- (a) $Dom[X] = \{1, 2, 3, 4\}$
- (b) $Dom[Y] = \{1, 2, 3, 4\}$
- (c) $Dom[Z] = \{1, 2, 3, 4\}$
- (d) $Dom[W] = \{1, 2, 3, 4, 5\}$

And 3 constraints:

- (a) $C_1(X, Y, Z)$ which is satisfied only when X = Y + Z
- (b) $C_2(X, W)$ which is satisfied only when W > X
- (c) $C_3(X, Y, Z, W)$ which is satisfied only when W = X + Z + Y

Enforce GAC on these constraints, and give the resultant GAC consistent variable domains.

- (a) $Dom[X] = \{1, 2, 3, 4\}$
- (b) $Dom[Y] = \{1, 2, 3, 4\}$
- (c) $Dom[Z] = \{1, 2, 3, 4\}$
- (d) $Dom[W] = \{1, 2, 3, 4, 5\}$

And 3 constraints:

- (a) $C_1(X, Y, Z)$ which is satisfied only when X = Y + Z
- (b) $C_2(X, W)$ which is satisfied only when W > X
- (c) $C_3(X, Y, Z, W)$ which is satisfied only when W = X + Z + Y

Enforce GAC on these constraints, and give the resultant GAC consistent variable domains.

- All constraints put on GAC queue.
- Process C₃ first.

$$X = 1 (X=1, Y=1, Z=1, W=3)$$

$$X = 2 (X=2, Y=1, Z=1, W=4)$$

$$X = 3 (X=3, Y=1, Z=1, W=5)$$

$$X = 4 - Inconsistent.$$

$$Dom(X) = \{1, 2, 3\}$$

similarly

$$Dom(Y) = \{1, 2, 3\}$$

$$Dom(Z) = \{1, 2, 3\}$$

$$W = 1 - inconsistent$$

$$W = 2 - inconsistent$$

$$W = 3 - same support as X=1$$

$$W = 4 - same support as X = 2$$

$$W= 5 - same support as X = 3$$

$$Dom(W) = \{3, 4, 5\}$$

All domains pruned, but all other constraints already on GAC queue

- (a) $Dom[X] = \{1, 2, 3, 4\}$
- (b) $Dom[Y] = \{1, 2, 3, 4\}$
- (c) $Dom[Z] = \{1, 2, 3, 4\}$
- (d) $Dom[W] = \{1, 2, 3, 4, 5\}$

And 3 constraints:

- (a) $C_1(X, Y, Z)$ which is satisfied only when X = Y + Z
- (b) $C_2(X, W)$ which is satisfied only when W > X
- (c) $C_3(X, Y, Z, W)$ which is satisfied only when W = X + Z + Y

Enforce GAC on these constraints, and give the resultant GAC consistent variable domains.

Process C₂ next Currently Dom(X) = {1, 2, 3} Dom(W) = {3, 4, 5}

W=3, W=4 found supports already

No domains pruned. Nothing added to GAC Queue

- (a) $Dom[X] = \{1, 2, 3, 4\}$
- (b) $Dom[Y] = \{1, 2, 3, 4\}$
- (c) $Dom[Z] = \{1, 2, 3, 4\}$
- (d) $Dom[W] = \{1, 2, 3, 4, 5\}$

And 3 constraints:

- (a) $C_1(X, Y, Z)$ which is satisfied only when X = Y + Z
- (b) $C_2(X, W)$ which is satisfied only when W > X
- (c) $C_3(X, Y, Z, W)$ which is satisfied only when W = X + Z + Y

Enforce GAC on these constraints, and give the resultant GAC consistent variable domains.

Process C₁ next

At this stage

$$Dom(X) = Dom(Y) = Dom(Z)$$

 $= \{1, 2, 3\}$

$$X = 1 - inconsistent$$

$$X = 2 - (X=2, Y=1, Z=1)$$

$$X = 3 - (X=3, Y=1, Z=2)$$

$$Y = 1 - same support as X=2$$

$$Y = 2 - (X=3, Y=2, Z=1)$$

$$Y = 3 - inconsistent$$

$$Z = 1 - same support as X=2$$

$$Z = 2 -$$
same support as $X=3$

$$Z = 3 - inconsistent$$

$$X = \{2,3\}$$

$$Y = \{1,2\}$$

$$Z = \{1,2\}$$

Put C₂ and C₃ back onto GAC queue

- (a) $Dom[X] = \{1, 2, 3, 4\}$
- (b) $Dom[Y] = \{1, 2, 3, 4\}$
- (c) $Dom[Z] = \{1, 2, 3, 4\}$
- (d) $Dom[W] = \{1, 2, 3, 4, 5\}$

And 3 constraints:

- (a) $C_1(X, Y, Z)$ which is satisfied only when X = Y + Z
- (b) $C_2(X, W)$ which is satisfied only when W > X
- (c) $C_3(X, Y, Z, W)$ which is satisfied only when W = X + Z + Y

Enforce GAC on these constraints, and give the resultant GAC consistent variable domains.

■ Process C₃ next current domains:

$$Dom(X) = \{2, 3\}$$

$$Dom(Y) = \{1, 2\}$$

$$Dom(Z) = \{1, 2\}$$

$$Dom(W) = \{3,4,5\}$$

$$X = 2 - \{X=2, W=4, Y=1, Z=1\}$$

$$X = 3 - \{X=3, W=5, Y=1, Z=1\}$$

$$Y = 1 - found support$$

$$Y = 2 - \{X=2, W=5, Y=2, Z=1\}$$

$$Z = 1 - found support$$

$$Z = 2 - \{X=2, W=5, Y=1, Z=2\}$$

W = 3 inconsistent

W = 4 - found support

W = 5 - found support

Pruned domains

$$W = \{4, 5\}$$

C₂ already on GAC queue

- (a) $Dom[X] = \{1, 2, 3, 4\}$
- (b) $Dom[Y] = \{1, 2, 3, 4\}$
- (c) $Dom[Z] = \{1, 2, 3, 4\}$
- (d) $Dom[W] = \{1, 2, 3, 4, 5\}$

And 3 constraints:

- (a) $C_1(X, Y, Z)$ which is satisfied only when X = Y + Z
- (b) $C_2(X, W)$ which is satisfied only when W > X
- (c) $C_3(X, Y, Z, W)$ which is satisfied only when W = X + Z + Y

Enforce GAC on these constraints, and give the resultant GAC consistent variable domains.

■ Process C₂ next current domains:

$$Dom(X) = \{2, 3\}$$

$$Dom(W) = \{4,5\}$$

$$X = 2 - \{X=2, W=4\}$$

$$X = 3 - \{X=3, W=4\}$$

$$W = 4$$
 – found support

$$W = 5 - \{X=3, W=5\}$$

No Domains pruned. Nothing added to queue

Queue Empty

GAC finished.

GAC domains:

$$X = \{2,3\}$$

$$Z = \{1, 2\}$$

$$Y = \{1, 2\}$$

$$W = \{4,5\}$$

- (a) $Dom[X] = \{1, 2, 3, 4\}$
- (b) $Dom[Y] = \{1, 2, 3, 4\}$
- (c) $Dom[Z] = \{1, 2, 3, 4\}$
- (d) $Dom[W] = \{1, 2, 3, 4, 5\}$

And 3 constraints:

- (a) $C_1(X, Y, Z)$ which is satisfied only when X = Y + Z
- (b) $C_2(X, W)$ which is satisfied only when W > X
- (c) $C_3(X, Y, Z, W)$ which is satisfied only when W = X + Z + Y

Enforce GAC on these constraints, and give the resultant GAC consistent variable domains.

- Note GAC enforce does not find a solution To find a solution we must use do search while enforcing GAC.
- Branch on X.

$$X = 2$$

 $GAC(C_1) \rightarrow Y = 1, Z=1$
 $GAC(C_2) \rightarrow \text{no changes}$
 $GAC(C_3) \rightarrow W = 4$
This is a solution.

■ Branch on X = 3GAC(C_1) → no changes GAC(C_2) → no changes GAC(C_3) → Prune W=4 Prune Y = 2 Prune Z = 2 Current Domains $X=\{3\}, Y=\{1\}, Z=\{1\}, W=\{5\}$ GAC(C_1) → Prune Y= $\{1\}$ DWO

NOTE No solution with X=3 but X=3 not pruned by GAC enforce.

C1(V1,V2,V3)

V1	V2	V3
Α	В	С
В	Α	С
Α	Α	В

C2(V1,V3,V4,V5)

V1	V3	V4	V5
Α	Α	Α	Α
Α	В	С	В
В	С	В	В
С	Α	В	С
С	В	Α	В

C3(V2,V3,V5)

V2	V3	V5
Α	Α	Α
Α	В	С
В	С	В
С	Α	В
С	В	Α

■Dom[V1]...Dom[V5] = {a, b, c}

C1(V1,V2,V3)

V1	V2	V3
Α	В	С
В	Α	С
Α	Α	В

- ■V1=C: no support
- ■V2=C: no support
- ■V3=A: no support
- **■**V1={a,b}
- ■V2={a,b}
- ■V3={b,c}

C2(V1,V3,V4,V5)

V1	V3	V4	V5
Α	Α	Α	Α
Α	В	С	В
В	С	В	В
С	Α	В	С
С	В	Α	В

V2	V3	V5
Α	Α	Α
Α	В	С
В	С	В
С	Α	В
С	В	Α

C1(V1,V2,V3)

V1	V2	V3
Α	В	С
В	Α	С
Α	Α	В

- V1=C: no supportV2=C: no support
- ■V3=A: no support
- **■**V1={a,b}
- ■V2={a,b}
- ■V3={b,c}

C2(V1,V3,V4,V5)

V1	V3	V4	V5
Α	Α	Α	Α
Α	В	С	В
В	С	В	В
С	Α	В	С
С	В	Α	В

V2	V3	V5
Α	Α	Α
Α	В	С
В	С	В
С	Α	В
С	В	Α

C1(V1,V2,V3)

V1	V2	V3
Α	В	С
В	Α	С
Α	Α	В

- ■V1=C: no support
- ■V2=C: no support
- ■V3=A: no support
- **■**V1={a,b}
- **■**V2={a,b}
- ■V3={b,c}

C2(V1,V3,V4,V5)

V1	V3	V4	V5
Α	Α	Α	Α
Α	В	С	В
В	С	В	В
С	Α	В	С
С	В	Α	В

- ■V4=A: no support
- ■V5=A: no support
- ■V5=C: no support
- **■**V4={C,B}
- ■V5={B}

V2	V3	V5
Α	Α	Α
Α	В	С
В	С	В
С	Α	В
С	В	Α

C1(V1,V2,V3)

V1	V2	V3
Α	В	С
В	Α	С
Α	Α	В

- ■V1=C: no support
- ■V2=C: no support
- ■V3=A: no support
- **■**V1={a,b}
- **■**V2={a,b}
- ■V3={b,c}

C2(V1,V3,V4,V5)

V1	V3	V4	V5
Α	Α	Α	Α
Α	В	С	В
В	С	В	В
С	Α	В	С
С	В	Α	В

- ■V4=A: no support
- ■V5=A: no support
- ■V5=C: no support
- **■**V4={C,B}
- ■V5={B}

V2	V3	V5
Α	Α	А
Α	В	С
В	С	В
С	Α	В
С	В	А

C1(V1,V2,V3)

V1	V2	V3
Α	В	С
В	Α	С
Α	Α	В

- ■V1=C: no support
- ■V2=C: no support
- ■V3=A: no support
- **■**V1={a,b}
- **■**V2={a,b}
- ■V3={b,c}

C2(V1,V3,V4,V5)

V1	V3	V4	V5
Α	Α	Α	Α
Α	В	С	В
В	С	В	В
С	Α	В	С
С	В	Α	В

- ■V4=A: no support
- ■V5=A: no support
- ■V5=C: no support
- ■V4={C,B}
- ■V5={B}

V2	V3	V5
Α	Α	Α
Α	В	С
В	С	В
С	Α	В
С	В	Α

- ■V2=A: no support
- ■V3=B: no support
- ■V2={B}
- ■V3={C}

C1(V1,V2,V3)

V1	V2	V3
Α	В	С
В	Α	С
Α	Α	В

C2(V1,V3,V4,V5)

V1	V3	V4	V5
Α	Α	Α	Α
Α	В	С	В
В	С	В	В
С	А	В	С
С	В	Α	В

V2	V3	V5
Α	А	А
Α	В	С
В	С	В
С	Α	В
С	В	Α

- ■V1=B has no support
- **■**V1={A}

- ■V4={C,B}
- ■V5={B}

C1(V1,V2,V3)

V1	V2	V3
Α	В	С
В	Α	С
Α	Α	В

C2(V1,V3,V4,V5)

V1	V3	V4	V5
Α	Α	Α	Α
Α	В	С	В
В	С	В	В
С	Α	В	С
С	В	Α	В

V2	V3	V5
Α	Α	Α
Α	В	С
В	С	В
С	Α	В
С	В	Α

- ■V1=B has no support
- **■**V1={A}

- ■V4=B has no support
- ■V4={B}
- ■V5={B}
- ■V3=C has no support
- ■V3={} DWO

- ■V2={B}
- **■**V3={C}