CSC384 Introduction to Artificial Intelligence

Search

® One of the most basic techniques in Al

¢ Underlying sub-module in most Al systems
e Can solve many problems that humans are not
good at (achieving super-human performance)

e Very useful as a general algorithmic technique for
solving many non-Al problems.

How do we plan our holiday?

CSC384, University of Toronto

e \We must take into account various preferences and
constraints to develop a schedule.

e An important technique in developing such a schedule is
“hypothetical” reasoning.

e Example: On holiday in England
e Currently in Edinburgh
¢ Flight leaves tomorrow from London
¢ Need plan to get to your plane

¢ If | take a 6 am train where will | be at 2 pm? Will | be still able
to get to the airport on time?

CSC384, University of Toronto

How do we plan our holiday?

e This kind of hypothetical reasoning involves asking
e what state will | be in after taking certain actions, or after
certain sequences of events?
e From this we can reason about particular sequences of
events or actions one should try to bring about to
achieve a desirable state.

e Search is a computational method for capturing a
particular version of this kind of reasoning.

Many problems can be solved by search:

CSC384, University of Toronto 3

Search Problems

CSC384, University of Toronto

Why Search?

Limitations of Search

e Successful
e Success in game playing programs based on search.
e Many other Al problems can be successfully solved by search.

¢ Practical

e Many problems don't have specific algorithms for solving them.

Casting as search problems is often the easiest way of solving
them.

® Search can also be useful in approximation (e.g., local search in
optimization problems).
* Problem specific heuristics provides search with a way of
exploiting extra knowledge.
e Some critical aspects of intelligent behaviour, e.g.,
planning, can be naturally cast as search.

e There are many difficult questions that are not resolved
by search. In particular, the whole question of how does
an intelligent system formulate the problem it wants to
solve as a search problem is not addressed by search.

e Search only shows how to solve the problem once we
have it correctly formulated.

CSC384, University of Toronto

CSC384, University of Toronto

Search

Representing a problem: The Formalism

Search

e Formulating a problem as search problem (representation)
e Heuristic Search
e Game-Tree-Search

¢ Readings
¢ Introduction: Chapter 3.1 -3.3
¢ Uninformed Search: Chapter 3.4
e Heuristic Search: Chapters 3.5, 3.6

To formulate a problem as a search problem we need the
following components:

1. STATE SPACE: Formulate a state space over which we
perform search. The state space is a way or representing
in a computer the states of the real problem.

2. ACTIONS or STATE SPACE Transitions: Formulate actions
that allow one to move between different states. The
actions reflect the actions one can take in the real
problem but operate on the state space instead.

CSC384, University of Toronto

CSC384, University of Toronto

Representing a problem: The Formalism

To formulate a problem as a search problem we need the
following components:
3. INITIAL or START STATE and GOAL: Identify the initial
state that best represents the starting conditions, and the
goal or condition one wants to achieve.

4. Heuristics: Formulate various heuristics to help guide the
search process.

CSC384, University of Toronto 9

The Formalism

Once the problem has been formulated as a state space
search, various algorithms can be utilized to solve the
problem.

¢ A solution to the problem will be a sequence of actions/moves

that can transform your current state into a state where your
desired condition holds.

CSC384, University of Toronto 10

Example 1: Romania Travel.

Currently in Arad, need to get to Bucharest by tomorrow to
catch a flight. What is the State Space?

[]Oradea

Efori
[Giurgiu orte

CSC384, University of Toronto 1

Example 1.

e State space.
¢ States: the various cities you could be located in.

¢ Our abstraction: we are ignoring the low level details of
driving, states where you are on the road between cities, etc.

¢ Actions: drive between neighboring cities.
e Initial state: in Arad
¢ Desired condition (Goal): be in a state where you are in
Bucharest. (How many states satisfy this condition?)
e Solution will be the route, the sequence of cities to
travel through to get to Bucharest.

CSC384, University of Toronto 12

Example 2.

e Water Jugs

¢ We have a 3 gallon (liter) jug and a 4 gallon jug. We can fill
either jug to the top from a tap, we can empty either jug, or we
can pour one jug into the other (at least until the other jug is
full).

e States: pairs of numbers (gal3, gal4) where gal3 is the number
of gallons in the 3 gallon jug, and gal4 is the number of gallons
in the 4 gallon jug.

¢ Actions: Empty-3-Gallon, Empty-4-Gallon, Fill-3-Gallon, Fill-4-
Gallon, Pour-3-into-4, Pour 4-into-3.

¢ |nitial state: Various, e.g., (0,0)

e Desired condition (Goal): Various, e.g., (0,2) or (*, 3) where *
means we don't care.

Example 2.

CSC384, University of Toronto

13

e Water Jugs

¢ If we start off with gal3 and gal4 as integer, can only reach
integer values.

e Some values, e.g., (1,2) are not reachable from some initial
state, e.g., (0,0).

e Some actions are no-ops. They do not change the state, e.g.,
¢ (0,0) 2 Empty-3-Gallon = (0,0)

CSC384, University of Toronto 14

Example 3. The 8-Puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

Rule: Can slide a tile into the blank spot.
Alternative view: move the blank spot around.

Example 3. The 8-Puzzle

CSC384, University of Toronto

15

e State space.

e States: The different configurations of the tiles. How many
different states?

e Actions: Moving the blank up, down, left, right. Can every
action be performed in every state?

¢ Initial state: e.g., state shown on previous slide.
¢ Desired condition (Goal): be in a state where the tiles are all
in the positions shown on the previous slide.
e Solution will be a sequence of moves of the blank
that transform the initial state to a goal state.

CSC384, University of Toronto 16

Example 3. The 8-Puzzle

e Although there are 9! different configurations of the
tiles (362,880) in fact the state space is divided into
two disjoint parts.

e Only when the blank is in the middle are all four
actions possible.

e Our goal condition is satisfied by only a single state.
But one could easily have a goal condition like
e The 8 is in the upper left hand corner.

¢ How many different states satisfy this goal?

More complex situations

CSC384, University of Toronto 17

e Perhaps actions lead to multiple states, e.g., flip a
coin to obtain heads OR tails. Or we don't know for
sure what the initial state is (prize is behind door 1,
2, or 3). Now we might want to consider how likely
different states and action outcomes are.

e This leads to probabilistic models of the search space
and different algorithms for solving the problem.

e Later we will see some techniques for reasoning
under uncertainty.

CSC384, University of Toronto 18

Algorithms for Search

Inputs:
* a specified initial state (a specific world state)

e a successor function S(x) = {set of states that can be reached
from state x via a single action}.

e a goal test a function that can be applied to a state and
returns true if the state satisfies the goal condition.

e An action cost function C(x,a,y) which determines the cost of
moving from state x to state y using action a. (C(x,a,y) = « if
a does not yield y from x). Note that different actions might
generate the same move of x 2 .

Algorithms for Search

CSC384, University of Toronto 19

Output:
¢ a sequence of states leading from the initial state to a
state satisfying the goal test.
¢ The sequence might be, optimal in cost for some

algorithms, optimal in length for some algorithms, come
with no optimality guarantees from other algorithms.

CSC384, University of Toronto 20

Algorithms for Search

Obtaining the action sequence.

¢ The set of successors of a state x might arise from different
actions, e.g.,

exX>a—y
ex>b->z
e Successor function S(x) yields a set of states that can be reached
from x via any single action.
¢ Rather than just return a set of states, we annotate these
states by the action used to obtain them:
e S(x) = {<y,a>, <z,b>}
y via action a, z via action b.
e S(x) = {<y,a>, <y,b>}
y via action a, also y via alternative action b.

Template Search Algorithms

CSC384, University of Toronto 21

¢ The search space consists of states and actions that move
between states.

¢ A path in the search space is a sequence of states connected
by actions, <sy, S;, S5, -y S,
for every s,and its successor s, there must exist an action a,
that transitions s, to s;, ;.

e Alternately a path can be specified by
(a) an initial state s,, and
(b) a sequence of actions that are applied in turn starting from s,,.

e The search algorithms perform search by examining
alternate paths of the search space. The objects used
in the algorithm are called nodes—each node
contains a path.

CSC384, University of Toronto 22

Template Algorithm for Search

e We maintain a set of Frontier nodes also called the OPEN set.

¢ These nodes are paths in the search space that all start at the initial
state.

¢ |nitially we set OPEN = {<Start State>}
¢ The path (node) that starts and terminates at the start state.

¢ At each step we select a node n from OPEN. Let x be the state
n terminates at. We check if x satisfies the goal, if not we add
all extensions of n to OPEN (by finding all states in S(x)).

Template Algorithm for Search

CSC384, University of Toronto 23

Search(OPEN, Successors, Goal?)
While(Open not EMPTY) {
n = select node from OPEN
Curr = terminal state of n
If (Goal?(Curr)) return n.
OPEN = (OPEN_ {n}) UsESuccessors(Curr)<n’S>
/* Note OPEN could grow or shrink */

}
return FAIL

When does OPEN get smaller in size?

CSC384, University of Toronto 24

[Oradea

Sibiu Fagaras
-

99

JHirsova

86

[Oradea

Sibiu Fagaras
-

99

JHirsova

86

{<Arad>}, 4 Giurgiu S {<Arad>}, 4 Giurgiu S
{<A,Z>, <A, T>, <A, S>},
{<A,Z>, <A,T>, <A, S>},
{<A,Z>, <A, T>, <A,S,A>, <A,S,0>, <A,S,F>, <A,S,R>}
{<A,Z>, <A, T>, <A,S,A>, <A,S,0>, <A,S,F>, <A,S,R>} (<AZ5, <A T>, <ASA>, <AS,0%, <AS,F>, <AS,R,S>, <A,S,R,C> <AS,R P>}
{<A,Z>,<AT>, <AS,A>, <AS,0>, <A,S,R>, <A,S,F,S>, <A,S,F,B>} {<A,Z>, <A T>, <A,S,A>, <A,S,0>, <A,S,F>, <A,S,R,S>, <A,S,R,C>, <A,S,R,P,R>, <A,S,R,P,C>, <A,S,R,P,B>}
Solution: Arad -> Sibiu -> Fagaras -> Bucharest
Cost: 140 + 99 + 211 = 450 Solution: Arad -> Sibiu -> Rimnicu Vilcea -> Pitesti -> Bucharest
Cost: 140 + 80 + 97 + 101 = 418
CSC384, University of Toronto 25 CSC384, University of Toronto 26
[Oradea Selectlon Rule
Aracq The order paths are selected from OPEN has a critical
99 Fagaras .
— effect on the operation of the search:
e Whether or not a solution is found
QHirsova ¢ The cost of the solution found.
— < e The time and space required by the search.
{<Arad>}, 4 Giurgiu SELD
{<A,Z>, <A, T>, <A, S>},
{<A,Z>, <A, T>, <A,S,A>, <A,S,0>, <A,S,F>, <A,S,R>}
{<A,Z>, <A, T>, <A,S,A>, <A,S,0>, <A,S,R>, <A,S,F,S>, <A S,F,B>}
cycles can cause non-termination!
... we deal with this issue later
27 28

CSC384, University of Toronto

CSC384, University of Toronto

How to select the next path from OPEN?

All search techniques keep OPEN as an ordered set (e.g., a
priority queue) and repeatedly execute:

If OPEN is empty, terminate with failure.
Get the next path from OPEN.
If the path leads to a goal state, terminate with success.

Extend the path (i.e. generate the successor states of the
terminal state of the path) and put the new paths in OPEN.

e How do we order the paths on OPEN?

Critical Properties of Search

CSC384, University of Toronto 29

e Completeness: will the search always find a solution if a
solution exists?

e Optimality: will the search always find the least cost
solution? (when actions have costs)

e Time complexity: what is the maximum number of nodes
(paths) than can be expanded or generated?

e Space complexity: what is the maximum number of
nodes (paths) that have to be stored in memory?

CSC384, University of Toronto 30

Uninformed Search Strategies

e These are strategies that adopt a fixed rule for selecting
the next state to be expanded.

e The rule does not change irrespective of the search
problem being solved.

e These strategies do not take into account any domain
specific information about the particular search
problem.

e Uninformed search techniques:

¢ Breadth-First, Uniform-Cost, Depth-First, Depth-Limited, and Iterative-
Deepening search

CSC384, University of Toronto 31

Breadth-First Search

CSC384, University of Toronto 32

Breadth-First Search

e Place the new paths that extend the current path at the
end of OPEN.

WaterJugs. Start = (0,0), Goal = (*,2)
Green = Newly Added.
1. OPEN ={<(0,0)>}
2. OPEN = {<(0,0),(3,0)>, <(0,0),(0,4)>}
3. OPEN ={<(0,0),(0,4)>, <(0,0),(3,0),(0,0)>,
<(0,0) ,(3,0),(3,4)>, <(0,0),(3,0),(0,3) >}

4. OPEN ={<(0,0),(3,0),(0,0)>, <(0,0),(3,0),(3,4)>,
<(OIO)I(3IO)I(OI3)>I <(OIO)I(OI4)I(OI0)>I
<(0,0),(0,4),(3,4)>, <(0,0),(0,4),(3,1)>}

Breadth-First Search

CSC384, University of Toronto 33

Level O #1: (0,0)
Level 1 #2:(3,0) #3:(0,4)
Level 2 #4:(0,0)| |#5:(3,4)| |#6:(0,3)| |#7:(0,0)| |#8:(3,4)| |#9:(3,1)

® Above we indicate only the state that each nodes terminates at. The
path represented by each node is the path from the root to that node.

® Breadth-First explores the search space level by level.

CSC384, University of Toronto 34

Breadth-First Properties

Completeness?
¢ The length of the path removed from OPEN is non-decreasing.
¢ we replace each expanded node n with an extension of n.
¢ All shorter paths are expanded prior before any longer path.

¢ Hence, eventually we must examine all paths of length d, and
thus find a solution if one exists.

Optimality?
e By the above will find shortest length solution
e |east cost solution?

¢ Not necessarily: shortest solution not always cheapest
solution if actions have varying costs

CSC384, University of Toronto 35

[Oradea

Fagaras

99

86

=
[Giurgiu Eforie

Beadth first Solution: Arad -> Sibiu -> Fagaras -> Bucharest
Cost: 140 + 99 + 211 = 450

Lowest cost Solution: Arad -> Sibiu -> Rimnicu Vilcea -> Pitesti -> Bucharest
Cost: 140 + 80 + 97 + 101 = 418

CSC384, University of Toronto 36

Breadth-First Properties

Measuring time and space complexity.

e let b be the maximum number of successors of any
node (maximal branching factor).

e let d be the depth of the shortest solution.
* Root at depth O is a path of length 1
* So d = length of path -1
Time Complexity?

1+b+b2+b3+ ... +bd1+bd+b(bd-1)=0O(b%?)

Breadth-First Properties

CSC384, University of Toronto 37

Space Complexity?
e O(b%1): If goal node is last node at level d, all of the

successors of the other nodes will be on OPEN when the
goal node is expanded b(b9 - 1)

CSC384, University of Toronto 38

Breadth-First Properties

Space complexity is a real problem.

e E.g., let b =10, and say 100,000 nodes can be expanded per
second and each node requires 100 bytes of storage:

Depth Nodes Time Memory
1 1 0.01 millisec. 100 bytes
6 106 10 sec. 100 MB
8 108 17 min. 10GB

9 10° 3 hrs. 100 GB

e Typically run out of space before we run out of time
in most applications.

CSC384, University of Toronto

Uniform-Cost Search

CSC384, University of Toronto 40

Uniform-Cost Search

e Keep OPEN ordered by increasing cost of the path.
¢ Always expand the least cost path.
¢ |dentical to Breadth first if each action has the same cost.

CSC384, University of Toronto 41

Uniform-Cost Properties

Completeness?
e |f each transition has costs 2 € > 0.
* The previous argument used for breadth first search holds: the
cost of the path represented by each node n chosen to be
expanded must be non-decreasing.

Optimality?
¢ Finds optimal solution if each transition has cost > € > 0.
¢ Explores paths in the search space in increasing order of cost.
So must find minimum cost path to a goal before finding any
higher costs paths.

CSC384, University of Toronto 42

Uniform-Cost Search. Proof of Optimality

Uniform-Cost Search. Proof of Optimality

Let us prove Optimality more formally. We will reuse this
argument later on when we examine Heuristic Search

Lemma 1.

Let c(n) be the cost of node n on OPEN (cost of the path
represented by n). If n2 is expanded IMMEDIATELY
after nl then
c(n1) < c(n2).

Proof: there are 2 cases:

a. n2wason OPEN when nl was expanded:
We must have c(n1) < c(n2) otherwise n2 would have been selected for
expansion rather than n1

b. n2 was added to OPEN when n1 was expanded

Now c(n1) < c(n2) since the path represented by n2 extends the path
represented by n1 and thus cost at least € more.

CSC384, University of Toronto 43

CSC384, University of Toronto 44

Uniform-Cost Search. Proof of Optimality

Uniform-Cost Search. Proof of Optimality

Lemma 2.

When node n is expanded every path in the search space with
cost strictly less than c(n) has already been expanded.

Proof:

. Let nk = <Start, s1, ..., sk> be a path with cost less than c(n). Let n0 =
<Start>, n1 = <Start, s1>, n2 =<Start, s1, s2>, ..., ni =<Start, s1, ..., si>, ...,
nk = <Start, s1, ..., sk>. Let ni be the last node in this sequence that has
already been expanded by search.

. So, ni+1 must still be on OPEN: it was added to open when ni was
expanded. Also c(ni+1) < c(nk) < c(n): c(ni+1) is a subpath of nk we have
assumed that c(nk) is < ¢c(n).

. But then uniform-cost would have expanded ni+1 not n.

o So every node ni including nk must already be expanded, i.e., this lower
cost path has already been expanded.

Lemma 3.

The first time uniform-cost expands a node n
terminating at state S, it has found the minimal cost
path to S (it might later find other paths to S but none
of them can be cheaper).

Proof:

¢ All cheaper paths have already been expanded, none of them terminated at
S.

e All paths expanded after n will be at least as expensive, so no cheaper path
to S can be found later.

So, when a path to a goal state is expanded the path must
be optimal (lowest cost).

CSC384, University of Toronto 45

CSC384, University of Toronto 46

Uniform-Cost Properties

Time and Space Complexity?
e O(b®*/e) where C* is the cost of the optimal solution.

* There may be many paths with cost < C*: there can be as many
as bd paths of length d in the worst case.

Paths with cost lower than C* can be as long as C*/e (why no
longer?), so might have b€’z paths to explore before finding an
optimal cost path.

Depth-First Search

CSC384, University of Toronto 47

CSC384, University of Toronto 48

Depth-First Search

* Place the new paths that extend the current path at the
front of OPEN.

WaterJugs. Start = (0,0), Goal = (*,2)
Green = Newly Added.
1. OPEN = {<(0,0)>}
2. OPEN = {<(0,0), (3,0)>, <(0,0), (0,4)>}
3. OPEN ={<(0,0),(3,0),(0,0)>, <(0,0),(3,0),(3,4)>,
<(0,0),(3,0),(0,3)>, <(0,4),(0,0)>}

4. OPEN = {<(0,0),(3,0),(0,0),(3,0)>, <(0,0),(3,0),(0,0),(0,4)>
<(0,0), (3,0), (3,4)>, <(0,0),(3,0),(0,3)>,
<(0,0),(0,4)>}

Depth-First Search

CSC384, University of Toronto 49

Level 0
Level 1

Level 2 Iusz(o,ml [(34)] [(03)]

(o

® Red nodes are backtrack points (these nodes remain on open).

CSC384, University of Toronto 50

Depth-First Properties

Completeness?

¢ Infinite paths? cause incompleteness!

* Prune paths with cycles (duplicate states)
We get completeness if state space is finite

Optimality?
No!

Depth-First Properties

CSC384, University of Toronto 51

Time Complexity?
e O(b™) where m is the length of the longest path in the state
space.
e Very bad if m is much larger than d (shortest path to a goal
state), but if there are many solution paths it can be much

faster than breadth first. (Can by good luck bump into a solution
quickly).

CSC384, University of Toronto 52

Depth-First Properties

e Depth-First Backtrack Points = unexplored siblings of
nodes along current path.

* These are the nodes that remain on open after we extract a
node to expand.

Space Complexity?
® O(bm), linear space!
*Only explore a single path at a time.

*OPEN only contains the deepest node on the current path
along with the backtrack points.

e A significant advantage of DFS

CSC384, University of Toronto 53

Depth-Limited Search

CSC384, University of Toronto

54

Depth Limited Search

Depth Limited Search

* Breadth first has space problems. Depth first can run off down a
very long (or infinite) path.

Depth limited search
¢ Perform depth first search but only to a pre-specified depth limit D.
e THE ROOT is at DEPTH 0. ROOT is a path of length 1.
¢ No node representing a path of length more than D+1 is placed on OPEN.
e We “truncate” the search by looking only at paths of length D+1 or less.

¢ Now infinite length paths are not a problem.

e But will only find a solution if a solution of DEPTH < D exists.

DLS(OPEN, Successors, Goal?) /* Call with OPEN = {<START>} */

WHILE(OPEN not EMPTY) {

}

n= select first node from OPEN
Curr = terminal state of n
If(Goal?(Curr)) return n

If Depth(n) < D //Don't add successors if Depth(n) = D
OPEN = (OPEN- {n}) UsESuccessors(Curr)<n!s>

Else
OPEN = OPEN - {n}
CutOffOccured = TRUE.

return FAIL

We will use CutOffOccured later.

CSC384, University of Toronto 55

CSC384, University of Toronto

56

Depth Limited Search Example

Limit=3 @

o

5}?)}3

g
e

CSC384, University of Toronto 57

Iterative Deepening Search

CSC384, University of Toronto

58

Iterative Deepening Search

Iterative Deepening Search Example

e Solve the problems of depth-first and breadth-first by
extending depth limited search

e Starting at depth limit L = 0, we iteratively increase the
depth limit, performing a depth limited search for each
depth limit.

e Stop if a solution is found, or if the depth limited search
failed without cutting off any nodes because of the
depth limit.

¢ If no nodes were cut off, the search examined all paths in the
state space and found no solution = no solution exists.

Limit =0 0] []

CSC384, University of Toronto 59

CSC384, University of Toronto

60

Iterative Deepening Search Example

Limit =1 @ O] ./®\©
NG, © B

Iterative Deepening Search Example

CSC384, University of Toronto

61

Limit =2 @

o e
L

@ @
@ G &) G
@ O >
» '/<->\O

CSC384, University of Toronto 62

Iterative Deepening Search Example

Limit =3 @

Iterative Deepening Search Properties

CSC384, University of Toronto

63

Completeness?
¢ Yes if a minimal depth solution of depth d exists.
¢ What happens when the depth limit L=d?
¢ What happens when the depth limit L<d?

Time Complexity?

CSC384, University of Toronto 64

Iterative Deepening Search Properties

Time Complexity
o (d+1)b% + db! + (d-1)b2 + ... + b4 = O(bY)
e E.g. b=4, d=10
¢(11)*4%9 + 10*41 + 9*42 + ... + 410=1,864,131
*410=1,048,576
*Most nodes lie on bottom layer.

BFS can explore more states than IDS!

CSC384, University of Toronto 65

® For IDS, the time complexity is
e (d+1)b° + db? + (d-1)b? + ... + bd = O(bd)

" For BFS, the time complexity is
e 1+b+b2+b3+ .. +bd+b(b?-1) = 0O(b%?)

E.g. b=4, d=10
® For IDS

o (11)*4°+ 10*4% + 9*42 + .., + 401,864,131 (states generated)
= For BFS

e 1+4+42+ .. +4%0+4(40-1) =5,592,401 (states generated)

¢ In fact IDS can be more efficient than breadth first search: nodes at limit are
not expanded. BFS must expand all nodes until it expands a goal node. So a
the bottom layer it will add many nodes to OPEN before finding the goal
node.

CSC384, University of Toronto 66

Iterative Deepening Search Properties

Space Complexity
e O(bd) still linear!
Optimal?
e Will find shortest length solution which is optimal if costs are
uniform.
¢ |f costs are not uniform, we can use a “cost” bound instead.
¢ Only expand paths of cost less than the cost bound.

¢ Keep track of the minimum cost unexpanded path in each
depth first iteration, increase the cost bound to this on the
next iteration.

¢ This can be more expensive. Need as many iterations of the
search as there are distinct path costs.

CSC384, University of Toronto 67

Path/Cycle Checking

CSC384, University of Toronto 68

Path Checking

Example: Arad to Neamt

If nk represents the path <s,s,,...,5,> and we expand s, to obtain
child ¢, we have
<S,54,4.,5,,C>

“_”

As the pathto "¢

Path checking:

eEnsure that the state c is not equal to the state reached by any
ancestor of ¢ along this path.

ePaths are checked in isolation!

Eforie

1 Giurgiu

CSC384, University of Toronto 69

CSC384, University of Toronto 70

Path Checking Example

Cycle Checking

¥ v "

Cycle Checking
e Keep track of all states previously expanded during the search.
* When we expand n, to obtain child ¢
¢ Ensure that c is not equal to any previously expanded state.
e This is called cycle checking, or multiple path checking.

e What happens when we utilize this technique with depth-first
search?

¢ What happens to space complexity?

CSC384, University of Toronto 71

CSC384, University of Toronto 72

Cycle Checking Example (BFS)

Cycle Checking

CSC384, University of Toronto

73

e Higher space complexity (equal to the space complexity of
breadth-first search.

e There is an additional issue when we are looking for an
optimal solution
e With uniform-cost search, we still find an optimal solution

¢ The first time uniform-cost expands a state it has found the
minimal cost path to it.
¢ This means that the nodes rejected subsequently by cycle
checking can't have better paths.

¢ We will see later that we don't always have this property when
we do heuristic search.

CSC384, University of Toronto 74

Heuristic Search

Heuristic Search
(Informed Search)

¢ In uninformed search, we don't try to evaluate which
of the nodes on OPEN are most promising. We never
“look-ahead” to the goal.

E.g., in uniform cost search we always expand the cheapest
path. We don't consider the cost of getting to the goal from
the end of the current path.

e Often we have some other knowledge about the merit
of nodes, e.g., going the wrong direction in Romania.

CSC384, University of Toronto

75

CSC384, University of Toronto 76

Heuristic Search

Merit of an OPEN node: different notions of
merit.
e |f we are concerned about the cost of the solution,
we might want to consider how costly it is to get
to the goal from the terminal state of that node.

e |f we are concerned about minimizing
computation in search we might want to consider
how easy it is to find the goal from the terminal
state of that node.

e We will focus on the “cost of solution” notion of

Heuristic Search

e The idea is to develop a domain specific heuristic
function h(n).

e h(n) guesses the cost of getting to the goal from node n
(i.e., from the terminal state of the path represented by
n).

e There are different ways of guessing this cost in different
domains.

e heuristics are domain specific.

merit.
CSC384, University of Toronto 77 CSC384, University of Toronto 78
Example: Euclidean distance Heuristic Search
o Bucharesy e e If h(n,) < h(n,) this means that we guess that it is
Neamt Arad 366
 Pzaing o & Bucharest 0 cheaper to get to the goal from n, than from n,,.
lasi Dobreta 242
Arad [140 Etorie 161
\"\s, . 92 agaras 78
" “ TSt 99 Fasaras :il;l'gill |:7 .
1 A\ = Vastu Hirsova 151 e We require that
\misoara Rimnicu Vilcea Lugoj :“‘ . Lo
a 1'1 F'\\ A :nﬁ.-.iu;. 0 e h(n) =0 for every node n whose terminal state satisfies the goal.
SDQiugei | 97 Pitest Neame 234 o o
. . D w e Zero cost of achieving the goal from node that already satisfies
- Mehadia o Elllllllllllll\‘ll Vilcea ;2 the goal.
obreta 120 Bucharest 'I'i!‘xrlii::l):ira 3:0'
oot ﬁi\i‘ﬁ ‘ 9 Eforie I\':uslni 122
Giurgiu Zerind 374
Planning a path from Arad to Bucharest, we can utilize the straight line distance
from each city to our goal. This lets us plan our trip by picking cities at each
time point that minimize the distance to our goal.
79 80

CSC384, University of Toronto

CSC384, University of Toronto

Using only h(n): Greedy best-first search

Greedy best-first search example

e We use h(n) to rank the nodes on OPEN
¢ Always expand node with lowest h-value.
¢ We are greedily trying to achieve a low cost solution.

¢ However, this method ignores the cost of getting to n, so it can be lead astray

exploring nodes that cost a lot but seem to be close to the goal:

— step cost =10

— step cost = 100

Neamt

Sibiu 99 Fagaras

Rimnicu Vilcea

Timisoara
1"
Lugoj 97
70 -‘\
Mehadia \ 146 107,
75‘
Dobreta ﬁ,,_‘ 120

Straight=line distance

to Bucharest
Arad
Bucharest

Craiova
Dobreta

Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
224
380
98
193
253
329
80
199
374

CSC384, University of Toronto

81

CSC384, University of Toronto

82

A* search

A* example

¢ Take into account the cost of getting to the node as well as our
estimate of the cost of getting to the goal from the node.

¢ Define an evaluation function f(n)
f(n) = g(n) + h(n)
® g(n)is the cost of the path represented by node n
¢ h(n) is the heuristic estimate of the cost of achieving the goal from n.

¢ Always expand the node with lowest f-value on OPEN.

¢ The f-value, f(n) is an estimate of the cost of getting to the goal
via the node (path) n.

¢ l.e., we first follow the path n then we try to get to the goal. f(n) estimates
the total cost of such a solution.

366=0+366

e .
Zerind

CSC384, University of Toronto

83

CSC384, University of Toronto

84

A* example

A* example

Oradea

sibiu gg

\ 80

17 \ -
Lugoj
70 \
e |16

oobreta 3120

Straight-line distance
to Bucharest

Neant 366
oo o
RN 160
0

161
178

2
Fagaras.
ﬂ\ Vaslui

142
N //
~ e
86
Bucharest \
/o0 1]
Howon e

646=280+366 415=239+176 671=291

Oradea

2
B Shiv g9 Fasaras Glurgiu
™ n\ Vaslui A

H\,,.mm Rimnicu Vilce
~ a2
17 s 211
Lugo | 9P PitesE /
70 \ % . "
Mehadia \ e N 8S/Urzimm\ rsova Rimnicu Vilcea
9 \ \se Sibiu
Bucharost i
oobreta @120 | fao n Tint
e d- Erore
Giuralu

tasl Dobreta
E
9

+380 413=220+193

distance

Straight-1i
to Bucharest
Ar:
Bucharest
Craiova

Faguras

CSC384, University of Toronto 85 CSC384, University of Toronto 86
A* example A* example
Chad > Chad >
- _ 118+329 o _ 47=118+329
646=280+366 415-239+176 671=291+380 ~ 646=280+366 _ 671=291+380 S
526=366+160 417=317+100 553-300+253 501=338+253 450=45040 526=366+ 160 417=317+100 553=300+253
Straight-line distance Straigl
7 A Oradea o Bucharest 7 A Oradea 0 Buchs
Neamt 366 Neamt Ara
o 0 o Bucharest
o B zana\ 151 ~5 160 o B zana\ 151 ~5 Craiova
\u\was‘ \u\was‘ Dobreta
Arad Arad 2
™~ 2 " w0 2 Faras
~~)\ Sbiv gy Fagaras Sibiu g9 Fagaras Ghurgin
y o y T
\ Tasi
ﬁﬂmlsnnm Lug ﬁﬂmlsnnm fimnicu Vilc Lugoj
ha2 Mehadla ha2 Mehadla
17 11 / Neamt 17 \\; pites \211 / Neamt
/ Orade tuaol / Oradea
I o % Mirsova Pitestl I o % Mirsova Pitestl
SO Urdeant wenagia | 14€ SO Urdeant Rimnicu Vileea
73] 86 Sibiu 73] | 86 Sibiu
Bucharost Bucharost Timisoara
ot i \a ootz 20| i \a
Crai
- Eforie ralova - Eforie
87 88

CSC384, University of Toronto

CSC384, University of Toronto

A* example

Properties of A* depend on conditions on h(n)

< Sbiu >
2 47=118+329 449754374

646=280+366 671=2914380

o> T >

591=3384253 450=45040 526=366+ 160 553=300+253

B @
418=41840 615=455+160 607=414+193

CSC384, University of Toronto

89

e We want to analyze the behavior of the resultant search.
e Completeness, time and space, optimality?

e To obtain such results we must put some further
conditions on the heuristic function h(n) and the search

space.

CSC384, University of Toronto 90

Conditions on h(n): Admissible

Consistency (aka monotonicity)

e We always assume that c(s1, a, s2) > € > 0 for any two
states s1 and s2 and any action a: the cost of any
transition is greater than zero and can't be arbitrarily
small.

Let h*(n) be the cost of an optimal path from n to a goal
node (o if there is no path). Then an admissible
heuristic satisfies the condition

h(n) £ h*(n)
* an admissible heuristic never over-estimates the cost to reach
the goal, i.e., it is optimistic

e Hence h(g) =0, for any goal node g

e Also h*(n) = « if there is no path from n to a goal node

® A stronger condition than h(n) £ h*(n).

¢ A monotone/consistent heuristic satisfies the triangle
inequality: for all nodes n1, n2 and for all actions a

h(n1) £C(n1,a,n2) + h(n2)

Where C(n1, a, n2) means the cost of getting from the terminal
state of nl to the terminal state of n2 via action a.

* Note that there might be more than one transition (action)
between nl and n2, the inequality must hold for all of them.
* Monotonicity implies admissibility.
e (foralln1, n2, a) h(nl) £ C(n1,a,n2) + h(n2) =» (forall n) h(n) £ h*(n)

CSC384, University of Toronto

91

CSC384, University of Toronto 92

Consistency = Admissible

e Assume consistency: h(n) < c(n,a,n2) + h(n2)
Prove admissible: h(n) < h*(n)

Proof:

Letn =2 nl - ... 2 n* be an OPTIMAL path from n to a goal (with
actions al, a2). Note the cost of this path is h*(n), and each subpath
(ni = ... 2 n*) has cost equal to h*(ni).

If no path exists from n to a goal then h*(n) =« and h(n) < h*(n)

Otherwise prove h(n) £ h*(n) by induction on the length of this
optimal path.

Base Case: n = n*

By our conditionson h, h(n)=0<h(n)*=0

Induction Hypothesis: h(n1) < h*(n1)

h(n) £ ¢(n,al,n1) + h(n1) £c(n,al,nl) + h*(n1) = h*(n)

CSC384, University of Toronto 93

Intuition behind admissibility

h(n) £ h*(n) means that the search won’t miss any promising paths.

e If it really is cheap to get to a goal via n (i.e., both g(n) and h*(n)
are low), then f(n) = g(n) + h(n) will also be low, and the search
won’t ignore n in favor of more expensive options.

e This can be formalized to show that admissibility implies
optimality.

¢ Monotonicity gives some additional properties when it comes to
cycle checking.

CSC384, University of Toronto 94

Consequences of monotonicity

Consequences of monotonicity

1. The f-values of nodes along a path must be non-decreasing.

Let <Start=> s1-> s2 = ... > sk> be a path. Let ni be the subpath

<Start - sl >... > si>:
We claim that: f(ni) < f(ni+1)

Proof

f(ni) = c(Start=>...~ ni) + h(ni)
< c(Start=>...= ni) + c(ni=>ni+1) + h(ni+1)
< c(Start=> ...~ ni=> ni+1) + h(ni+1)
< g(ni+1) + h(ni+1) = f(ni+1)

CSC384, University of Toronto 95

2. Ifn2is expanded immediately after n1, then
f(n1) < f(n2)

(the f-value of expanded nodes is monotonic non-decreasing)

Proof:

e |f n2 was on OPEN when n1 was expanded,
then f(n1) < f(n2) otherwise we would have expanded n2.

e |f n2 was added to OPEN after nl's expansion, then n2 extends
nl's path. That is, the path represented by n1 is a prefix of the
path represented by n2. By property (1) we have f(n1)<f(n2) as
the f-values along a path are non-decreasing.

CSC384, University of Toronto 96

Consequences of monotonicity

3. Corollary: the sequence of f-values of the nodes
expanded by A* is non-decreasing. l.e, If n2 is
expanded after (not necessarily immediately after) n1,
then f(nl) < f(n2)

(the f-value of expanded nodes is monotonic non-decreasing)

Proof:

e |f n2 was on OPEN when n1 was expanded,
then f(n1) < f(n2) otherwise we would have expanded n2.

e [|f n2 was added to OPEN after nl's expansion, then let n be
an ancestor of n2 that was present when nl was being
expanded (this could be n1 itself). We have f(n1) < f(n) since
A* chose n1 while n was present on OPEN. Also, since n is
along the path to n2, by property (1) we have f(n)<f(n2). So,
we have f(n1) £ f(n2).

Consequences of monotonicity

4., When nis expanded every path with lower f-value has already
been expanded.

CSC384, University of Toronto

97

* Proof: Assume by contradiction that there exists a path <Start,
no, n1, ni-1, ni, ni+1, ..., nk> with f(nk) < f(n) and ni is its last
expanded node.
¢ ni+1 must be on OPEN while n is expanded, so

a) by (1) f(ni+1) < f(nk) since they lie along the same path.
b) since f(nk) < f(n) so we have f(ni+1) < f(n)
c) by (2) f(n) < f(ni+1) because n is expanded before ni+1.

e Contradiction from b&c!

CSC384, University of Toronto 98

Consequences of monotonicity

Consequences of monotonicity

5. With a monotone heuristic, the first time A* expands a
state, it has found the minimum cost path to that state.

Proof:

. Let PATH1 = <Start, s0, s1, ..., sk, s> be the first path to a state s
found. We have f(path1) = c(PATH1) + h(s).

. Let PATH2 = <Start, t0, t1, ..., tj, s> be another path to s found later.
we have f(path2) = ¢(PATH2) + h(s).

. Note h(s) is dependent only on the state s (terminal state of the
path) it does not depend on how we got to s.

o By property (3), f(path1) < f(path2)

. hence: c(PATH1) < c(PATH2)

CSC384, University of Toronto

99

Complete.
* Yes, consider a least cost path to a goal node

e SolutionPath = <Start-> n1-> ... G> with cost c(SolutionPath). Since h(G) =
0, this means that f(SolutionPath) = cost(SolutionPath)

¢ Since each action has a cost 2 € > 0, there are only a finite number of paths
that have f-value < c(SolutionPath). None of these paths lead to a goal node
since SolutionPath is a least cost path to the goal.

¢ So eventually SolutionPath, or some equal cost path to a goal must be
expanded.
Time and Space complexity.
e When h(n) =0, for all n h is monotone.
¢ A* becomes uniform-cost search!

e It can be shown that when h(n) > 0 for some n and still admissible, the number
of nodes expanded can be no larger than uniform-cost.

¢ Hence the same bounds as uniform-cost apply. (These are worst case bounds).
Still exponential unless we have a very good h!

¢ In real world problems, we sometimes run out of time and memory. IDA* can

sometimes be used to address memory issues, but IDA* isn’t very good when
many cycles are present.

CSC384, University of Toronto 100

Consequences of monotonicity

Optimality
= Yes, by (5) the first path to a goal node must be optimal.

5. With a monotone heuristic, the first time A* expands a state,
it has found the minimum cost path to that state.

Cycle Checking

. We can use a simple implementation of cycle checking
(multiple path checking)---just reject all search nodes
visiting a state already visited by a previously expanded
node. By property (5) we need keep only the first path to
a state, rejecting all subsequent paths.

Admissibility without monotonicity

CSC384, University of Toronto 101

When “h” is admissible but not monotonic.
. Time and Space complexity remain the same. Completeness holds.

. Optimality still holds (without cycle checking), but need a different
argument: don't know that paths are explored in order of cost.

CSC384, University of Toronto 102

Admissibility without monotonicity

What about Cycle Checking?

. No longer guaranteed we have found an optimal path to a node the first
time we visit it.

. So, cycle checking might not preserve optimality.

. To fix this: for previously visited nodes, must remember cost of
previous path. If new path is cheaper must explore again.

Space Problems with A*

CSC384, University of Toronto 103

e A* has the same potential space problems as BFS or UCS

e IDA* - Iterative Deepening A* is similar to Iterative
Deepening Search and similarly addresses space issues.

CSC384, University of Toronto 104

IDA* - Iterative Deepening A*

Objective: reduce memory requirements for A*

e Like iterative deepening, but now the “cutoff” is the f-value (g+h) rather
than the depth

e At each iteration, the cutoff value is the smallest f-value of any node that
exceeded the cutoff on the previous iteration

¢ Avoids overhead associated with keeping a sorted queue of nodes, and the
open list occupies only linear space.

e Two new parameters:
e curBound (any node with a bigger f-value is discarded)

¢ smallestNotExplored (the smallest f-value for discarded nodes in a
round) when OPEN becomes empty, the search starts a new round with
this bound.

¢ Easier to expand all nodes with f-value EQUAL to the f-limit. This way
we can compute “smallestNotExplored” more easily.

CSC384, University of Toronto 105

Constructing Heuristics

CSC384, University of Toronto 106

Building Heuristics: Relaxed Problem

¢ One useful technique is to consider an easier problem, and let
h(n) be the cost of reaching the goal in the easier problem.

¢ 8-Puzzle moves.
e Can move a tile from square A to B if
e Aisadjacent (left, right, above, below) to B
e and Bis blank

e Can relax some of these conditions

1. can move from A to B if A is adjacent to B (ignore whether or not
position is blank)

2. can move from A to B if B is blank (ignore adjacency)
3. can move from A to B (ignore both conditions).

CSC384, University of Toronto 107

Building Heuristics: Relaxed Problem

e #3 “can move from A to B (ignore both conditions) ”.
leads to the misplaced tiles heuristic.
e To solve the puzzle, we need to move each tile into its final position.
e Number of moves = number of misplaced tiles.

e Clearly h(n) = number of misplaced tiles < the h*(n) the cost of an optimal
sequence of moves from n.

e #1 “can move from A to B if A is adjacent to B (ignore whether or not
position is blank)”
leads to the manhattan distance heuristic.
e To solve the puzzle we need to slide each tile into its final position.
e We can move vertically or horizontally.

e Number of moves = sum over all of the tiles of the number of vertical and
horizontal slides we need to move that tile into place.

e Again h(n) = sum of the manhattan distances < h*(n)

* inareal solution we need to move each tile at least that far and we
can only move one tile at a time.

CSC384, University of Toronto 108

Building Heuristics: Relaxed Problem

Comparison of IDS and A* (average total nodes expanded):

Depth IDS A*(Misplaced) h1 A*(Manhattan) h2

10 47,127 93 39
14 3,473,941 539 113
24 - 39,135 1,641

Let h1=Misplaced, h2=Manhattan

¢ Does h2 always expand fewer nodes than h1?

¢ Yes! Note that h2 dominates h1, i.e. for all n: h1(n)<h2(n). From
this you can prove h2 is faster than h1 (once both are admissible).

¢ Therefore, among several admissible heuristic the one with highest
value is the fastest.

Building Heuristics: Relaxed Problem

CSC384, University of Toronto 109

The optimal cost to nodes in the relaxed problem is an
admissible heuristic for the original problem!

: the optimal solution in the original problem is a
solution for relaxed problem, therefore it must be at least as
expensive as the optimal solution in the relaxed problem.

So admissible heuristics can sometimes be constructed by
finding a relaxation whose optimal solution can be easily
computed.

CSC384, University of Toronto 110

Building Heuristics: Pattern databases

e Try to generate admissible heuristics by solving a
subproblem and storing the exact solution cost for that
subproblem

e See Chapter 3.6.3 if you are interested.

* 2 4 1 2
* * 3 4 *
* 3 1 * * *

Start State Goal State

CSC384, University of Toronto 11

