


| What is Intelligence?                                                                                                                                                                                                                                                                                                            | Artificial Intelligence                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Webster says:</li> <li>The capacity to acquire and apply knowledge.</li> <li>The faculty of thought and reason.</li> <li></li> </ul>                                                                                                                                                                                    | Studies how to achieve intelligent behavior<br>through computational means.<br>This makes AI a branch of Computer Science                                                                                                                              |
| <ul> <li>What features/abilities do humans (animals/animate<br/>objects) have that you think are indicative or<br/>characteristic of intelligence?</li> </ul>                                                                                                                                                                    | Why do we think that intelligence can be captured<br>through computation?<br>Modeling the processing that our brains do as<br>computation has proved to be successful. Hence,<br>human intelligence can arguably be best modeled                       |
| <ul> <li>Abstract concepts, mathematics, language, problem<br/>solving, memory, logical reasoning, planning ahead,<br/>emotions, morality, ability to learn/adapt, etc</li> </ul>                                                                                                                                                | as a computational process.                                                                                                                                                                                                                            |
| SC384, University of Toronto 5                                                                                                                                                                                                                                                                                                   | CSC384, University of Toronto                                                                                                                                                                                                                          |
| Classical Test of (Human) Intelligence                                                                                                                                                                                                                                                                                           | Human Intelligence                                                                                                                                                                                                                                     |
| <ul> <li>The Turing Test:         <ul> <li>A human interrogator. Communicates with a hidden subject that is either a computer system or a human.</li> </ul> </li> <li>If the human interrogator cannot reliably decide whether or not the subject is a computer, the computer is said to have passed the Turing test.</li> </ul> | <ul> <li>Turing provided some very persuasive arguments that a system passing the Turing test <i>is intelligent</i>.</li> <li>We can only really say it <i>behaves like a human</i></li> <li>Nothing guarantees that it thinks like a human</li> </ul> |
| • Weak Turing type tests:                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                        |

• The Turing test does not provide much traction on the question of how to actually build an intelligent system.

7

CSC384, University of Toronto

overlooks

See Luis von Ahn, Manuel Blum, Nicholas Hopper, and John Langford.

CAPTCHA: Using Hard AI Problems for Security. In Eurocrypt.

Type the two words:

inquiry

#### Human Intelligence

- Recently some claims have been made of Al systems that can pass the Turing Test.
- However, these systems operate on subterfuge, and were able to convince a rather naïve jury that they were human like.
- The main technique used is obfuscation...rather than answering questions the system changed the topic!
- This is not what Turing described in his Turing Test CSC384, University of Toronto

#### **Human Intelligence**

- But more importantly, we know very little about how the human brain performs its higher level processes. Hence, this point of view provides very little information from which a scientific understanding of these processes can be built.
- Nevertheless, Neuroscience has been very influential in some areas of AI. For example, in robotic sensing, vision processing, etc.
- Humans might not be best comparison?
  - Don't always make the best decisions
- Computer intelligence can aid in our decision making
   CSC384, University of Toronto

```
Human Intelligence
```

- In general there are various reasons why trying to mimic humans might **not** be the best approach to AI:
  - Computers and Humans have a very different architecture with quite different abilities.
  - Numerical computations
  - Visual and sensory processing
  - Massively and slow parallel vs. fast serial

|                     | Computer                       | Human Brain               |  |
|---------------------|--------------------------------|---------------------------|--|
| Computational Units | 8 CPUs, 10 <sup>10</sup> gates | 10 <sup>11</sup> neurons  |  |
| Storage Units       | 10 <sup>10</sup> bits RAM      | 10 <sup>11</sup> neurons  |  |
|                     | 10 <sup>13</sup> bits disk     | 10 <sup>14</sup> synapses |  |
| Cycle time          | 10 <sup>-9</sup> sec           | 10 <sup>-3</sup> sec      |  |
| Bandwidth           | 10 <sup>10</sup> bits/sec      | 10 <sup>14</sup> bits/sec |  |
| Memory updates/sec  | 10 <sup>10</sup>               | 10 <sup>14</sup>          |  |

CSC384, University of Toronto

9

11

10

### Rationality

- The alternative approach relies on the notion of **rationality**.
- Typically this is a precise formal notion of what it means to do the right thing in any particular circumstance. Provides
  - A precise mechanism for analyzing and understanding the properties of this ideal behavior we are trying to achieve.
  - A precise benchmark against which we can measure the behavior the systems we build.

#### Rationality

- Formal characterizations of rationality have come from diverse areas like logic (laws of thought) and economics (utility theory—how best to act under uncertainty, game theory how self-interested agents interact).
- There is no universal agreement about which notion of rationality is best, but since these notions are precise we can study them and give exact characterizations of their properties, good and bad.

Four AI Definitions by Russell + Norvig

Not necessarily like humans

• We'll focus on acting rationally

Like humans

Systems that think like

- this has implications for thinking/reasoning

|  | <br> | <br> | 3 |  |
|--|------|------|---|--|
|  |      |      |   |  |
|  |      |      |   |  |

• Al tries to understand and model intelligence as a computational process.

Computational Intelligence

- Thus we try to construct systems whose computation achieves or approximates the desired notion of rationality.
- Hence AI is part of Computer Science.
  - Other areas interested in the study of intelligence lie in other areas or study, e.g., cognitive science which focuses on human intelligence. Such areas are very related, but their central focus tends to be different.

#### CSC384, University of Toronto

#### Subareas of Al

- Perception: vision, speech understanding, etc.
- Machine Learning, Neural networks
- Robotics
- Natural language processing
- Reasoning and decision making our focus
  - Knowledge representation
  - Reasoning (logical, probabilistic)
  - **Decision making** (search, planning, decision theory)

# humans Systems that think rationally

| F   |                                 |                                          |  |
|-----|---------------------------------|------------------------------------------|--|
| Act | Systems that act like<br>humans | Systems that act rationally<br>Our focus |  |
|     | 1                               |                                          |  |
|     | Cognitive Science               |                                          |  |
|     |                                 |                                          |  |

CSC384, University of Toronto

| Subareas of Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Subareas of Al                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Many of the popular recent applications of AI in industry have been based on Machine Learning, e.g., voice recognition systems on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Nor will we discuss Computer Vision nor Natural<br/>Language to any significant extent.</li> </ul>                                                                                                                                      |
| your cell phone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>All of these areas have developed a number of<br/>specialized theories and methods specific to the<br/>problems they study.</li> </ul>                                                                                                  |
| • We will not say much in this course about<br>machine learning, although the last part of the<br>course will introduce Bayes Nets a form of<br>probabilistic graphical model.                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>The topics we will study here are fundamental<br/>techniques used in various AI systems, and often<br/>appear in advanced research in many other sub-areas<br/>of AI.</li> </ul>                                                        |
| Probabilistic graphical models are fundamental in machine learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>In short, what we cover here is not sufficient for a deep<br/>understanding of AI, but it is a good start.</li> </ul>                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |
| SC384, University of Toronto 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CSC384, University of Toronto                                                                                                                                                                                                                    |
| Further Courses in AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSC384, University of Toronto What We Cover in CSC384                                                                                                                                                                                            |
| Further Courses in AI<br>Perception: vision, speech understanding, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | What We Cover in CSC384                                                                                                                                                                                                                          |
| Further Courses in Al<br>Perception: vision, speech understanding, etc.<br>– CSC487H1 "Computational Vision"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •Search (Chapter 3, 5, 6)                                                                                                                                                                                                                        |
| Further Courses in Al<br>Perception: vision, speech understanding, etc.<br>- CSC487H1 "Computational Vision"<br>- CSC420H1 "Introduction to Image Understanding"                                                                                                                                                                                                                                                                                                                                                                                                                                                         | What We Cover in CSC384                                                                                                                                                                                                                          |
| Further Courses in Al         Perception: vision, speech understanding, etc.         - CSC487H1 "Computational Vision"         - CSC420H1 "Introduction to Image Understanding"         Machine Learning, Neural networks         - CSC321H "Introduction to Neural Networks and Machine Learning"         - CSC411H "Machine Learning and Data Mining"                                                                                                                                                                                                                                                                  | What We Cover in CSC384<br>• Search (Chapter 3, 5, 6)<br>– Uninformed Search (3.4)                                                                                                                                                               |
| Further Courses in Al         Perception: vision, speech understanding, etc.         - CSC487H1 "Computational Vision"         - CSC420H1 "Introduction to Image Understanding"         Machine Learning, Neural networks         - CSC321H "Introduction to Neural Networks and Machine Learning"         - CSC411H "Machine Learning and Data Mining"         - CSC412H1 "Uncertainty and Learning in Artificial Intelligence"                                                                                                                                                                                         | What We Cover in CSC384<br>•Search (Chapter 3, 5, 6)<br>– Uninformed Search (3.4)<br>– Heuristic Search (3.5, 3.6)                                                                                                                               |
| Further Courses in Al         Perception: vision, speech understanding, etc.         - CSC487H1 "Computational Vision"         - CSC420H1 "Introduction to Image Understanding"         Machine Learning, Neural networks         - CSC321H "Introduction to Neural Networks and Machine Learning"         - CSC411H "Machine Learning and Data Mining"         - CSC412H1 "Uncertainty and Learning in Artificial Intelligence"         Robotics         - Engineering courses                                                                                                                                          | What We Cover in CSC384<br>•Search (Chapter 3, 5, 6)<br>– Uninformed Search (3.4)<br>– Heuristic Search (3.5, 3.6)<br>– Game Tree Search (5)                                                                                                     |
| <ul> <li>Further Courses in Al</li> <li>Perception: vision, speech understanding, etc. <ul> <li>CSC487H1 "Computational Vision"</li> <li>CSC420H1 "Introduction to Image Understanding"</li> </ul> </li> <li>Machine Learning, Neural networks <ul> <li>CSC411H "Introduction to Neural Networks and Machine Learning"</li> <li>CSC411H "Machine Learning and Data Mining"</li> <li>CSC412H1 "Uncertainty and Learning in Artificial Intelligence"</li> </ul> </li> <li>Robotics <ul> <li>Engineering courses</li> </ul> </li> </ul>                                                                                     | What We Cover in CSC384<br>•Search (Chapter 3, 5, 6)<br>– Uninformed Search (3.4)<br>– Heuristic Search (3.5, 3.6)<br>– Game Tree Search (5)<br>•Knowledge Representation (Chapter 8, 9)                                                         |
| <ul> <li>Further Courses in Al</li> <li>Perception: vision, speech understanding, etc. <ul> <li>CSC487H1 "Computational Vision"</li> <li>CSC420H1 "Introduction to Image Understanding"</li> </ul> </li> <li>Machine Learning, Neural networks <ul> <li>CSC411H "Introduction to Neural Networks and Machine Learning"</li> <li>CSC411H "Machine Learning and Data Mining"</li> <li>CSC412H1 "Uncertainty and Learning in Artificial Intelligence"</li> </ul> </li> <li>Robotics <ul> <li>Engineering courses</li> </ul> </li> </ul>                                                                                     | What We Cover in CSC384<br>• Search (Chapter 3, 5, 6)<br>– Uninformed Search (3.4)<br>– Heuristic Search (3.5, 3.6)<br>– Game Tree Search (5)<br>• Knowledge Representation (Chapter 8, 9)<br>– First order logic for more general knowledge (8) |
| <ul> <li>Further Courses in Al</li> <li>Perception: vision, speech understanding, etc. <ul> <li>CSC487H1 "Computational Vision"</li> <li>CSC420H1 "Introduction to Image Understanding"</li> </ul> </li> <li>Machine Learning, Neural networks <ul> <li>CSC321H "Introduction to Neural Networks and Machine Learning"</li> <li>CSC411H "Machine Learning and Data Mining"</li> <li>CSC412H1 "Uncertainty and Learning in Artificial Intelligence"</li> </ul> </li> <li>Robotics <ul> <li>Engineering courses</li> <li>Natural language processing</li> <li>CSC401H1 "Natural Language Computing"</li> </ul> </li> </ul> | What We Cover in CSC384<br>• Search (Chapter 3, 5, 6)<br>– Uninformed Search (3.4)<br>– Heuristic Search (3.5, 3.6)<br>– Game Tree Search (5)<br>• Knowledge Representation (Chapter 8, 9)<br>– First order logic for more general knowledge (8) |

CSC384, University of Toronto

CSC384, University of Toronto

| What We Cover in CSC384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | AI Successes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Classical Planning (Chapter 10) <ul> <li>Predicate representation of states</li> <li>Planning Algorithms</li> </ul> </li> <li>Quantifying Uncertainty and Probabilistic Reasoning (Chapter 13, 14, 16) <ul> <li>Uncertainties, Probabilities</li> <li>Probabilistic Reasoning, Bayesian Networks</li> </ul> </li> </ul>                                                                                                                                                                                                                      |    | <ul> <li>Games: chess, checkers, poker, bridge, backgammon <ul> <li>Search</li> </ul> </li> <li>Physical skills: driving a car, flying a plane or helicopter, vacuuming <ul> <li>Sensing, machine learning, planning, search, probabilistic reasoning</li> </ul> </li> <li>Language: machine translation, speech recognition, character recognition, <ul> <li>Knowledge representation, machine learning, probabilistic reasoning</li> </ul> </li> <li>Vision: face recognition, face detection, digital photographic processing, motion tracking,</li> <li>Commerce and industry: page rank for searching, fraud detection, trading on financial markets <ul> <li>Search, machine learning, probabilistic reasoning</li> </ul> </li> </ul> |
| CSC384, University of Toronto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21 | CSC384, University of Toronto 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Recent AI Successes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | Degrees of Intelligence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Darpa Grand Challenges <ul> <li>Goal: build a fully autonomous car that can drive a 240 km course in the Mojave desert</li> <li>2004: none went further than 12 km</li> <li>2005: 5 finished</li> <li>2007: Urban Challenge: 96 km urban course (former air force base) with obstacles, moving traffic, and traffic regulations: 6 finishers</li> <li>2011: Google testing its autonomous car for over 150,000 km on real roads</li> </ul> </li> <li>2011: IBM Watson competing successfully against two Jeopardy grand-champions</li> </ul> |    | <ul> <li>Building an intelligent system as capable as humans remains an elusive goal.</li> <li>However, systems have been built which exhibit various specialized degrees of intelligence.</li> <li>Formalisms and algorithmic ideas have been identified as being useful in the construction of these "intelligent" systems.</li> <li>Together these formalisms and algorithms form the foundation of our attempt to understand intelligence as a computational process.</li> <li>In this course we will study some of these formalisms and see how they can be used to achieve various degrees of intelligence.</li> </ul>                                                                                                                |
| CSC384, University of Toronto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23 | CSC384, University of Toronto 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Readings

- 1.1: What is Al?
- 2: Intelligent Agents
- •Other interesting readings:
  - 1.2: Foundations
  - 1.3: History