
1"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

CSC384:"Introduc1on"to"Ar1ficial"Intelligence"

Constraint Satisfaction Problems
(Backtracking Search)

• Chapter 6
– 6.1: Formalism
– 6.2: Constraint Propagation
– 6.3: Backtracking Search for CSP
– 6.4 is about local search which is a very

useful idea but we won’t cover it in class.

2"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Represen1ng"States"with"Feature"Vectors"

•  For each problem we have designed a new state
representation (and designed the sub-routines
called by search based on this representation).

• Feature vectors provide a general state representation
that is useful for many different problems.

• Feature vectors are also used in many other areas of
AI, particularly Machine Learning, Reasoning under
Uncertainty, Computer Vision, etc.

3"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Feature"Vectors"

• We have
– A set of k variables (or features)
–  Each variable has a domain of different values.
– A state is specified by an assignment of a value for

each variable.
• height = {short, average, tall},
• weight = {light, average, heavy}

–  A partial state is specified by an assignment of a
value to some of the variables.

4"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"Sudoku"

5"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• 81 variables, each representing the value of a cell.

• Domain of Values: a single value for those cells that
are already filled in, the set {1, …9} for those cells
that are empty.

• State: any completed board given by specifying
the value in each cell (1-9, or blank).

• Partial State: some incomplete filling out of the
board.

Example:"Sudoku"

6"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• Variables: 9 variables Cell1,1, Cell1,2, …, Cell3,3

• Values: {‘B’, 1, 2, …, 8}
• State: Each “Celli,j” variable specifies what is in that

position of the tile.
–  If we specify a value for each cell we have completely

specified a state.

This is only one of many ways to specify the state.

Example:"8GPuzzle"

2 3 7

6 4 8

5 1

7"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• Notice that in these problems some settings of
the variables are illegal.
–  In Sudoku, we can’t have the same number in any

column, row, or subsquare.
–  In the 8 puzzle each variable must have a distinct

value (same tile can’t be in two places)

Constraint"Sa1sfac1on"Problems"

8"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• In many practical problems finding which
setting of the feature variables yields a legal
state is difficult.

• We want to find a state (setting of the
variables) that satisfies certain constraints.

Constraint"Sa1sfac1on"Problems"

9"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• In Suduko: The variables that form
– a column must be distinct
– a row must be distinct
– a sub-square must be distinct.

Constraint"Sa1sfac1on"Problems"

10"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• In these problems we do not care about the
sequence of moves needed to get to a goal
state.

• We only care about finding a feature vector (a
setting of the variables) that satisfies the goal.
– A setting of the variables that satisfies some

constraints.

• In contrast, in the 8-puzzle, the feature vector
satisfying the goal is given. We care about the
sequence of moves needed to move the tiles
into that configuration

Constraint"Sa1sfac1on"Problems"

1 2 3 4 6

Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Car Factory Assembly Line—back to the days of
Henry Ford

 Move the items to be assembled don’t move
the workers

Example"Car"Sequencing"

The assembly line is divided into stations. A particular
task is preformed at each station.

1 sunroof 3 Heated
seats 6

Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"Car"Sequencing"

Some stations install optional items…not every car in
the assembly line is worked on in that station.

As a result the factory is designed to have lower
capacity in those stations.

Slot1 Slot2 Slot3 Slot4 Slot5 Slot6 Slot7

Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"Car"Sequencing"

Cars move through the factory on an assembly line
which is broken up into slots.

The stations might be able to process only a limited
number of slots out of some group of slots that is passing
through the station at any time.

E.g., the sunroof station might accommodate 4 slots, but
only has capacity to process 2 slots out of the 4 at any
one time.

Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"Car"Sequencing"

Car1 Car2 Car3 Car4 Car5 Car6 Car7

Max 2

Max 2

Max 2

Max 2

Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"Car"Sequencing"

Car1 Car2 Car3 Car4 Car5 Car6 Car7

Each car to be assembled has a list of required options.
We want to assign each car to be assembled to a slot on
the line.
But we want to ensure that no sequence of 4 slots has
more than 2 cars assigned that require a sun roof.
Finding a feasible assignment of cars with different
options to slots without violating the capacity constraints
of the different stations is hard.

16"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• A CSP consists of
–  A set of variables V1, …, Vn

–  For each variable a (finite) domain of possible
values Dom[Vi].

–  A set of constraints C1,…, Cm.

–  A solution to a CSP is an assignment of a value
to all of the variables such that every constraint
is satisfied.

–  A CSP is unsatisfiable if no solution exists.

Formaliza1on"of"a"CSP"

17"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

•  Each variable can be assigned any value from
its domain.

• Vi = d where d � Dom[Vi]

•  Each constraint C
– Has a set of variables it is over, called its

scope
• E.g., C(V1, V2, V4) is a constraint over the

variables V1, V2, and V4. Its scope is {V1, V2, V4}

– Given an assignment to its variables
the constraint returns:

• True—this assignment satisfies the constraint
• False—this assignment falsifies the constraint.

Formaliza1on"of"a"CSP"

18"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• We can specify the constraint with a table
• C(V1, V2, V4) with Dom[V1] = {1,2,3} and

Dom[V2] = Dom[V4] = {1, 2}

Formaliza1on"of"a"CSP"

V1 V2 V4 C(V1,V2,V4)

1 1 1 False

1 1 2 False

1 2 1 False

1 2 2 False

2 1 1 True

2 1 2 False

2 2 1 False

2 2 2 False

3 1 1 False

3 1 2 True

3 2 1 True

3 2 2 False

19"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• Often we can specify the constraint
more compactly with an expression:
C(V1, V2, V4) = (V1 = V2+V4)

Formaliza1on"of"a"CSP"

V1 V2 V4 C(V1,V2,V4)

1 1 1 False

1 1 2 False

1 2 1 False

1 2 2 False

2 1 1 True

2 1 2 False

2 2 1 False

2 2 2 False

3 1 1 False

3 1 2 True

3 2 1 True

3 2 2 False

20"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

•  Unary Constraints (over one variable)
–  e.g. C(X):X=2; C(Y): Y>5

•  Binary Constraints (over two variables)
–  e.g. C(X,Y): X+Y<6

•  Higher-order constraints: over 3 or more variables.

Formaliza1on"of"a"CSP"

21"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• Variables: V11, V12, …, V21, V22, …, V91, …, V99

• Domains:
–  Dom[Vij] = {1-9} for empty cells
–  Dom[Vij] = {k} a fixed value k for filled cells.

• Constraints:
–  Row constraints:

• All-Diff(V11, V12, V13, …, V19)
• All-Diff(V21, V22, V23, …, V29)
• , All-Diff(V91, V92, …, V99)

–  Column Constraints:
• All-Diff(V11, V21, V31, …, V91)
• All-Diff(V21, V22, V13, …, V92)
• , All-Diff(V19, V29, …, V99)

–  Sub-Square Constraints:
• All-Diff(V11, V12, V13, V21, V22, V23, V31, V32, V33)
• All-Diff(V14, V15, V16,…, V34, V35, V36)

Example:"Sudoku"

22"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• Each of these constraints is over 9 variables, and they
are all the same constraint:

–  Any assignment to these 9 variables such that each variable
has a different value satisfies the constraint.

–  Any assignment where two or more variables have the same
value falsifies the constraint.

• This is a special kind of constraint called an ALL-DIFF
constraint.

–  ALL-Diff(V1, .., Vn) could also be encoded as a set of binary
not-equal constraints between all possible pairs of variables:
V1 ≠ V2, V1 ≠ V3, …, V2 ≠ V1, …, Vn ≠ V1, …, Vn ≠ Vn-1

Example:"Sudoku"

23"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• Thus Sudoku has 3x9 ALL-DIFF constraints, one
over each set of variables in the same row, one
over each set of variables in the same column,
and one over each set of variables in the same
sub-square.

Example:"Sudoku"

24"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• Because CSPs do not require finding a
paths (to a goal), it is best solved by a
specialized version of depth-first search.

• Key intuitions:
–  We can build up to a solution by searching through the

space of partial assignments.
–  Order in which we assign the variables does not matter –

eventually they all have to be assigned. We can decide
on a suitable value for one variable at a time!

! This is the key idea of backtracking search.
–  If we falsify a constraint during the process of building up a

solution, we can immediately reject the current partial
assignment:

•  All extensions of this partial assignment will falsify that constraint, and
thus none can be solutions.

Solving"CSPs"

25"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

CSP"as"a"Search"Problem"

A CSP could be viewed as a more traditional
search problem

•  Initial state: empty assignment
•  Successor function: a value is assigned to

any unassigned variable, which does not
cause any constraint to return false.

•  Goal test: the assignment is complete

26"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

BT(Level)
 If all variables assigned
 PRINT Value of each Variable
 RETURN or EXIT (RETURN for more solutions)
 (EXIT for only one solution)
V := PickUnassignedVariable()
Assigned[V] := TRUE
for d := each member of Domain(V) (the domain values of V)

 Value[V] := d
 ConstraintsOK = TRUE
 for each constraint C such that

 a) V is a variable of C and
 b) all other variables of C are assigned:
 IF C is not satisfied by the set of current
 assignments:
 ConstraintsOK = FALSE
 If ConstraintsOk == TRUE:
 BT(Level+1)

Assigned[V] := FALSE //UNDO as we have tried all of V’s values
return

Backtracking"Search:"The"Algorithm"BT"

27"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• The algorithm searches a tree of partial assignments.

Root {}

Vi=a Vi=b Vi=c

Vj=1 Vj=2

The root has the empty set
of assignments

Children of a node are
all possible values of

some (any) unassigned
variable

Subtree

Search stops
descending if the
assignments on
path to the node

violate a constraint

Backtracking"Search"

28"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• Heuristics are used to determine
–  the order in which variables are assigned:
PickUnassignedVariable()

–  the order of values tried for each variable.

• The choice of the next variable can vary from
branch to branch, e.g.,

–  under the assignment V1=a we might choose to
assign V4 next, while under V1=b we might choose
to assign V5 next.

• This “dynamically” chosen variable ordering has
a tremendous impact on performance.

Backtracking"Search"

29"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"

•  Place N Queens on an N X N chess board so that no
Queen can attack any other Queen.

30"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"

• Problem formulation:
– N variables (N queens)
– N2 values for each variable representing the

positions on the chessboard
• Value i is i’th cell counting from the top left as 1,

going left to right, top to bottom.

31"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"

• Q1 = 1, Q2 = 15, Q3 = 21, Q4 = 32,
Q5 = 34, Q6 = 44, Q7 = 54, Q8 = 59

32"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"

• This representation has (N²)N states
(different possible assignments in the
search space)
–  For 8-Queens: 648 = 281,474,976,710,656

•  Is there a better way to represent the N-

queens problem?
– We know we cannot place two queens in a

single row " we can exploit this fact in the
choice of the CSP representation

33"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"

• Better Modeling:
– N variables Qi, one per row.
– Value of Qi is the column the Queen in row i

is placed; possible values {1, …, N}.

• This representation has NN states:
–  For 8-Queens: 88 = 16,777,216

•  The choice of a representation can make the
problem solvable or unsolvable!

34"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"

• Q1 = 1, Q2 = 7, Q3 = 5, Q4 = 8,
Q5 = 2, Q6 = 4, Q7 = 6, Q8 = 3

35"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"

• Constraints:
– Can’t put two Queens in same column
 Qi ≠ Qj for all i ≠ j

– Diagonal constraints
 abs(Qi-Qj) ≠ abs(i-j)

• i.e., the difference in the values assigned
to Qi and Qj can’t be equal to the
difference between i and j.

36"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"

37"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"

38"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"

39"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Solution!

Example:"NGQueens"

40"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"Backtracking"Search"Space"

41"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Problems"with"Plain"Backtracking"

Sudoku: The 3,3 cell has no possible value.

42"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• In the backtracking search we won’t detect that the
(3,3) cell has no possible value until all variables of the
row/column (involving row or column 3) or the sub-
square constraint (first sub-square) are assigned.
So we have the following situation:

• Leads to the idea of constraint propagation

Variable has no possible
value, but we don’t

detect this. Until we try to
assign it a value

Problems"with"Plain"Backtracking"

43"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• Constraint propagation refers to the technique
of “looking ahead” at the yet unassigned
variables in the search .

•  Try to detect obvious failures: “Obvious” means
things we can test/detect efficiently.

•  Even if we don’t detect an obvious failure we
might be able to eliminate some possible part
of the future search.

Constraint"Propaga1on"

44"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

•  Propagation has to be applied during the
search; potentially at every node of the search
tree.

•  Propagation itself is an inference step that
needs some resources (in particular time)
–  If propagation is slow, this can slow the search down

to the point where using propagation makes finding
a solution take longer!

–  There is always a tradeoff between searching fewer
nodes in the search, and having a higher nodes/
second processing rate.

• We will look at two main types of propagation:
Forward Checking & Generalized Arc
Consistency

Constraint"Propaga1on"

45"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

•  Forward checking is an extension of
backtracking search that employs a “modest”
amount of propagation (look ahead).

• When a variable is instantiated we check all

constraints that have only one uninstantiated
variable remaining.

•  For that uninstantiated variable, we check all

of its values, pruning those values that violate
the constraint.

Constraint"Propaga1on:"Forward"Checking"

46"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

FCCheck(C,x)
// C is a constraint with all its variables already
// assigned, except for variable x.
for d := each member of CurDom[x]
 IF making x = d together with previous assignments

 to variables in scope C falsifies C
 THEN remove d from CurDom[x]

 IF CurDom[x] = {} then return DWO (Domain Wipe Out)
 ELSE return ok

Forward"Checking"Algorithm"

• For a single constraint C:

47"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

FC(Level) /*Forward Checking Algorithm */
 If all variables are assigned

 PRINT Value of each Variable
 RETURN or EXIT (RETURN for more solutions)
 (EXIT for only one solution)
V := PickAnUnassignedVariable()
Assigned[V] := TRUE
for d := each member of CurDom(V)
 Value[V] := d

 DWOoccured:= False
 for each constraint C over V such that

 a) C has only one unassigned variable X in its scope
 if(FCCheck(C,X) == DWO) /* X domain becomes empty*/

 DWOoccurred:= True

 break /* stop checking constraints */
 if(not DWOoccured) /*all constraints were ok*/
 FC(Level+1)
 RestoreAllValuesPrunedByFCCheck()
 Assigned[V] := FALSE //undo since we have tried all of V’s values

 return;

Forward"Checking"Algorithm"

48"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'
•  Encoding with Q1, …, Q4 denoting a queen per row

–  cannot put two queens in same column

1

3

2

4

3 2 4 1

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

49"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

•  Forward checking reduced the domains of all variables that are
involved in a constraint with one uninstantiated variable:
–  Here all of Q2, Q3, Q4

1

3

2

4

3 2 4 1

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

50"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

1

3

2

4

3 2 4 1

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

51"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

DWO

1

3

2

4

3 2 4 1

52"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

1

3

2

4

3 2 4 1

53"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

1

3

2

4

3 2 4 1

54"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

1

3

2

4

3 2 4 1

55"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

DWO

1

3

2

4

3 2 4 1

•  Exhausted the subtree with Q1=1; try now Q1=2

56"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

1

3

2

4

3 2 4 1

57"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

1

3

2

4

3 2 4 1

58"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

1

3

2

4

3 2 4 1

59"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

1

3

2

4

3 2 4 1

60"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

1

3

2

4

3 2 4 1

61"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

4BQueens'Problem'

•  We have now find a solution: an assignment of all variables to
values of their domain so that all constraints are satisfied

Q1
{1,2,3,4}

Q3
{1,2,3,4}

Q4
{1,2,3,4}

Q2
{1,2,3,4}

1

3

2

4

3 2 4 1

62"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"FC"search"Space"

63"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• After we backtrack from the current
assignment (in the for loop) we must restore the
values that were pruned as a result of that
assignment.

•  Some bookkeeping needs to be done, as we
must remember which values were pruned by
which assignment (FCCheck is called at every
recursive invocation of FC).

FC:"Restoring"Values"

64"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

•  FC also gives us for free a very powerful
heuristic to guide us which variables to try next:

–  Always branch on a variable with the smallest
remaining values (smallest CurDom).

–  If a variable has only one value left, that value is
forced, so we should propagate its consequences
immediately.

–  This heuristic tends to produce skinny trees at the
top. This means that more variables can be
instantiated with fewer nodes searched, and thus
more constraint propagation/DWO failures occur
when the tree starts to branch out (we start
selecting variables with larger domains)

–  We can find a inconsistency much faster

FC:"Minimum"Remaining"Values"Heuris1cs"(MRV)"

65"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

MRV"Heuris1c:"Human"Analogy"

•  What variables would you try first?

(1, 5): impossible values:
Row: {1, 4, 5, 6, 8}
Column: {1, 3, 4, 5, 7, 9}
Subsquare: {5, 7, 9}
" Domain = {2}

Domain of each variable:
{1, …, 9}

(9, 5): impossible values:
Row: {1, 5, 7, 8, 9}
Column: {1, 3, 4, 5, 7, 9}
Subsquare: {1, 5, 7, 9}
" Domain = {2, 6}

After assigning value 2 to
cell (1,5): Domain = {6} Most restricted variables! = MRV

66"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"–"Map"Colouring"

•  Color the following map using red, green, and
blue such that adjacent regions have different
colors.

67"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• Modeling
– Variables: WA, NT, Q, NSW, V, SA, T
– Domains: Di={red, green, blue}
– Constraints: adjacent regions must have

different colors.
• E.g. WA ≠ NT

Example"–"Map"Colouring"

68"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"–"Map"Colouring"
•  Forward checking idea: keep track of remaining legal

values for unassigned variables.

•  Terminate search when any variable has no legal
values.

69"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"–"Map"Colouring"
•  Assign {WA=red}

•  Effects on other variables connected by constraints to
WA
–  NT can no longer be red
–  SA can no longer be red

70"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"–"Map"Colouring"
•  Assign {Q=green} (Note: Not using MRV)
•  Effects on other variables connected by constraints with Q

–  NT can no longer be green
–  NSW can no longer be green
–  SA can no longer be green

•  MRV heuristic would automatically select NT or SA next

71"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"–"Map"Colouring"
•  Assign {V=blue} (not using MRV)

•  Effects on other variables connected by constraints with V
–  NSW can no longer be blue
–  SA is empty

•  FC has detected that partial assignment is inconsistent with the
constraints and backtracking can occur.

DWO

72"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

•  FC often is about 100 times faster than BT
•  FC with MRV (minimal remaining values) often

10000 times faster.
•  But on some problems the speed up can be

much greater
–  Converts problems that are not solvable to problems

that are solvable.

•  Still FC is not that powerful. Other more
powerful forms of constraint propagation are
used in practice.

•  Try the previous map coloring example with
MRV.

Empirically"

73"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

GAC—Generalized Arc Consistency
1.  C(V1, V2, V3, …, Vn) is GAC with respect to

variable Vi, if and only if

For every value of Vi, there exists values of
V1, V2, Vi-1, Vi+1, …, Vn that satisfy C.

Note that the values are removed from the
variable domains during search. So variables
that are GAC in a constraint might become
inconsistent (non-GAC).

Constraint"Propaga1on:"Generalized"Arc"Consistency"

74"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

•  C(V1, V2, …, Vn) is GAC if and only if

It is GAC with respect to every variable in its
scope.

•  A CSP is GAC if and only if

all of its constraints are GAC.

Constraint"Propaga1on:"Generalized"Arc"Consistency"

75"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• Say we find a value d of variable Vi that is not consistent:
That is, there is no assignments to the other variables that
satisfy the constraint when Vi = d

–  d is said to be Arc Inconsistent
–  We can remove d from the domain of Vi—this value cannot lead

to a solution (much like Forward Checking, but more powerful).

• e.g. C(X,Y): X>Y Dom(X)={1,5,11} Dom(Y)={3,8,15}

–  For X=1 there is no value of Y s.t. 1>Y => so we can
remove 1 from domain X

–  For Y=15 there is no value of X s.t. X>15, so remove 15
from domain Y

–  We obtain more restricted domains Dom(X)={5,11}
and Dom(Y)={3,8}

Constraint"Propaga1on:"Arc"Consistency"

76"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

• If we apply arc consistency propagation during search
the search tree’s size will typically be much reduced in
size.

• Removing a value from a variable domain may trigger
further inconsistency, so we have to repeat the
procedure until everything is consistent.

–  We put constraints on a queue and add new constraints to the
queue as we need to check for arc consistency.

Constraint"Propaga1on:"Arc"Consistency"

77"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example:"NGQueens"GAC"search"Space"

Arc consistency stages:
1.  V2 = {3,4}, V3 = {2,4}, V4 = {2, 3}

V2=1,2 & V3 = 1,3 & V3 = 1,4 are
inconsistent with V1=1.

2.  V2 = {4} (V2=3 is inconsistent
with both values in CurDom[V3]

3.  V3 = {2} (V3 = 2 is inconsistent
with values in CurDom[V2]

4.  V4 = {} (both values for V4
inconsistent with values in
CurDom[V3]

DWO

78"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"–"Map"Colouring"
•  Assign {WA=red}

•  Effects on other variables connected by constraints to
WA
–  NT can no longer be red = {G, B}
–  SA can no longer be red = {G, B}

•  All other values are arc-consistent

79"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Example"–"Map"Colouring"
•  Assign {Q=green}
•  Effects on other variables connected by constraints with Q

–  NT can no longer be green = {B}
–  NSW can no longer be green = {R, B}
–  SA can no longer be green = {B}

•  DWO there is no value for SA that will be consistent with NT ≠ SA
and NT = B

Note Forward Checking would not have detected this DWO.

80"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

GAC"Algorithm"
•  We make all constraints GAC at every node of the

search space.
•  This is accomplished by removing from the domains of

the variables all arc inconsistent values.

81"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

GAC"Algorithm,"enforce"GAC"during"search"
GAC(Level) /*Maintain GAC Algorithm */
 If all variables are assigned

 PRINT Value of each Variable
 RETURN or EXIT (RETURN for more solutions)
 (EXIT for only one solution)
V := PickAnUnassignedVariable()
Assigned[V] := TRUE
for d := each member of CurDom(V)
 Value[V] := d
 Prune all values of V ≠ d from CurDom[V]

 for each constraint C whose scope contains V
 Put C on GACQueue
 if(GAC_Enforce() != DWO)

 GAC(Level+1) /*all constraints were ok*/
 RestoreAllValuesPrunedFromCurDoms()
 Assigned[V] := FALSE
 return;

82"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

GAC_Enforce()
// GAC-Queue contains all constraints one of whose variables has
// had its domain reduced. At the root of the search tree
// first we run GAC_Enforce with all constraints on GAC-Queue

 while GACQueue not empty
 C = GACQueue.extract()
 for V := each member of scope(C)

 for d := CurDom[V]
 Find an assignment A for all other

 variables in scope(C) such that
 C(A ∪ V=d) = True
 if A not found

 CurDom[V] = CurDom[V] – d
 if CurDom[V] = ∅

 empty GACQueue
 return DWO //return immediately

 else
 push all constraints C’ such that

 V ∈ scope(C’) and C’ ∉ GACQueue
 on to GACQueue

return TRUE //while loop exited without DWO

Enforce"GAC"(prune"all"GAC"inconsistent"values)"

83"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Enforce"GAC"
•  A support for V=d in constraint C is an assignment A to

all of the other variables in scope(C) such that
A U {V=d} satisfies C. (A is what the algorithm’s inner
loop looks for).

•  Smarter implementations keep track of “supports” to
avoid having to search though all possible assignments
to the other variables for a satisfying assignment.

84"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Enforce"GAC"
•  Rather than search for a satisfying assignment to C

containing V=d, we check to see if the current support
is still valid: i.e., all values it assigns still lie in the
variable’s current domains

•  Also we take advantage that a support for V=d, e.g.
{V=d, X=a, Y=b, Z=c}
is also a support for X=a, Y=b, and Z=c

85"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Enforce"GAC"
•  However, finding a support for V=d in constraint C still in

the worst case requires O(2k) work, where k is the arity
of C, i.e., |scope(C)|.

•  Another key development in practice is that for some
constraints this computation can be done in
polynomial time.
E.g., all-diff(V1, …. Vn) we can be check if Vi=d has a
support in the current domains of the other variables in
polynomial time using ideas from graph theory.

 We do not need to examine all combinations
 of values for the other variables looking for a
 support

86"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

GAC"enforce"example"
GAC(CSS8) ! CurDom of V1,5, V1,6, V2,4, V3,4, V3,6) =

{1, 2, 3, 4, 8}
GAC(CR1) ! CurDom of V1,7, V1,8 = {2, 3, 7, 9}
 CurDom of V1,5, V1,6, = {2, 3}
GAC(CSS8) ! CurDom of V2,4, V3,4, V3,6) = {1, 4, 8}
GAC(CC5) ! CurDom of V5,5,V9,5 = {2, 6, 8}
 ! CurDom of V1,5 = {2}
GAC(CSS8) ! CurDom of V1,6 = {3}

= All-diff

By going back and forth
between constraints we get
more values pruned.

CSS2 = All-diff(V1,4, V1,5, V1,6, V2,4, V2,5, V2,6, V3,4, V3,5, V3,6)

CR1 = All-diff(V1,1, V1,2, V1,3, V1,4, V1,5, V1,6, V1,7, V1,8, V1,9)

CC5 = All-diff(V1,5, V2,5, V35, V4,5, V5,5 V6,5, V7,5, V8,5, V9,5)

87"Fahiem'Bacchus,'CSC384'Introduc8on'to'Ar8ficial'Intelligence,'University'of'Toronto'

Many"realGworld"applica1ons"of"CSP"

•  Assignment problems
– who teaches what class

•  Timetabling problems
– exam schedule

•  Transportation scheduling
•  Floor planning
•  Factory scheduling
•  Hardware configuration

– a set of compatible components

