CSC2512
Advanced Propositional
Reasoning

CSC2512: #SAT (Model Counting)

e A SAT formula can have many safistying models. #SAT
Is the problem of counting the number of satistying
models.

e Subsumes SAT --- the formula is unsatisfiable iff the
number of models is zero.

e #SAT is a #P complete problem.

e |If each modelis assigned a different weight, then #SAT
becomes the problem of summing the weights of the
satisfying models.

 With a weighted model counter one can answer any
probabilistic query over a discrete probability space.

Fahiem Bacchus, University of Toronto,

CSC2512: #SAT

DPLL simplest version.

DPLL(¢)
if ¢ has no clauses, output “satisfiable” and HALT
else-if ¢ does not contain an empty clause then
choose a variable x that appears in ¢
Call DPLL(¢|z=0)
Call DPLL(¢|z=1)
return

Fahiem Bacchus, University of Toronto,

CSC2512: #SAT

#DPLL simplest version.

Returns #models/2" where n = # variables in the
formula.

#DPLL(¢)
if @ has no clauses, return 1

else-if @ has an empty clause, return O
else

Choose a variable x that appears in ¢
return #DPLL(¢|z=0) X 2 + #DPLL(¢|o=1) X

1
2

Fahiem Bacchus, University of Toronto,

CSC2512: #SAT

E.g. (X,y), (X,-y) = 2/4 models

#DPLL({(X,y), (X,-y)})
> #DPLL({(x,y), (X,-y)}Ix=1)

= #DPLL({})
€1
> #DPLL{(X,y), (X,-y)}[x=0)
= #DPLL({(y).(-y)})
€0
€ 11/2 + 0*1/2 =1/2

Fahiem Bacchus, University of Toronto,

CSC2512: #SAT

#DPLL simplest version.
Runs in time 2"

We can do much better by recognizing that the
same formula often arises along different branches.

E.g., (-z, r,-x) (z,-r, -xX) : The formula (-x) arises
when z=1, r=0, as well as when z=0, r=1

How frequently we get the same formula depends
on (a) the connectivity of the formula (branch-width)
and (b) which variables we branch on.

Fahiem Bacchus, University of Toronto,

CSC2512: #SAT

#DPLLSimpleCache(¢)
If InCache({¢}), return
else
Pick a variable v in ¢
¢~ = Plv=0
#DPLLSimpleCache(¢ ™)
¢ = ¢lu=1
#DPLLSimpleCache(¢™)
GetValue({¢™) X 1
AddToCache (¢’ + GetVal(je({gb)“L}) X L)
return

Fahiem Bacchus, University of Toronto,

CSC2512: #SAT

In #DPLLSimpleCache we always cache the # of models for
each solved subformula, and look up in the cache the
current formula to see if we have already solved it.

There exists an execution of #DPLLSimpleCache that runs
in time 29w log n) where w is the branch-width of the CNF
iInstance.

Note 20(w log n) = [O(w)
If the branch-width is small this is much smaller than 2°M)

To get a “fast” execution we must follow the variable
ordering arising from the small branch-width.

This shows that the same sub-formula can show up many
times!

Fahiem Bacchus, University of Toronto,

CSC2512: Branch-Width

Branch-width and and Tree-width are metrics that
measure how tree-like a graph is. Branch-width of
a CNF instance. CNF-Hypergraph:

Nodes are the variables.
Each clause yields a hyperedge
over its variables:

(a,-b) (b,-d) (a,c,d)

Ignore polarity of literals ‘

Fahiem Bacchus, University of Toronto,

CSC2512: Branch-Width

Associate the clauses with leaves of a binary

tree...in any order.

Cs

Cq C; C, C, C,

Fahiem Bacchus, University of Toronto,

10

CSC2512: Branch-Width

Label each leaf with the variables of the clause.

Cs Cq C; C, C, C, Cs

Fahiem Bacchus, University of Toronto,

CSC2512: Branch-Width

* Build a binary tree on top of these nodes.

Fahiem Bacchus, University of Toronto, 12

CSC2512: Branch-Width

» Label each edge of the tree with the
variables that are in both subgraphs
separated by the edge

Fahiem Bacchus, University of Toronto, 13

CSC2512: Branch-Width

» Label each edge of the tree with the
variables that are in both subgraphs
separated by the edge V4, V5)

Fahiem Bacchus, University of Toronto, 14

CSC2512: Branch-Width

» Label each edge of the tree with the
variables that are in both subgraphs
separated by the edge V3, V4, V)

Fahiem Bacchus, University of Toronto, 15

CSC2512: Branch-Width

* The width of this particular branch
decomposition is the size of the largest
edge label.

Fahiem Bacchus, University of Toronto, 16

CSC2512: Branch-Width

« Consider all possible branch-
decompositions (different orderings of the

clause leaves, different binary tree above).

« Each branch-decomposition has a
different width.

 The branch-width of the CNF is the MIN
width over all different branch-
decompositions.

Fahiem Bacchus, University of Toronto,

17

CSC2512: Branch-Width

* Notice that when we assign all of the
variables of an edge label the set of
clauses in the two parts of the tree
become disconnected

(O
(. V3, V4, V6} (O

O T TS T O T <>,

Fahiem Bacchus, University of Toronto, 18

CSC2512: Branch-Width

* That is they will no longer share any
variables.

(O
(. V3, V4, V6} (0

Fahiem Bacchus, University of Toronto, 19

CSC2512: Branch-Width

« So the 2°W--) arises from the fact that the largest edge
label has w variables and there are only 2% different
ways to assign them. Thus the clauses in the two
subtrees can only be in 2% different configurations.

(O
(. V3, V4, V6} (O

O T TS T O T <>,

Fahiem Bacchus, University of Toronto, 20

CSC2512: #SAT (Model Counting)

e Components. If the CNF can be partitioned into k parts C1, ...,
Ck, where each part shares on variables with any other part,
then each Ciis called a component.

e #DPLL(CNF) = #DPLL(C1) * #DPLL(C?2) ... * #DPLL(CK)

 Thatis we can count the models in each part and multiply to
obtain the model count of the whole formula: any satisfying
assignment for C1, C2, ... Ck can be combined to form a
satistying osmgnmen’r for CNF.

e Typically, the input CNF has only one component...it is fully
connected.

e This observation ?ives rise to an algorithm that searches over
the current set of components.

Fahiem Bacchus, University of Toronto, 21

CSC2512: #SAT

#DPLL algorithm with component caching

#DPLLCache(®)
If InCache(®), return
else

$ = RemoveCachedComponents (D)
Pick a variable v in some component ¢ € P

®~ = ToComponents(¢

v:O)

#DPLLCache(® — {¢} U D7)

®* = ToComponents (¢

v:l)

#DPLLCache(® — {¢} U ®T)

AddToCache (qb,

return

GetValue(® ™) x =)
+ GetValue(®") x 2

Fahiem Bacchus, University of Toronto,

22

CSC2512: #SAT (Model Counting)

Initially the cache is empty, at termination the cache
contains the input formula and its model count.

The initial call is given the set of components of the
input formula (usually just one component)

If all components of the input are in the cache we
return.

Otherwise remove all known components.

Pick a component and a variable of that
component to branch on.

Note that GetValue is passed a set of components. |1
looks up the value of each component in the cache
and refurns the product of these values.

Fahiem Bacchus, University of Toronto,

23

CSC2512: #SAT (Model Counting)

e Branch on that variable and compute the new set of
components that arise from that branching.

e Solve each value of the variable recursively.

e Onreturn the value of the component we branched
on is known, and recursively all other components
have been solved and their model counts put in the
cache.

e Now all components in input set are solved and we
can return.

Fahiem Bacchus, University of Toronto,

24

Search with Components

fi(r,y,Xx), fo(t,z,X) / e \?

s 2 Bu2)
/N /N

a(y), B1(2) ‘;1\‘ r—&) . i
aq(y), B1() ~ z=1 z=2 B() Y7
N\
an() y=1 y=2 ay()
3/16/20

Frhiem Bacchus, University of Toronto 25

CSC2512: #SAT (Model Counting)

e Solving with components + clause learning
« Can we also use clause learning---yes.

e |fcisalearnt clause and Fis the input formula then
FEcC, and mis a model of Fiff it isa model of F A c. So
adding learnt clauses does not change the set of
models or the model count.

e Learnt clauses span components. So the
components of F A ¢ are typically a subset of the
components of F. However, it F=®,A D, A ... A D
where the &, are components. Then Fis equivalent o
PANDPLA ... NP AC

= (OAC)A (DL, AC) A L. AP AC)

Fahiem Bacchus, University of Toronto,

26

CSC2512: #SAT (Model Counting)

e SO we can still solve each component
independently, using the set of learnt clauses while
solving each component.

e Furthermore if @, EC then F E ¢ so any new clauses
learnt while solving @; are also valid learnt clauses for
F.

e Bottom line, learnt clauses come along for the ride
and are used to enhance unit propagation. But
components are computed ignoring the connections
generated by the learnt clauses.

Fahiem Bacchus, University of Toronto,

27

CSC2512: #SAT (Model Counting)

e However, if among set of components @,A &, A ... A
¢, one of them is unsaftisfiable, then clause learning
can cause incorrect model counts to be computed
for the other components. So we are not allowed o
cache computed component values if one of the
components is unsat.

Fahiem Bacchus, University of Toronto,

28

CSC2512: #SAT (Model Counting)

e F=A ABwith A = (x,-a,y),(x,-z,b)(a.b.c)

B = (-y.d)(-d.e](-e.z)
e FEcC=(x-a,b)
 Under the assignment m: x=0, y=1, z=0
Alm=(ab,c)
B |m=(d)(-d.e)(-e) (unsaf)
c | m=(-a,b)
Al|mand B | T are components while c is over the
variables of A. However, the model count of (A A
c) | T = 5 while the model countof A|mr =7

Fahiem Bacchus, University of Toronto,

29

CSC2512: #SAT (Model Counting)

e But this problem does not occur when all
components are satisfiable (have at least one
model).

e So we have to alter #DPLLcache to

e perform unit prop after each decision variable
has been set.

e compute 1-UIP clauses and backirack when prop
finds a conflict.

e reduce the current components by the newly
implied literals.

e |f we return from a recursive call because of a
conflict we do not store anything in the cache.

Fahiem Bacchus, University of Toronto,

30

CSC2512: #SAT (Model Counting)

 Preprocessing is very useful for #SAT—any
simplifications impact the entire search tree.

 Nevertheless exact model counting is hard.

e Recent inferest in approximate model counting and
random sampling of solutions.

Fahiem Bacchus, University of Toronto,

31

CSC2512: #SAT (Model Counting)

e Readings for next time

1. Preprocessing for Propositional Model Counting, Jean-Marie
Lagniez and Pierre Marquis, AAAI-2014

2. Constrained Sampling and Counting: Universal Hashing
Meets SAT Solving. Kuldeep S. Meel,Moshe Y. Vardi, Supratik
Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, Dror Fried,
Alexander lvrii and Sharad Malik, Beyond NP. Papers from the
2016 AAAI Workshop, Phoenix, Arizona

3. On Computing Minimal Independent Support and Its

Applications to Sampling and Counting
Alexander lvrii, Sharad Malik, Kuldeep S. Meel, and Moshe Y.

Vardi Constraints 21(1), 2016.

Fahiem Bacchus, University of Toronto, 32

CSC2512: #SAT (Model Counting)

e Now some a brief overview of Approximate Model
Counting (more info in reading #2 and #3)

e Consider a CNF formula F with a set of models M

(safisfying truth assignments). We want fo sample
uniformly at random from M.

e The models correspond to atomic events in @
finite probability distribution and we want to
sample these atomic events randomly.

 Note that Fis a compact way of representing the
exponential sized set of models M.

Fahiem Bacchus, University of Toronto,

33

CSC2512: #SAT (Model Counting)

e By simply sampling from M, we are sampling from a
uniform distribution over the models.

* In general, we would want each atomic event to
have a different probability, and we would want to

sample a model m e M according to this distribution.

e Thatis, we would want the probability of
obtaining m as our sample to be equal to its
probabllity.

e This issue can be handled by adding more variables
to F and setting those variables according to the
weight of each model m. This gives us the formula F”
which is a superset of F.

Fahiem Bacchus, University of Toronto,

34

CSC2512: #SAT (Model Counting)

e F" has new variables and clauses, and has the
property that for every model m of F can be
extended to a number of models of F”

* F"is specified so that the number of models of m in
F" Is proportional fo the probability of m.

e So high probability models get more models in F".

* Ultimately, sampling uniformly at randomly of F"
allows us to sample according the probabilities over
F.

Fahiem Bacchus, University of Toronto,

35

CSC2512: #SAT (Model Counting)

e SO how do we sample randomly from the models of

F.
e The idea is related to hashing
A Hash function maps [1—n] to [1T—m] (e.g., a set of

size n to a set of size m (typically n and m are powers
of two), and it is designed to do so uniformly, so that
approximately the same number of items map to
each value m.

e Let H(n,m) be a family of different Hash functions
from n to m.

Fahiem Bacchus, University of Toronto,

36

CSC2512: #SAT (Model Counting)

e Consider the uniform distribution over H(n,m)

e The family H(n,m) is called universal if
foralli, j e[1T—n] with 1 #] we have
Prin(i) =h(j)I =1/m
where h is selected from H(n,m) under the uniform
distribution.

e We also need the notion of r-universal. A family of
hash functions H(n,m,r) is called r-universal if for all
distinct x;, Xo, ..., X, € [l—n] and all a,, a,, ..., a, € [1—
m] we have

Plh(x;)J=a; A ... Ah(X)=a] =m"
where h is selected from H(n,m,r) at random.

Fahiem Bacchus, University of Toronto, 37

CSC2512: #SAT (Model Counting)

e One prominent approach to approximate sampling of the
models of a SAT formula F is fo use a XOR class of hash
functions:

H...(2".2M) (i.e., n-bits to m bits)
{h | h{x)[] =cio@®ai; *X[1] @ ... & a;, * X[Nn]}

where @ is XOR and a;;is 0 or 1. That is, each bit of
m-bit output is computed by XORIng a base 0/1 (a;,) along
with all bits of the n-bit input multiplied by 0 or 1.

* So by choosing a;;randomly we can choose a hash function h
from H,,,

e h(x)=y can be computed by y = AX @ a,where A is the martix of
a;; values and aq is the vector of base bits.

Fahiem Bacchus, University of Toronto, 38

CSC2512: #SAT (Model Counting)

e It has been shown that H,,, is 3-universal.

e Then the basic idea is fo constraint the input formula F
with a randomly selected hash function h € H,,
constrained to map to a randomly selected m-bit.

e Thatis, we only admit models of F that are mapped to
this specific m-bit number by the hash function.

e This should reduce the number of models by a factor
of 1/m and should randomly select which models
remain.

 Then with this constrained version of F we count the
number of models. That count N* is an estimate of F's
original model count.

Fahiem Bacchus, University of Toronto,

39

CSC2512: #SAT (Model Counting)

e However, there are a number of practical
Impediments:

e Counting 1/m the models of F might be too many.

e We can iteratively add more random hash

functions constrained to map to random m-
oits.

e Each such hash function cuts down the
number of models by a factor of 1/m

e When we have added a sufficient number we
can more easily count the models remaining.

Fahiem Bacchus, University of Toronto, 40

CSC2512: #SAT (Model Counting)

e Counting is still hard, so we can go further

e Add a sufficient number of hash functions so that
there the formula becomes unsat (no models
left). If we added k hash functions constraints,
and got UNSAT but k-1 was SAT then we can
estimate that the number of models is in the
range

mkand mk!

e Under this scheme we don’'t have to count we
only have to SAT solve.

Fahiem Bacchus, University of Toronto,

41

CSC2512: #SAT (Model Counting)

e SAT solving with these hash function constraints can
be very hard. So methods have been found to use
shorter hash function constraints (hash functions over
fewer variables) and still obtain the probabilistic
guarantees we want.

Fahiem Bacchus, University of Toronto,

42

