
CSC2512
Advanced Propositional

Reasoning

Fahiem Bacchus, University of Toronto, 2

CSC2512: #SAT (Model Counting)

• A SAT formula can have many satisfying models. #SAT
is the problem of counting the number of satisfying
models.
• Subsumes SAT --- the formula is unsatisfiable iff the

number of models is zero.
• #SAT is a #P complete problem.

• If each model is assigned a different weight, then #SAT
becomes the problem of summing the weights of the
satisfying models.

• With a weighted model counter one can answer any
probabilistic query over a discrete probability space.

Fahiem Bacchus, University of Toronto, 3

CSC2512: #SAT

Table 1 Standard DPLL algorithm for SAT DPLL modified to count satisfying solutions

DPLL(φ)
if φ has no clauses, output “satisfiable” and HALT
else-if φ does not contain an empty clause then
choose a variable x that appears in φ

Call DPLL(φ|x=0)
Call DPLL(φ|x=1)

return

#DPLL(φ)
if φ has no clauses, return 1
else-if φ has an empty clause, return 0
else
Choose a variable x that appears in φ

return #DPLL(φ|x=0) × 1
2 + #DPLL(φ|x=1) × 1

2

sider a 3CNF formula over 3n variables consisting of n dis-
joint clauses. This formula has branch width 3; however
any complete decision tree has exponential size. Therefore
#DPLL will require exponential time.
DPLL with caching: If one considers the above example
of applying #DPLL to disjoint sets of clauses, it is clear that
#DPLL’s poor performance arises from the fact that during
the course of its execution the same subproblem can be en-
countered and recomputed many times. One way to prevent
this duplication is to apply memoization. More specifically,
associated with every node in the DPLL tree is a formula f
such that the subtree rooted at this node is trying to compute
the number of satisfying assignments to f . When perform-
ing a depth-first search of the tree, we can keep a cache that
contains all formulas f that have already been solved, and
upon hitting a new node of the tree we can avoid traversing
its subtree if the value of its corresponding formula is al-
ready stored in the cache. The above form of caching, which
we will call simple caching can be easily implemented as
shown in Table 2.4 On return the value of the input formula
has been stored in the cache, so a call to GetValue(φ) will
return the desired value.5
In addition to formulas stored in the cache there are also

the following obvious formulas whose value is easy to com-
pute. (1) The empty formula {} containing no clauses has
value 1. (2) Any formula containing the empty clause has
value 0. Obvious formulas need not be stored in the cache,
rather their values can be computed as required. We say
that a formula is known if its value is currently stored in the
cache or if it is obvious. We can generalize to sets of formu-
las as follows. If Φ is a set of formulas we assign it a value
equal to the product of the values of the formulas in it. We
say that Φ is known if either (a) all φi ∈ Φ are known, or
(b) there exists a φi ∈ Φ whose value is known to be 0.
The following (low complexity) subroutines are used to

access the cache. (1) AddToCache(φ, r): adds to the cache
the fact that formula φ has value r. (2) InCache(Φ): takes as
input a set of formulasΦ and returns true if Φ is known. (3)
GetValue(Φ): takes as input a set Φ of known formulas and
returns the value of the set (i.e., the product of the values of

4Simple caching has been utilized before in [15], but without theoreti-
cal analysis.

5The cached value is actually the probability of φ, so we must multiply
it by 2n to get the number of satisfying assignments.

its formulas).
Surprisingly, simple caching, does reasonablywell as the

following theorem shows.
THEOREM 1 For solving #SAT on n variables, there is an
execution of #DPLLSimpleCache that runs in time bounded
by 2O(w log n) where w is the underlying branch width of
the instance. Furthermore, the algorithm can be made de-
terministic with the same time guarantees.
Although the theorem shows that #DPLLSimpleCache

does fairly well, its performance is not quite as good as
the best BAYES algorithms (which run in time nO(1)2O(w)).
One of our main contributions is to show that a variant
of simple caching allows #DPLL to perform as well as
the best known algorithms. We call the new algorithm
#DPLLCache, and its implementation is given in Table 2.
The algorithm again creates a DPLL tree, caching inter-

mediate formulas as they are computed. However, the al-
gorithm takes as input formulas that have been decomposed
into disjoint components, and the intermediate formulas it
caches are similarly stored as disjoint components. Thus, if
we have already computed the number of satisfying assign-
ments for f and for g, where f and g are over disjoint sets
of variables, we can later compute the number of satisfying
assignments for f ∧ g without further work.
The new algorithm uses the subroutines previously de-

fined along with two additional (low complexity) subrou-
tines. (4) ToComponents(φ): takes as input a formula φ,
breaks it up into a set of minimal sized disjoint components,
and returns this set. (5) RemoveCachedComponents(Φ):
returns the input set of formulasΦ with all known formulas
removed. The input to #DPLLCache is a set of disjoint for-
mulas. That is, to run #DPLLCache on the formula φ we
initially make the call #DPLLCache(ToComponents(φ)).
When the call #DPLLCache(Φ) returns, the cache will con-
tain sufficient information so that the call GetValue(Φ) will
return the desired value. We can obtain the following upper
bound on the runtime of #DPLLCache.
THEOREM 2 For solving #SAT on n variables, there exists
an execution of #DPLLCache that runs in time bounded by
nO(1)2O(w) where w is the underlying branch width of the
instance. Furthermore, the algorithm can be made deter-
ministic with the same time guarantees.
Finally, there is a third variant of #DPLL with caching,

DPLL simplest version.

Fahiem Bacchus, University of Toronto, 4

CSC2512: #SAT
#DPLL simplest version.
Returns #models/2n where n = # variables in the
formula.Table 1 Standard DPLL algorithm for SAT DPLL modified to count satisfying solutions

DPLL(φ)
if φ has no clauses, output “satisfiable” and HALT
else-if φ does not contain an empty clause then
choose a variable x that appears in φ

Call DPLL(φ|x=0)
Call DPLL(φ|x=1)

return

#DPLL(φ)
if φ has no clauses, return 1
else-if φ has an empty clause, return 0
else
Choose a variable x that appears in φ

return #DPLL(φ|x=0) × 1
2 + #DPLL(φ|x=1) × 1

2

sider a 3CNF formula over 3n variables consisting of n dis-
joint clauses. This formula has branch width 3; however
any complete decision tree has exponential size. Therefore
#DPLL will require exponential time.
DPLL with caching: If one considers the above example
of applying #DPLL to disjoint sets of clauses, it is clear that
#DPLL’s poor performance arises from the fact that during
the course of its execution the same subproblem can be en-
countered and recomputed many times. One way to prevent
this duplication is to apply memoization. More specifically,
associated with every node in the DPLL tree is a formula f
such that the subtree rooted at this node is trying to compute
the number of satisfying assignments to f . When perform-
ing a depth-first search of the tree, we can keep a cache that
contains all formulas f that have already been solved, and
upon hitting a new node of the tree we can avoid traversing
its subtree if the value of its corresponding formula is al-
ready stored in the cache. The above form of caching, which
we will call simple caching can be easily implemented as
shown in Table 2.4 On return the value of the input formula
has been stored in the cache, so a call to GetValue(φ) will
return the desired value.5
In addition to formulas stored in the cache there are also

the following obvious formulas whose value is easy to com-
pute. (1) The empty formula {} containing no clauses has
value 1. (2) Any formula containing the empty clause has
value 0. Obvious formulas need not be stored in the cache,
rather their values can be computed as required. We say
that a formula is known if its value is currently stored in the
cache or if it is obvious. We can generalize to sets of formu-
las as follows. If Φ is a set of formulas we assign it a value
equal to the product of the values of the formulas in it. We
say that Φ is known if either (a) all φi ∈ Φ are known, or
(b) there exists a φi ∈ Φ whose value is known to be 0.
The following (low complexity) subroutines are used to

access the cache. (1) AddToCache(φ, r): adds to the cache
the fact that formula φ has value r. (2) InCache(Φ): takes as
input a set of formulasΦ and returns true if Φ is known. (3)
GetValue(Φ): takes as input a set Φ of known formulas and
returns the value of the set (i.e., the product of the values of

4Simple caching has been utilized before in [15], but without theoreti-
cal analysis.

5The cached value is actually the probability of φ, so we must multiply
it by 2n to get the number of satisfying assignments.

its formulas).
Surprisingly, simple caching, does reasonablywell as the

following theorem shows.
THEOREM 1 For solving #SAT on n variables, there is an
execution of #DPLLSimpleCache that runs in time bounded
by 2O(w log n) where w is the underlying branch width of
the instance. Furthermore, the algorithm can be made de-
terministic with the same time guarantees.
Although the theorem shows that #DPLLSimpleCache

does fairly well, its performance is not quite as good as
the best BAYES algorithms (which run in time nO(1)2O(w)).
One of our main contributions is to show that a variant
of simple caching allows #DPLL to perform as well as
the best known algorithms. We call the new algorithm
#DPLLCache, and its implementation is given in Table 2.
The algorithm again creates a DPLL tree, caching inter-

mediate formulas as they are computed. However, the al-
gorithm takes as input formulas that have been decomposed
into disjoint components, and the intermediate formulas it
caches are similarly stored as disjoint components. Thus, if
we have already computed the number of satisfying assign-
ments for f and for g, where f and g are over disjoint sets
of variables, we can later compute the number of satisfying
assignments for f ∧ g without further work.
The new algorithm uses the subroutines previously de-

fined along with two additional (low complexity) subrou-
tines. (4) ToComponents(φ): takes as input a formula φ,
breaks it up into a set of minimal sized disjoint components,
and returns this set. (5) RemoveCachedComponents(Φ):
returns the input set of formulasΦ with all known formulas
removed. The input to #DPLLCache is a set of disjoint for-
mulas. That is, to run #DPLLCache on the formula φ we
initially make the call #DPLLCache(ToComponents(φ)).
When the call #DPLLCache(Φ) returns, the cache will con-
tain sufficient information so that the call GetValue(Φ) will
return the desired value. We can obtain the following upper
bound on the runtime of #DPLLCache.
THEOREM 2 For solving #SAT on n variables, there exists
an execution of #DPLLCache that runs in time bounded by
nO(1)2O(w) where w is the underlying branch width of the
instance. Furthermore, the algorithm can be made deter-
ministic with the same time guarantees.
Finally, there is a third variant of #DPLL with caching,

Fahiem Bacchus, University of Toronto, 5

CSC2512: #SAT
E.g. (x,y), (x,-y) = 2/4 models

#DPLL({(x,y), (x,-y)})
è #DPLL({(x,y), (x,-y)}|x=1)

= #DPLL({})
ç 1
è #DPLL({(x,y), (x,-y)}|x=0)

= #DPLL({(y),(-y)})
ç 0

ç 1*1/2 + 0*1/2 = 1/2

Fahiem Bacchus, University of Toronto, 6

CSC2512: #SAT
#DPLL simplest version.
Runs in time 2n

We can do much better by recognizing that the
same formula often arises along different branches.

E.g., (-z, r,-x) (z,-r, -x) : The formula (-x) arises
when z=1, r=0, as well as when z=0, r=1

How frequently we get the same formula depends
on (a) the connectivity of the formula (branch-width)
and (b) which variables we branch on.

Fahiem Bacchus, University of Toronto, 7

CSC2512: #SAT
Table 2 #DPLL algorithm with simple caching #DPLL algorithm with component caching

#DPLLSimpleCache(φ)
If InCache({φ}), return
else

Pick a variable v in φ

φ− = φ|v=0

#DPLLSimpleCache(φ−)
φ+ = φ|v=1

#DPLLSimpleCache(φ+)

AddToCache
(

φ,
GetValue({φ−}) × 1

2
+ GetValue({φ+}) × 1

2

)

return

#DPLLCache(Φ)
If InCache(Φ), return
else

Φ = RemoveCachedComponents(Φ)
Pick a variable v in some component φ ∈ Φ
Φ− = ToComponents(φ|v=0)
#DPLLCache(Φ − {φ} ∪ Φ−)
Φ+ = ToComponents(φ|v=1)
#DPLLCache(Φ − {φ} ∪ Φ+)

AddToCache
(

φ,
GetValue(Φ−) × 1

2
+ GetValue(Φ+) × 1

2

)

return

#DPLLSpace, that achieves a nontrivial time-space trade-
off. This algorithm is the natural variant of #DPLLCache,
modified to remove cached values so that only linear space
is consumed. The algorithm utilizes one additional subrou-
tine. (6) RemoveFromCache(Φ): takes as input a set of
formulas (a set of components) and removes all of them
from the cache. After splitting a component with a vari-
able instantiation and computing the value of each part,
#DPLLSpace cleans up the cache by removing all of these
sub-components, so that only the value of the whole com-
ponent is retained. Specifically, #DPLLSpace is exactly like
#DPLLCache, except that it calls RemoveFromCache(Φ−∪
Φ+) just before returning.

THEOREM 3 For solving #SAT on n variables, there is an
execution of #DPLLSpace that uses only space linear in n
and runs in time bounded by 2O(w log n) where w is the un-
derlying branch width of the instance. Furthermore, the al-
gorithm can be made deterministic with the same time and
space guarantees.

We now prove these theorems. For the proof of theo-
rems 1 and 2 we will need some common notation and def-
initions. Let f be k-CNF formula with n variables and m
clauses, letH be the underlying hypergraph associated with
f with branch width w. By [8], there is a branch decom-
position of H of depth O(log m) and width O(w). Also
by [19], it is possible to find a branch decomposition, Tbd,
such that Tbd has branch width O(w) and depth O(log m),
in time poly(n)2O(w). Thus our main goal for each of the
three theorems will be to prove the stated time and space
bounds for our DPLL-based procedures, when they are run
on a static ordering that is easily obtainable from Tbd.
Recall that the leaves of Tbd are in one-to-one correspon-

dence with the clauses of f . We will number the vertices of
Tbd according to a depth-first preorder traversal of Tbd. For
a vertex numbered i, let fi denote the subformula of f con-
sisting of the conjunction of all clauses corresponding to
the leaves of the tree rooted at i. Let Vars(fi) be the set of
variables in the (sub)formula fi. Recall that in a branch de-
composition the label of each vertex i, label(i), is the set of

variables in the intersection of Vars(fi) and Vars(f−fi).
Each node i in Tbd partitions the clauses of f into three sets
of clauses: fi, fL

i , and fR
i , where fL

i is the conjunction of
clauses at the leaves of Tbd to the left of fi, and fR

i is the
conjunction of clauses at the leaves to the right of fi.
All of our DPLL caching algorithms achieve the stated

run time bounds by querying the variables in a specific,
static order. That is, down any branch of the DPLL de-
cision tree, DT , the same variables are instantiated in the
same order. The variable ordering used in DT is deter-
mined by the depth-first pre-ordering of the vertices in the
branch decomposition Tbd and by the labeling of these ver-
tices. Let (i, 1), . . . , (i, ji) denote the variables in label(i)
that do not appear in the label of an earlier vertex of Tbd.
Note that since the width of Tbd is w, ji ≤ w for all
i. Let 1, . . . , z be the sequence of vertex numbers of Tbd.
Then our DPLL algorithm will query the variables under-
lying f in the following static order: π = 〈(i1, 1), (i1, 2),
. . . , (i1, j1), (i2, 1), . . . , (i2, j2), . . . , (is, 1), . . . , (is, js)〉
i1 < i2 < . . . < is ≤ z, and j1, . . . , js ≤ w. Note that
for some vertices i of Tbd, nothing will be queried since all
of the variables in its label may have occurred in the labels
of earlier vertices. Our notation allows for these vertices
to be skipped. The underlying complete decision tree, DT ,
created by our DPLL algorithms on input f is thus a tree
with j1 + j2 + . . . + js = n levels. The levels are grouped
into s layers, with the ith layer consisting of ji levels. Note
that there are 2l nodes at level l inDT , and we will identify
a particular node at level l by (l, ρ) where ρ is a particu-
lar assignment to the first l variables in the ordering, or by
((q, r), ρ), where (q, r) is the lth pair in the ordering π, and
ρ is as before.
The DPLL algorithms carry out a depth-first traversal

of DT , keeping formulas in the cache that have already
been solved along the way. (For #DPLLSimpleCache, the
formulas stored in the cache are of the form f |ρ, and for
#DPLLCache and #DPLLSpace, the formulas stored are
various components of ToComponents(f |ρ).) If the algo-
rithm ever hits a node where the formula to be computed
has already been solved, it can avoid that computation, and

Fahiem Bacchus, University of Toronto, 8

CSC2512: #SAT
In #DPLLSimpleCache we always cache the # of models for
each solved subformula, and look up in the cache the
current formula to see if we have already solved it.

There exists an execution of #DPLLSimpleCache that runs
in time 2O(w log n) where w is the branch-width of the CNF
instance.

Note 2O(w log n) = nO(w)

If the branch-width is small this is much smaller than 2O(n)

To get a “fast” execution we must follow the variable
ordering arising from the small branch-width.

This shows that the same sub-formula can show up many
times!

Fahiem Bacchus, University of Toronto, 9

CSC2512: Branch-Width
Branch-width and and Tree-width are metrics that
measure how tree-like a graph is. Branch-width of
a CNF instance. CNF-Hypergraph:

c

b d

a

Nodes are the variables.
Each clause yields a hyperedge
over its variables:

(a,-b) (b,-d) (a,c,d)

Ignore polarity of literals

Fahiem Bacchus, University of Toronto, 10

CSC2512: Branch-Width

Associate the clauses with leaves of a binary
tree…in any order.

c3 c6 c1 c4 c2 c7 c5

Fahiem Bacchus, University of Toronto, 11

CSC2512: Branch-Width

Label each leaf with the variables of the clause.

c3 c6 c1 c4 c2 c7 c5

V4,V5 V5,V6,V7 V3,V7 V1,V3 V4,V6 V8,V6V2,V5

Fahiem Bacchus, University of Toronto, 12

CSC2512: Branch-Width

V4,V5 V5,V6,V7
V3,V7 V1,V3 V4,V6 V8,V6V2,V5

• Build a binary tree on top of these nodes.

Fahiem Bacchus, University of Toronto, 13

CSC2512: Branch-Width
• Label each edge of the tree with the

variables that are in both subgraphs
separated by the edge

V4,V5 V5,V6,V7
V3,V7 V1,V3 V4,V6 V8,V6V2,V5

Fahiem Bacchus, University of Toronto, 14

CSC2512: Branch-Width
• Label each edge of the tree with the

variables that are in both subgraphs
separated by the edge

V4,V5 V5,V6,V7
V3,V7 V1,V3 V4,V6 V8,V6V2,V5

{V4, V5}

Fahiem Bacchus, University of Toronto, 15

CSC2512: Branch-Width
• Label each edge of the tree with the

variables that are in both subgraphs
separated by the edge

V4,V5 V5,V6,V7
V3,V7 V1,V3 V4,V6 V8,V6V2,V5

{V3, V4, V6}

Fahiem Bacchus, University of Toronto, 16

CSC2512: Branch-Width
• The width of this particular branch

decomposition is the size of the largest
edge label.

V4,V5 V5,V6,V7
V3,V7 V1,V3 V4,V6 V8,V6V2,V5

Fahiem Bacchus, University of Toronto, 17

CSC2512: Branch-Width
• Consider all possible branch-

decompositions (different orderings of the
clause leaves, different binary tree above).

• Each branch-decomposition has a
different width.

• The branch-width of the CNF is the MIN
width over all different branch-
decompositions.

Fahiem Bacchus, University of Toronto, 18

CSC2512: Branch-Width
• Notice that when we assign all of the

variables of an edge label the set of
clauses in the two parts of the tree
become disconnected

V4,V5 V5,V6,V7
V3,V7 V1,V3 V4,V6 V8,V6V2,V5

{V3, V4, V6}

Fahiem Bacchus, University of Toronto, 19

CSC2512: Branch-Width
• That is they will no longer share any

variables.

V4,V5 V5,V6,V7
V3,V7 V1,V3 V4,V6 V8,V6V2,V5

{V3, V4, V6}

Fahiem Bacchus, University of Toronto, 20

CSC2512: Branch-Width
• So the 2O(w…) arises from the fact that the largest edge

label has w variables and there are only 2w different
ways to assign them. Thus the clauses in the two
subtrees can only be in 2w different configurations.

V4,V5 V5,V6,V7
V3,V7 V1,V3 V4,V6 V8,V6V2,V5

{V3, V4, V6}

Fahiem Bacchus, University of Toronto, 21

CSC2512: #SAT (Model Counting)

• Components. If the CNF can be partitioned into k parts C1, …,
Ck, where each part shares on variables with any other part,
then each Ci is called a component.

• #DPLL(CNF) = #DPLL(C1) * #DPLL(C2) … * #DPLL(Ck)

• That is we can count the models in each part and multiply to
obtain the model count of the whole formula: any satisfying
assignment for C1, C2, ... Ck can be combined to form a
satisfying assignment for CNF.

• Typically, the input CNF has only one component…it is fully
connected.

• This observation gives rise to an algorithm that searches over
the current set of components.

Fahiem Bacchus, University of Toronto, 22

CSC2512: #SAT

Table 2 #DPLL algorithm with simple caching #DPLL algorithm with component caching

#DPLLSimpleCache(φ)
If InCache({φ}), return
else

Pick a variable v in φ

φ− = φ|v=0

#DPLLSimpleCache(φ−)
φ+ = φ|v=1

#DPLLSimpleCache(φ+)

AddToCache
(

φ,
GetValue({φ−}) × 1

2
+ GetValue({φ+}) × 1

2

)

return

#DPLLCache(Φ)
If InCache(Φ), return
else

Φ = RemoveCachedComponents(Φ)
Pick a variable v in some component φ ∈ Φ
Φ− = ToComponents(φ|v=0)
#DPLLCache(Φ − {φ} ∪ Φ−)
Φ+ = ToComponents(φ|v=1)
#DPLLCache(Φ − {φ} ∪ Φ+)

AddToCache
(

φ,
GetValue(Φ−) × 1

2
+ GetValue(Φ+) × 1

2

)

return

#DPLLSpace, that achieves a nontrivial time-space trade-
off. This algorithm is the natural variant of #DPLLCache,
modified to remove cached values so that only linear space
is consumed. The algorithm utilizes one additional subrou-
tine. (6) RemoveFromCache(Φ): takes as input a set of
formulas (a set of components) and removes all of them
from the cache. After splitting a component with a vari-
able instantiation and computing the value of each part,
#DPLLSpace cleans up the cache by removing all of these
sub-components, so that only the value of the whole com-
ponent is retained. Specifically, #DPLLSpace is exactly like
#DPLLCache, except that it calls RemoveFromCache(Φ−∪
Φ+) just before returning.

THEOREM 3 For solving #SAT on n variables, there is an
execution of #DPLLSpace that uses only space linear in n
and runs in time bounded by 2O(w log n) where w is the un-
derlying branch width of the instance. Furthermore, the al-
gorithm can be made deterministic with the same time and
space guarantees.

We now prove these theorems. For the proof of theo-
rems 1 and 2 we will need some common notation and def-
initions. Let f be k-CNF formula with n variables and m
clauses, letH be the underlying hypergraph associated with
f with branch width w. By [8], there is a branch decom-
position of H of depth O(log m) and width O(w). Also
by [19], it is possible to find a branch decomposition, Tbd,
such that Tbd has branch width O(w) and depth O(log m),
in time poly(n)2O(w). Thus our main goal for each of the
three theorems will be to prove the stated time and space
bounds for our DPLL-based procedures, when they are run
on a static ordering that is easily obtainable from Tbd.
Recall that the leaves of Tbd are in one-to-one correspon-

dence with the clauses of f . We will number the vertices of
Tbd according to a depth-first preorder traversal of Tbd. For
a vertex numbered i, let fi denote the subformula of f con-
sisting of the conjunction of all clauses corresponding to
the leaves of the tree rooted at i. Let Vars(fi) be the set of
variables in the (sub)formula fi. Recall that in a branch de-
composition the label of each vertex i, label(i), is the set of

variables in the intersection of Vars(fi) and Vars(f−fi).
Each node i in Tbd partitions the clauses of f into three sets
of clauses: fi, fL

i , and fR
i , where fL

i is the conjunction of
clauses at the leaves of Tbd to the left of fi, and fR

i is the
conjunction of clauses at the leaves to the right of fi.
All of our DPLL caching algorithms achieve the stated

run time bounds by querying the variables in a specific,
static order. That is, down any branch of the DPLL de-
cision tree, DT , the same variables are instantiated in the
same order. The variable ordering used in DT is deter-
mined by the depth-first pre-ordering of the vertices in the
branch decomposition Tbd and by the labeling of these ver-
tices. Let (i, 1), . . . , (i, ji) denote the variables in label(i)
that do not appear in the label of an earlier vertex of Tbd.
Note that since the width of Tbd is w, ji ≤ w for all
i. Let 1, . . . , z be the sequence of vertex numbers of Tbd.
Then our DPLL algorithm will query the variables under-
lying f in the following static order: π = 〈(i1, 1), (i1, 2),
. . . , (i1, j1), (i2, 1), . . . , (i2, j2), . . . , (is, 1), . . . , (is, js)〉
i1 < i2 < . . . < is ≤ z, and j1, . . . , js ≤ w. Note that
for some vertices i of Tbd, nothing will be queried since all
of the variables in its label may have occurred in the labels
of earlier vertices. Our notation allows for these vertices
to be skipped. The underlying complete decision tree, DT ,
created by our DPLL algorithms on input f is thus a tree
with j1 + j2 + . . . + js = n levels. The levels are grouped
into s layers, with the ith layer consisting of ji levels. Note
that there are 2l nodes at level l inDT , and we will identify
a particular node at level l by (l, ρ) where ρ is a particu-
lar assignment to the first l variables in the ordering, or by
((q, r), ρ), where (q, r) is the lth pair in the ordering π, and
ρ is as before.
The DPLL algorithms carry out a depth-first traversal

of DT , keeping formulas in the cache that have already
been solved along the way. (For #DPLLSimpleCache, the
formulas stored in the cache are of the form f |ρ, and for
#DPLLCache and #DPLLSpace, the formulas stored are
various components of ToComponents(f |ρ).) If the algo-
rithm ever hits a node where the formula to be computed
has already been solved, it can avoid that computation, and

Fahiem Bacchus, University of Toronto, 23

CSC2512: #SAT (Model Counting)

• Initially the cache is empty, at termination the cache
contains the input formula and its model count.

• The initial call is given the set of components of the
input formula (usually just one component)

• If all components of the input are in the cache we
return.

• Otherwise remove all known components.
• Pick a component and a variable of that

component to branch on.
• Note that GetValue is passed a set of components. It

looks up the value of each component in the cache
and returns the product of these values.

Fahiem Bacchus, University of Toronto, 24

CSC2512: #SAT (Model Counting)

• Branch on that variable and compute the new set of
components that arise from that branching.

• Solve each value of the variable recursively.
• On return the value of the component we branched

on is known, and recursively all other components
have been solved and their model counts put in the
cache.

• Now all components in input set are solved and we
can return.

Search with Components

Frhiem Bacchus, University of Toronto 25
3/16/20

f1(r,y,x), f2(t,z,x)

t=1

r=1

z=1

y=1 y=2

z=2

r=2

y=1 y=2

x=1

t=2

z=1 z=2

α(r,y), β(t,z)

α(r,y), β1(z)

α1(y), β1(z)

α1(y), β11()

α11() α12()

β12()

α2(y)

β2(z)

Fahiem Bacchus, University of Toronto, 26

CSC2512: #SAT (Model Counting)

• Solving with components + clause learning
• Can we also use clause learning---yes.
• If c is a learnt clause and F is the input formula then

F ⊧ c, and " is a model of F iff it is a model of F ∧ c. So
adding learnt clauses does not change the set of
models or the model count.

• Learnt clauses span components. So the
components of F ∧ c are typically a subset of the
components of F. However, if F = $1∧ $2 ∧ … ∧ $k
where the $i are components. Then F is equivalent to
$1∧ $2 ∧ … ∧ $k ∧ c

≣ ($1∧ c) ∧ ($2 ∧ c) ∧ … ∧($k ∧ c)

Fahiem Bacchus, University of Toronto, 27

CSC2512: #SAT (Model Counting)

• So we can still solve each component
independently, using the set of learnt clauses while
solving each component.

• Furthermore if !i ⊧c then F ⊧ c so any new clauses
learnt while solving !i are also valid learnt clauses for
F.

• Bottom line, learnt clauses come along for the ride
and are used to enhance unit propagation. But
components are computed ignoring the connections
generated by the learnt clauses.

Fahiem Bacchus, University of Toronto, 28

CSC2512: #SAT (Model Counting)

• However, if among set of components !1∧ !2 ∧ … ∧
!k one of them is unsatisfiable, then clause learning
can cause incorrect model counts to be computed
for the other components. So we are not allowed to
cache computed component values if one of the
components is unsat.

Fahiem Bacchus, University of Toronto, 29

CSC2512: #SAT (Model Counting)

• F = A ∧ B with A = (x,-a,y),(x,-z,b)(a,b,c)
B = (-y,d)(-d,e)(-e,z)

• F ⊧ c = (x,-a,b)
• Under the assignment #: x=0, y=1, z=0

A|# = (a,b,c)
B |# = (d)(-d,e)(-e) (unsat)
c | # = (-a,b)

• A|# and B |# are components while c is over the
variables of A. However, the model count of (A ∧
c)|# = 5 while the model count of A|# = 7

Fahiem Bacchus, University of Toronto, 30

CSC2512: #SAT (Model Counting)

• But this problem does not occur when all
components are satisfiable (have at least one
model).

• So we have to alter #DPLLcache to
• perform unit prop after each decision variable

has been set.
• compute 1-UIP clauses and backtrack when prop

finds a conflict.
• reduce the current components by the newly

implied literals.
• If we return from a recursive call because of a

conflict we do not store anything in the cache.

Fahiem Bacchus, University of Toronto, 31

CSC2512: #SAT (Model Counting)

• Preprocessing is very useful for #SAT-–any
simplifications impact the entire search tree.

• Nevertheless exact model counting is hard.
• Recent interest in approximate model counting and

random sampling of solutions.

Fahiem Bacchus, University of Toronto, 32

CSC2512: #SAT (Model Counting)

• Readings for next time

1. Preprocessing for Propositional Model Counting, Jean-Marie
Lagniez and Pierre Marquis, AAAI-2014

2. Constrained Sampling and Counting: Universal Hashing
Meets SAT Solving. Kuldeep S. Meel,Moshe Y. Vardi, Supratik
Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, Dror Fried,
Alexander Ivrii and Sharad Malik, Beyond NP. Papers from the
2016 AAAI Workshop, Phoenix, Arizona

3. On Computing Minimal Independent Support and Its
Applications to Sampling and Counting
Alexander Ivrii, Sharad Malik, Kuldeep S. Meel, and Moshe Y.
Vardi Constraints 21(1), 2016.

Fahiem Bacchus, University of Toronto, 33

CSC2512: #SAT (Model Counting)

• Now some a brief overview of Approximate Model
Counting (more info in reading #2 and #3)

• Consider a CNF formula F with a set of models M
(satisfying truth assignments). We want to sample
uniformly at random from M.
• The models correspond to atomic events in a

finite probability distribution and we want to
sample these atomic events randomly.

• Note that F is a compact way of representing the
exponential sized set of models M.

Fahiem Bacchus, University of Toronto, 34

CSC2512: #SAT (Model Counting)

• By simply sampling from M, we are sampling from a
uniform distribution over the models.

• In general, we would want each atomic event to
have a different probability, and we would want to
sample a model m ∈ M according to this distribution.
• That is, we would want the probability of

obtaining m as our sample to be equal to its
probability.

• This issue can be handled by adding more variables
to F and setting those variables according to the
weight of each model m. This gives us the formula F”
which is a superset of F.

Fahiem Bacchus, University of Toronto, 35

CSC2512: #SAT (Model Counting)

• F” has new variables and clauses, and has the
property that for every model m of F can be
extended to a number of models of F”

• F” is specified so that the number of models of m in
F” is proportional to the probability of m.

• So high probability models get more models in F”.
• Ultimately, sampling uniformly at randomly of F”

allows us to sample according the probabilities over
F.

Fahiem Bacchus, University of Toronto, 36

CSC2512: #SAT (Model Counting)

• So how do we sample randomly from the models of
F.

• The idea is related to hashing
• A Hash function maps [1—n] to [1—m] (e.g., a set of

size n to a set of size m (typically n and m are powers
of two), and it is designed to do so uniformly, so that
approximately the same number of items map to
each value m.

• Let H(n,m) be a family of different Hash functions
from n to m.

Fahiem Bacchus, University of Toronto, 37

CSC2512: #SAT (Model Counting)

• Consider the uniform distribution over H(n,m)
• The family H(n,m) is called universal if

forall i, j ∈[1—n] with i ≠ j we have
Pr[h(i) = h(j)] ≤ 1/m

where h is selected from H(n,m) under the uniform
distribution.

• We also need the notion of r-universal. A family of
hash functions H(n,m,r) is called r-universal if for all
distinct x1, x2, …, xr ∈ [1—n] and all a1, a2, …, ar ∈ [1—
m] we have

P[h(x1)= a1 ∧ … ∧ h(xr)= ar] = m-r

where h is selected from H(n,m,r) at random.

Fahiem Bacchus, University of Toronto, 38

CSC2512: #SAT (Model Counting)

• One prominent approach to approximate sampling of the
models of a SAT formula F is to use a XOR class of hash
functions:

Hxor(2n,2m) (i.e., n-bits to m bits)

{h | h(x)[i] = ai,0 ⨁ ai,1 * x[1] ⨁ … ⨁ ai,n * x[n]}

where ⨁ is XOR and ai,j is 0 or 1. That is, each bit of
m-bit output is computed by XORing a base 0/1 (ai,0) along
with all bits of the n-bit input multiplied by 0 or 1.

• So by choosing ai,j randomly we can choose a hash function h
from Hxor

• h(x)=y can be computed by y = Ax ⨁ a0 where A is the martix of
ai,j values and a0 is the vector of base bits.

Fahiem Bacchus, University of Toronto, 39

CSC2512: #SAT (Model Counting)

• It has been shown that Hxor is 3-universal.

• Then the basic idea is to constraint the input formula F
with a randomly selected hash function h ∈ Hxor
constrained to map to a randomly selected m-bit.
• That is, we only admit models of F that are mapped to

this specific m-bit number by the hash function.
• This should reduce the number of models by a factor

of 1/m and should randomly select which models
remain.

• Then with this constrained version of F we count the
number of models. That count N* is an estimate of F’s
original model count.

Fahiem Bacchus, University of Toronto, 40

CSC2512: #SAT (Model Counting)

• However, there are a number of practical
impediments:
• Counting 1/m the models of F might be too many.

• We can iteratively add more random hash
functions constrained to map to random m-
bits.

• Each such hash function cuts down the
number of models by a factor of 1/m

• When we have added a sufficient number we
can more easily count the models remaining.

Fahiem Bacchus, University of Toronto, 41

CSC2512: #SAT (Model Counting)

• Counting is still hard, so we can go further
• Add a sufficient number of hash functions so that

there the formula becomes unsat (no models
left). If we added k hash functions constraints,
and got UNSAT but k-1 was SAT then we can
estimate that the number of models is in the
range

mk and mk-1

• Under this scheme we don’t have to count we
only have to SAT solve.

Fahiem Bacchus, University of Toronto, 42

CSC2512: #SAT (Model Counting)

• SAT solving with these hash function constraints can
be very hard. So methods have been found to use
shorter hash function constraints (hash functions over
fewer variables) and still obtain the probabilistic
guarantees we want.

