Make Change

• Starting with 0 cents, we want to reach some number of cents between [0, 5, 10, 15, 20, ..., 500] using the least number of coins.

We can add 5, 10, 25, 100, or 200.

Solve this problem using search?

Make Change

• States:

• Actions:

Make Change

States: Integers between 0 and 500 that are divisible by
 5.

• Actions: Add 5, 10, 25, 100, or 200.

Example

- Initial state 0
- Goal state (365)

- BFS
- DFS
- UCS?
- A*?

- Set of Cities
- For each City a set of locations in that city.
- Some locations are Airports.
- Set of Trucks, each truck is in some city.
- Set of Airplanes
- Trucks can move between any location in the same city.
- Airplanes can move between any two airport.
- Set of packages each in some city at some location.
- Packages can be loaded into a truck or airplane if that vehicle is at the same location at the package.
- If a package is in a vehicle it is moved when the vehicle is moved.

 Aim is to pickup a bunch of packages and deliver them to some goal locations.

• State Space

Actions

• State Space: Location for every vehicle. And for every package either a location where it is, or a vehicle that it is in.

• Actions:

- If a truck is at location locA, we can move it to location locB if locB is in the same city as locA
- 2. If a truck is at location locA, we can move it to location locB if locB is an airport.
- 3. If package P1 is at location locA, and a vehicle V1 is also at location locA, we can load P1 into V1. P1 is now in V1.
- 4. If a package P1 is in a vehicle V1 and V1 is at location locA, we can unload P1. P1 now is at location locA
- Costs vary—cost of moving a vehicle depends on distance traveled. Loading and unloading package has fixed (low cost).

 Initial state: a set of packages and vehicles and their locations.

 Goal state: a set of destination locations for some of the packages.

- BFS?
- UCS?
- A*?

Vacuum World

- In the previous examples, a state in the search space corresponded to a unique state of the world (modulo details we have abstracted away).
- However, states need not map directly to world configurations. Instead, a state could map to knowledge states.

- If you know the exact state of the world your knowledge state is a single unique state.
- If you don't know some things, then your knowledge state is a set of world states.

Vacuum World

 A knowledge state will include every world state that might be possible.

- We have a vacuum cleaner and two rooms.
- Each room may or may not be dirty.
- The vacuum cleaner can move left or right (the action has no effect if there is no room to the right/left).
- The vacuum cleaner can suck; this cleans the room (even if the room was already clean).

Physical states

Knowledge-level State Space

 Each state can consist of a set of possible world states.
 The agent knows that it is in one of these states, but doesn't know which.

Goal is to have all rooms clean.

Knowledge-level State Space

- Complete knowledge of the world: agent knows exactly which physical state it is in.
 Then the states in the agent's state space consist of single physical states.
- Start in {5}:<right, suck>

Goal is to have all rooms clean.

Knowledge-level State Space

- No knowledge of the world:
 Agent's states consist of sets of world states.
- E.g. starting in {1,2,3,4,5,6,7,8}, the agent doesn't have any knowledge of where it is.
- Nevertheless, the action sequence
 <right, suck, left, suck>
 achieves the goal.

Goal is to have all rooms clean.

Initial state.

{1,2,3,4,5,6,7,8}

More complex situations

- The agent might be able to perform some sensing actions. These actions change the agent's mental state, not the world configuration.
- With sensing can search for a contingent solution: a solution that is contingent on the outcome of the sensing actions
 - <right, if dirt then suck>
- Now the issue of interleaving execution and search comes into play.