member of CurDom(V) 
   Value[V] := d 
   Prune all values of V ≠ d from CurDom[V] 

    for each constraint C whose scope contains V  
     Put C on GACQueue 
   if(GAC_Enforce() != DWO) 

      GAC(Level+1) /*all constraints were ok*/ 
      RestoreAllValuesPrunedFromCurDoms() 
   Assigned[V] := FALSE 
   return;  
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GAC_Enforce()  
// GAC-Queue contains all constraints one of whose variables has  
// had its domain reduced. At the root of the search tree  
// first we run GAC_Enforce with all constraints on GAC-Queue 

  while GACQueue not empty 
      C = GACQueue.extract() 
      for V := each member of scope(C) 

       for d := CurDom[V] 
   Find an assignment A for all other 

  variables in scope(C) such that  
  C(A ∪ V=d) = True 
  if A not found 

      CurDom[V] = CurDom[V] – d 
     if CurDom[V] = ∅  

     empty GACQueue 
         return DWO //return immediately 

      else 
          push all constraints C’ such that 

   V  ∈ scope(C’) and C’ ∉ GACQueue 
   on to GACQueue 

return TRUE //while loop exited without DWO 

Enforce"GAC"(prune"all"GAC"inconsistent"values)"
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Enforce"GAC"
•  A support for V=d in constraint C is an assignment A to 

all of the other variables in scope(C) such that  
A U {V=d} satisfies C. (A is what the algorithm’s inner 
loop looks for). 

•  Smarter implementations keep track of “supports” to 
avoid having to search though all possible assignments 
to the other variables for a satisfying assignment. 
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Enforce"GAC"
•  Rather than search for a satisfying assignment to C 

containing V=d, we check to see if the current support 
is still valid: i.e., all values it assigns still lie in the 
variable’s current domains 

•  Also we take advantage that a support for V=d, e.g. 
{V=d, X=a, Y=b, Z=c} 
is also a support for X=a, Y=b, and Z=c 
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Enforce"GAC"
•  However, finding a support for V=d in constraint C still in 

the worst case requires O(2k) work, where k is  the arity 
of C, i.e., |scope(C)|. 

•  Another key development in practice is that for some 
constraints this computation can be done in 
polynomial time.  
E.g., all-diff(V1, …. Vn) we can be check if Vi=d has a 
support in the current domains of the other variables in 
polynomial time using ideas from graph theory. 

 We do not need to examine all combinations 
 of values for the other variables looking for a  
 support 
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GAC"enforce"example"
GAC(CSS8) ! CurDom of V1,5, V1,6, V2,4, V3,4, V3,6) = 

{1, 2, 3, 4, 8} 
GAC(CR1) ! CurDom of  V1,7, V1,8 = {2, 3, 7, 9} 
     CurDom of V1,5, V1,6, = {2, 3} 
GAC(CSS8) ! CurDom of  V2,4, V3,4, V3,6) = {1, 4, 8} 
GAC(CC5) ! CurDom of V5,5,V9,5 = {2,  6, 8} 
                 ! CurDom of  V1,5 = {2} 
GAC(CSS8) ! CurDom of V1,6 = {3} 

 

 

= All-diff 

By going back and forth 
between constraints we get 
more values pruned. 

CSS2 = All-diff(V1,4, V1,5, V1,6, V2,4, V2,5, V2,6, V3,4, V3,5, V3,6) 

CR1 = All-diff(V1,1, V1,2, V1,3, V1,4, V1,5, V1,6, V1,7, V1,8, V1,9) 

CC5 = All-diff(V1,5, V2,5, V35, V4,5, V5,5 V6,5, V7,5, V8,5, V9,5) 

87"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Many"realGworld"applica1ons"of"CSP"

•  Assignment problems  
– who teaches what class 

•  Timetabling problems 
– exam schedule 

•  Transportation scheduling 
•  Floor planning 
•  Factory scheduling 
•  Hardware configuration 

– a set of compatible components  


