
CSC2512
Advanced Propositional

Reasoning

Fahiem Bacchus, University of Toronto, 2

CSC2512: MaxSAT

• So far we have addressed decision problems.
• Frequently applications involve optimization.
• MaxSAT: generalization of SAT for dealing with

optimization.

MaxSat
• MaxSat is a formalism for expressing Boolean
optimization problems expressed in CNF.
– Hard clauses: must be satisfied
– Soft clauses each with a weight, falsifying these incurs a

cost equal to their weight.

• MaxSat: find a truth assignment that satisfies all of
the hard clauses while falsifying a minimum weight of
soft clauses. (Equivalently satisfying a maximum
weight of soft clauses).

• MaxSat solvers are effective in a growing range of
applications.

3

MaxSat Applications
probabilistic inference [Park, 2002]

design debugging [Chen, Safarpour, Veneris, and Marques-Silva, 2009]
[Chen, Safarpour, Marques-Silva, and Veneris, 2010]

maximum quartet consistency [Morgado and Marques-Silva, 2010]

software package management [Argelich, Berre, Lynce, Marques-Silva, and Rapicault, 2010]
[Ignatiev, Janota, and Marques-Silva, 2014]

Max-Clique [Li and Quan, 2010; Fang, Li, Qiao, Feng, and Xu, 2014; Li, Jiang, and Xu,
2015]
fault localization [Zhu, Weissenbacher, and Malik, 2011; Jose and Majumdar, 2011]
restoring CSP consistency [Lynce and Marques-Silva, 2011]

reasoning over bionetworks [Guerra and Lynce, 2012]
MCS enumeration [Morgado, Liffiton, and Marques-Silva, 2012]

heuristics for cost-optimal planning [Zhang and Bacchus, 2012]

optimal covering arrays [Ansótegui,Izquierdo,Many`a,andTorres-Jiménez,2013b]
correlation clustering [Berg and Järvisalo, 2013; Berg and Järvisalo, 2016]

treewidth computation [Berg and Järvisalo, 2014]
Bayesian network structure learning [Berg, Järvisalo, and Malone, 2014]

causal discovery [Hyttinen, Eberhardt, and Ja ̈rvisalo, 2014]

visualization [Bunte, Järvisalo, Berg, Myllymäki, Peltonen, and Kaski, 2014]
model-based diagnosis [Marques-Silva, Janota, Ignatiev, and Morgado, 2015]

cutting planes for IPs [Saikko, Malone, and Järvisalo, 2015]
argumentation dynamics [Wallner, Niskanen, and Ja ̈rvisalo, 2016]

4

Improvements in MaxSat Solving
WEIGHTED (2008-2016)

5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800

se
co

nd
s

instances

MaxHS (2016)
LHMS (2015-16)

MSCG (2015)
MaxHS (2013)

Eva (2014)
QMaxSAT (2014)

Z3 (Microsoft)
CPLEX (IBM)
WPM2 (2013)

WPM1 (2011-12)
WBO (2010)

IncWMaxSatz (2008)
SAT4J (2009-10)

Improvements in MaxSat Solving
UNWEIGHTED (2008-2016)

6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200

se
co

nd
s

instances

Open-WBO (2015)
MaxHS (2016)
MSCG (2015)

Eva (2014)
Open-WBO (2014)

Z3 (Microsoft 2016)
QMaxSAT (2013)

WPM2 (2013)
PM2 (2010)

QMaxSAT (2011-12)
QMaxSAT (2010)

CPLEX (IBM 2013)
SAT4J (2009-10)

IncWMaxSatz (2008)

Problem Sizes

• Largest problems solved in 2017 MaxSat Evaluation,

>6,000,000 variables and > 13,000,000 clauses (solved

by MaxHS in < 800 sec.)

• MaxSat is considerably harder than SAT, SAT solvers

can solve bigger problems

7

Fahiem Bacchus, University of Toronto, 8

CSC2512: MaxSAT

MaxSAT

• A set of clauses each with an associated rational
valued or infinite weight greater than zero:

{c1:w1, c2:w2, …, cm:wm} with wi > 0

Fahiem Bacchus, University of Toronto, 9

CSC2512: SoftCSPs and MaxSAT

MaxSAT

• A cost of a truth assignment π is the sum of the weights of the
clauses it falsifies.

• If any of the weights are ∞ then these clauses must be satisfied.
Such clauses are called hard clauses.

• A feasible solution is a truth assignment satisfying all of the hard
clauses (Equivalently it is a truth assignment with finite cost).

• An Optimal solution is a feasible solution of minimum cost.

Fahiem Bacchus, University of Toronto, 10

CSC2512: SoftCSPs and MaxSAT

MaxSAT

• If all weights are 1, this is equivalent to finding a truth assignment
that satisfies a maximum number of clauses.

• With non-unit weights, equivalent to finding a truth assignment
satisfying a maximum weight of clauses.

• If wi was zero we could discard the clause. If wi was negative then
we would be trying to solve a different type of optimization (we
would want to falsify the clause)...we could however reformulate
the problem to make it into a maxsat problem.

Fahiem Bacchus, University of Toronto, 11

CSC2512: SoftCSPs and MaxSAT

MaxSAT

• In the literature the following classes are sometimes distinguished:
1. Maxsat all weights are 1 (theoretical studies often restricted to

this case)
2. Partial Maxsat has some weights of ∞ (i.e., some hard clauses)

• When weights are 1, we can see that MaxSat is solvable by a sequence
of SAT calls: Can the formula be satisfied by falsifying k clauses for k=1,
k=2, k=3 ...

• This illustrates that MaxSat with unit weights is in the class FPNP which
are the functions that can be computed by a polytime function that has
access to a NP oracle (each oracle call is charged as a single operation)

• MaxSat is also hard to approximate being in the class APX-Complete.

Fahiem Bacchus, University of Toronto, 12

CSC2512: SoftCSPs and MaxSAT

MaxSAT

• When the weights are finite precision rationals MaxSat remains in the
class FPNP as long as there is a fixed bound on the precision.

Fahiem Bacchus, University of Toronto, 13

CSC2512: MAXSAT

Resolution.
• Resolution in SAT preserves the set of models of the formula:

• If Φ is a set of clauses and {(A,x), (B,-x)} ⊂ Φ
• Then for any truth assignment π such that π ⊧ Φ, we have that

π ⊧ Φ ∪ {(A,B)}

MaxSAT requires that models retain the same cost.
• An inference rule that transforms Φ to Φ’ (e.g., by adding

new clauses to Φ) is sound for MaxSAT iff for all truth
assignments π, the sum of the costs of the clauses of Φ
falsified by π is equal to the sum of the costs of the clauses
of Φ’ falsified by π.

Fahiem Bacchus, University of Toronto, 14

CSC2512: MAXSAT

Resolution is not sound for MaxSAT.
• Consider simple case where the weight of each clauses is 1.
• {(y,x), (z,-x)}
• π(x) = T, π(y) = F, π(z) = F: Cost(π) = 1
• {(y,x), (z,-x), (y,z)} (adding the resolvant)
• Cost(π) = 2

MaxSat Resolution is a version of resolution that is sound for
MaxSAT. Ordinary resolution adds a new clause to the
formula. MaxSat resolution makes a more complex
transformation of the formula in order to preserve costs.

Fahiem Bacchus, University of Toronto, 15

CSC2512: MAXSAT
MaxSat Resolution Rule: Simple case each clause has weight 1
MaxR((x,a1,…,as),(-x,b1, …, bt)) =
• (a1,…,as,b1, …, bt)
• (x,a1,…,as,-b1)
• (x,a1,…,as,b1,-b2)
• …
• (x,a1,…,as,b1,…,bt-1,-bt)
• (-x,b1, …, bt,-a1)
• (-x,b1, …, bt,a1,-a2)
• …
• (-x,b1, …, bt,a1,…,as-1,-as)

These are called
Compensation
Clauses

Fahiem Bacchus, University of Toronto, 16

CSC2512: MAXSAT

1. We remove the input clauses and replace them with the
conclusion clauses.

2. Any tautologies are discarded
3. Any repeated literals are collapsed into one.

Fahiem Bacchus, University of Toronto, 17

CSC2512: MAXSAT
Soundness. π falsifies 1 clause of {(x,a1,…,as),(-x,b1, …, bt)}
(a) π falsifies (-x,b1, …, bt) and (a1,…,as)
• (a1,…,as,b1, …, bt) ✗
• (x,a1,…,as,-b1) ✔

• (x,a1,…,as,b1,-b2) ✔

• … ✔

• (x,a1,…,as,b1,…,bt-1,-bt) ✔

• (-x,b1, …, bt,-a1) ✔

• (-x,b1, …, bt,a1,-a2) ✔

• … ✔

• (-x,b1, …, bt,a1,…,as-1,-as) ✔

Fahiem Bacchus, University of Toronto, 18

CSC2512: MAXSAT
Soundness. {(x,a1,…ai-1,ai,…,as),(-x,b1, …, bt)} π falsifies 1 clause
(b) π falsifies (-x,b1, …, bt) but satisfies (a1,…ai-1,ai,…,as). Let ai be the first
literal s.t. π(ai)=T

• (a1,…ai-1,ai,…,as,b1, …, bt) ✔

• (x,a1,…,as,-b1) ✔

• (x,a1,…,as,b1,-b2) ✔

• … ✔

• (x,a1,…,as,b1,…,bt-1,-bt) ✔

• (-x,b1, …, bt,-a1) ✔

• (-x,b1, …, bt,a1,-a2)… ✔

• (-x,b1, …, bt,a1,…,ai-1,-ai) ✗
• (-x,b1, …, bt,a1,…,ai-1,ai,-ai+1) ✔

• …(-x,b1, …, bt,a1,…,ai-1,ai,…,-as) ✔

Fahiem Bacchus, University of Toronto, 19

CSC2512: MAXSAT
Soundness. (c) If π falsifies (x,a1,…,as) a symmetric
argument holds.

Fahiem Bacchus, University of Toronto, 20

CSC2512: MAXSAT
Soundness. (d) If π satisfies both (-x,b1, …, bt) and
(x,a1,…,as), say π(x) = True, then some bj is true.
{(x,a1,…,as),(-x,b1, …,bj,…,bt)} π satisfies all clauses
• (a1,...,as,b1, …,bj,…bt) ✔

• (x,a1,…,as,-b1) ✔

• (x,a1,…,as,b1,-b2) ✔

• … ✔

• (x,a1,…,as,b1,…,bt-1,-bt) ✔

• (-x,b1, …,bj,… bt,-a1) ✔

• (-x,b1, …,bj,…,bt,a1,-a2) ✔

• … ✔

• (-x,b1, …,bj,…,bt,a1,…,-as) ✔

Fahiem Bacchus, University of Toronto, 21

CSC2512: MAXSAT
Completeness.
• It is more difficult to prove that this rule is complete. But this

was done in “Resolution for Max-Sat” by Maria L. Bonet,
Jordi Levi, and Felip Manya (Artificial Intellgence 171
(2007) pp. 606-618

Saturation--DP style Algorithm
A set of clauses C is said to be saturated w.r.t. a variable x if for every
pair of clauses
C1 = (x, A) and C2 = (-x,B)
there is a literal ℓ such that ℓ ∈ A and -ℓ ∈ B

A set of clauses C’ is a saturation of C w.r.t. x if C’ is obtained from C
by applying MaxR a finite number of times resolving on x and C’ is
saturated w.r.t. x .

Fahiem Bacchus, University of Toronto, 22

CSC2512: MAXSAT
Saturation: A set of clauses C is saturated w.r.t. x if and only if every
possible application of MaxR resolving on x only introduces compensation
clauses (i.e., the resolvant (A,B) is a tautology).

It can be shown that from C we can obtain a saturation of C w.r.t. x by
applying MaxR resolving on x until we obtain saturation. That is, this
process must terminate.

• Saturation is not unique—different saturations can be obtained
depending on the sequencing of our MaxR resolutions

• If we saturate w.r.t. x and then saturate w.r.t. y, the result might no longer
be saturated w.r.t. x. In general, we might not be able to saturate w.r.t.
two variables at once.

Fahiem Bacchus, University of Toronto, 23

CSC2512: MAXSAT
• If C is saturated w.r.t. x, and C’ is the subset of C consisting of those

clauses not containing x. Then any assignment π satisfying C’ and not
assigning x can be extended to an assignment satisfying C.

• This is a DP like property—once we saturate w.r.t x we can extend any
solution to be over x.

Fahiem Bacchus, University of Toronto, 24

CSC2512: MAXSAT
Complete procedure for solving MaxSat with MaxR:

1. Order the variables x1, …, xn

2. Construct two sequences of sets of clauses C0, .., Cn and D1, …, Dn.

1. C0 is the original set of clauses of the MaxSat theory

2. for i = 1, .., n, Ci ∪ Di is a saturation of Ci-1 w.r.t. xi

where Ci is a set of clauses not containing x1, …, xi, and Di is a set of
clauses containing xi.

In other words. Saturate the original formula w.r.t. x1, then put aside the
clauses with x1 in D1, saturate the other clauses C1 w.r.t. x2, put aside the
clauses with x2 in D2, saturate the other clauses C2 w.r.t., x3 ….

Fahiem Bacchus, University of Toronto, 25

CSC2512: MAXSAT
Complete procedure for solving MaxSat with MaxR:

1. Order the variables x1, …, xn

2. Construct two sequences of sets of clauses C0, .., Cn and D1, …, Dn.

1. C0 is the original set of clauses of the MaxSat theory

2. for i = 1, .., n, Ci ∪ Di is a saturation of Ci-1 w.r.t. xi

where Ci is a set of clauses not containing x1, …, xi, and Di is a set of
clauses containing xi.

Notice that Cn does not contain any variables. So it is either empty (indicating
that the original formula is SAT or it contains multiple copies of the empty
clause. The number of copies is equal to the minimum number of clauses of
the original theory that must be falsified:

C ⊦ ∅1, …, ∅m, D1, …, Dn

Fahiem Bacchus, University of Toronto, 26

CSC2512: MAXSAT
The number of copies is equal to the minimum number of clauses of the
original theory that must be falsified:

C ⊦ ∅1, …, ∅m, D1, …, Dn

So after these rounds of saturation the answer is given by counting the
number of empty clauses remaining (the Di are satisfiable).

Fahiem Bacchus, University of Toronto, 27

CSC2512: MAXSAT
Used in this way MaxR is mostly of theoretical interest, and there are many
open theoretical questions:
1. It is not simple to convert an ordinary resolution proof (in which a clause

might be used multiple times) into a MaxR proof (where every inference
steps removes the clauses being resolved on).

2. Not much is known about the minimum sizes of MaxR proofs: for the
saturation procedure we have that n*m*2n (where m is the number of
clauses) is an upper bound on the number of MaxR steps required.

3. Are there other non-ordered MaxR proof procedures? Can these be
smaller?

Fahiem Bacchus, University of Toronto, 28

CSC2512: MAXSAT
Weighted MaxR: MaxR as defined only works with unweighted (weight 1)
clauses but it can be extended to the weighted case

Fahiem Bacchus, University of Toronto, 29

CSC2512: MAXSAT
wtMaxR((x,a1,…,as : w1),(-x,b1, …, bt : w2)) =
• (a1,…,as,b1, …, bt: min(w1,w2))
• (x,a1,…,as : w1-min(w1,w2))
• (-x,b1, …, bt : w2-min(w1,w2))
• (x,a1,…,as,-b1: min(w1,w2))
• (x,a1,…,as,b1,-b2: min(w1,w2))
• …
• (x,a1,…,as,b1,…,bt-1,-bt: min(w1,w2))
• (-x,b1, …, bt,-a1: min(w1,w2))
• (-x,b1, …, bt,a1,-a2: min(w1,w2))
• …
• (-x,b1, …, bt,a1,…,as-1,-as: min(w1,w2))

Fahiem Bacchus, University of Toronto, 30

CSC2512: MAXSAT

1. The input clauses are retained, but their weights reduced.
2. Any tautologies are removed
3. Any repeated literals are collapsed into one.
4. Clauses of zero weight are removed—one of the input

clauses is always removed.

Contraction: replace (A, w1) and (A, w2) with (A, w1+w2)

Fahiem Bacchus, University of Toronto, 31

CSC2512: MAXSAT

1. The weighted max sat resolution rule can be shown to be
sound (easy) and complete. That is, from a weighted
MaxSat instance C we can derive via wtMaxR:

C ⊦ (∅ : w), D

where D is satisfiable, and w is the weight of the optimal
solution to C.

Fahiem Bacchus, University of Toronto, 32

CSC2512: MAXSAT
Using MaxR in practice:

Certain special cases of (A, x), (B, -x) yield simple sets of
clauses under MaxR.

MaxR is used in Branch and Bound search exploiting various
special cases:
• In the reduced theory at the current node of the search

space look for special cases (often detectable via unit
propagation), apply MaxR to obtain an increase in the
lower bound (i.e., derive an empty clause with certain
weight).
• That is MaxR is used as a lower bounding technique.

Fahiem Bacchus, University of Toronto, 33

CSC2512: Branch and Bound

• B&B relies on two bounds
• UB: mincost(P) ≤ UB.
• LB: A lower bound function. This function must be able to supply a

lower bound on the cost that must be incurred below each node
that will be encountered during search

Fahiem Bacchus, University of Toronto, 34

CSC2512: Branch and Bound

UB
• Initially we can set UB by finding any low cost solution, e.g., via

local search or a greedy solution.
• If there are hard constraints we need to find a feasible solution,

any feasible solution will provide an upper bound. If feasible
solution to the hard constraints then all complete assignments
have infinite cost.

LB
• Various techniques are used for computing LB including
• Linear programming relaxations.
• MaxR resolutions

Fahiem Bacchus, University of Toronto, 35

CSC2512: Branch and Bound

X=a X≠a

P

LB(P|X=a) + ∆(X=a) ≥ UB
è Backtrack

If all variables assigned
èFound better solution
èReset UB.

Fahiem Bacchus, University of Toronto, 36

CSC2512: MAXSAT
MiniMaxSat

• A Branch and Bound MaxSat Solver. At each node it
selects a variable to branch on, reduces the input CNF by
that assignment, then tries to compute a lower bound for
the cost of that reduced CNF.

• If this lower bound exceeds the current upper bound we
backtrack.

Fahiem Bacchus, University of Toronto, 37

CSC2512: MAXSAT
MiniMaxSat

• Computes the lower bound using MaxR and unit propagation.
• In the reduced theory we perform Unit Propagation treating all

soft clauses as hard allowing the solver to detect special cases
where MaxR can yield a new weighted empty clause. That
weight can be added to the LB (at this node)

• All inferences must be undone on backtrack, as the MaxR steps
are wrt to the node’s formula not wrt to the global formula.

• B&B effective on small combinatorially hard problems, e.g., hard
instances of maxcut and maxclique. But it does not scale well to
larger instances (the B&B tree grows too large).

Fahiem Bacchus, University of Toronto, 38

CSC2512: MAXSAT
Readings:

1. MiniMaxSat: a New Weighted Max-SAT Solver Federico
Heras, Javier Larrosa, and Albert Oliveras. SAT 2007 (a
branch and bound approach using MaxR to compute lower
bounds)

Fahiem Bacchus, University of Toronto, 39

CSC2512: MAXSAT
Solving MaxSat as a sequence of Decision Problems.

• Branch and Bound solvers do not work well when we have
larger MaxSat theories. However, we can still run SAT
solvers on such theories.

• This leads to a method of solving MaxSat by solving a
sequence of SAT decision instances.

• Various techniques have been developed to make this
process effective.

Fahiem Bacchus, University of Toronto, 40

CSC2512: MAXSAT
Simplest version: (Een & Sorensson, 2006, MiniSat+) UNIT WEIGHTS

1. Input MaxSat CNF Φ
2. Add a blocking variable bi to every soft clause Ci of Φ. That is we

replace the clause Ci with the clause Ci ∨ bi

3. k = 0
4. If Sat(Φ ∪ cnf(∑bi ≤ k)) return k.
5. Else k = k+1 GOTO 4.

The blocking variables do not appear anywhere else in the formula. If we
turn them on---the soft clause is “blocked” (i.e., automatically satisfied).
By making bi true, we satisfy the clause Ci ∨ bi and now the Sat solver can
find a solution that does not have to satisfy the original soft clause Ci. The
cardinality constraint restricts the Sat solver from falsifying more than k soft
clauses

Fahiem Bacchus, University of Toronto, 41

CSC2512: MAXSAT
Simplest version: (Een & Sorensson, 2006, MiniSat+) UNIT

WEIGHTS
Φ = {(x), (y), (-x, -y), (p), (q)}

1. Φ = {(x,b1), (y,b2), (-x, -y,b3), (p,b4), (q,b5)}
b1 + b2 + b3 + b4 + b5 = 0

2. Φ = {(x,b1), (y,b2), (-x, -y,b3), (p,b4), (q,b5)}
b1 + b2 + b3 + b4 + b5 = 1

è SAT, e.g., b1 = 1, x = 0, y = 1, p = 1, q = 1.

The theory becomes hard to solve as the sum of the b
variables becomes larger. ∑bi = k has n choose k different
solutions which grows exponentially with k.

Fahiem Bacchus, University of Toronto, 42

CSC2512: MAXSAT
More refined versions exploit CORES.

First, it is useful to divide the MaxSat formula F into H U S
where H is the set of hard clauses (those with infinite weight)
and S is the set of soft clauses.

Cores
• A set of soft clauses ! ⊆ S is a core of F if

! ∪ hard(F) is UNSAT

• Note that in SAT a core is a subset of clauses that are
UNSAT. In MaxSat we always have to satisfy the hard
clauses, so more useful to define cores relative to the
hard clauses.

43

Cores via Assumptions
• The current best performing algorithms for MaxSat

need to extract cores of the formula
• Currently most accessible way to do this is to use SAT

solving with assumptions…built into most SAT solvers.
• Assumptions must be a set of literals.

• SAT_ASSUME(H, Asmp)
– Sat solve the CNF H under the assumption that every

literal in Asmp is true.
– Return SAT and ! if ! ⊧ H and makes every literal in Asmp

true
– Return UNSAT and a conflict clause (¬l1, ¬l2, …, ¬lk)

implied by H where each li ∈ Asmp.
• At least one of the subset of assumptions {l1, l2, …, lk} must be

falsified in every model of H.

44

Cores via Assumptions
• To extract MaxSat cores we use as assumptions the negation

of the blocking variables—if these are assumed to be true
then their corresponding soft clause must be satisfied.

• So if we have the clauses C1 ∨ b1, C2 ∨ b2, …, Cm ∨ bm with
the blocking variables added to the soft clauses Ci

• Then if we SAT solve SAT_ASSUME(H, {¬b1, ¬b2, …, ¬bm})
– If the sat solver returns SAT we obtain a truth assignment " that

satisfies all hard clauses H, and makes every literal bi in the
assumptions true. Thus since H ⊧ ¬bi à ci we have that " ⊧ ci.
That is, " satisfies all soft clauses.

– If the sat solver returns UNSAT, we obtain a conflict clause (bk1,
bk2, …, bkn) entailed by H. That is any model of H must make at
least one of these bi falseó any model must falsify at least one
of the corresponding soft clauses. Thus, the conflict clause
specifies a core of F.

45

Cores via Assumptions
• Things are easier if we first transform F to an equivalent

MaxSat formula with only unit soft clauses (¬bi). Now the
¬bi can directly be used as assumptions. This can be
done by taking every soft clause Ci and replacing it with
– The soft clause (¬bi)
– The hard clause (Ci ∨ bi)

• This transformation preserves the cost of all models.

46

Conversion to Unit Softs
The Fb conversion.
F = H U S è Fb = Hb U Sb

• Hb = H U { (Ci ∨ bi) | Ci ∈ S} with new variable bi
– Make softs into hard clause with new “blocking variables”

• Sb = {(¬bi) | Ci ∈ S}
– Add new literals as unit soft clauses.

47

Conversion to Unit Softs
• This new ”only unit softs” instance is equivalent:

• Every feasible model of F, !, can be extended to a feasible model !b of Fb

with the same cost.
– For each new variable bi in Fb set !b ⊧ bi to FALSE iff ! ⊧ ci

– Hence !b satisfies the soft unit clause (¬bi) iff ! satisfies the corresponding soft clause
ci.

• Every feasible model of Fb, !b restricted to the variables of F is a feasible
model ! of F. cost(!) ≤ cost(!b). !b ⊧ (ci ∨ bi) so if !b satisfies (¬bi) its
restriction ! must satisfy ci.

– Note cost(!) ≤ cost(!b) since we can have feasible models !b that have more cost than
they need to in Fb. E.g., we could have that !b ⊧ ci and yet !b ⊧ bi. !b incurs the cost of
falsifying (¬bi) when it doesn’t need to as it already satisfies ci.

• However, this is sufficient to show that an optimal model of Fb

restricted to the variables of F is an optimal model of F.

48

Summation Circuits
• MaxSat solvers using sequences of relaxations

exploit cardinality constraints.
• Often these are CNF encodings of summation

circuits that output a unary representation of the
sum of their inputs.

49

l1 l2 l3 … lk

CNF	Cardinality	Constraint

sk … s3 s2 s1

Summation Circuits
• The output is a string of 0’s followed by 1’s with (as

many 1’s as there are true inputs).
• The clauses of the summation circuit ensure that

o si ⟺ l1 + l2 ... + lk ≥ i
o ¬si ⟺ l1 + l2 ... + lk < i

50
0 1 0 … 1

CNF	Cardinality	Constraint

0 … 0 1 1

Cardinality Constraints
• So we can impose the constraint ∑ li < % by adding the

clauses of the summation circuit along with the
assumption -sk

51

l1 l2 l3 … ik

CNF	Cardinality	Constraint

sk … 0 s2 s1

2li < 3 =

Sat Solving a sequence of relaxations
• A sequence of SAT instances are created (usually

incrementally) where each instance is more relaxed so
that it allows a larger weight of soft clauses to be
falsified.

• The amount of additional weight that can be falsified is
restricted so that the first time the formula becomes SAT
the resulting satisfying models are optimal solutions to
the original MaxSat formula.
– i.e., there is no lesser relaxation that is satisfiable.

• We can also go the other direction starting with most
relaxed and working down until we reach a relaxation
that is UNSAT.
– This works ok, better on some problems but not as well on most

problems.

52

CARDINALITY LAYER
• The needed relaxations are achieved by adding a

CARDINALITY LAYER to the hard clauses of F.
• The inputs of the CARDINALITY LAYER are the blocking

variables whose truth counts the number of soft clauses that
are relaxed (and thus can be falsified)—limiting how many of
these that can be true limits the number of soft clauses that
can be falsified.

• The outputs of the CARDINALITY LAYER can be set by
assumptions to restrict how many and which groups of softs
that can be falsified.

53

UNWEIGHTED INSTANCES
• First we assume that all soft clauses have the same

weight—so solving MaxSat is the same as minimizing
the number of falsified softs.

• Later we will show the technique for lifting to the
weighted case (i.e., differing weights).
– This technique is simple but it seems to lead to some

inefficiencies.

54

Example

• Standard reduction of MaxSat to a sequence of SAT

problems

– Is the formula satisfiable falsifying 0 softs?

– Is the formula satisfiable falsifying 1 soft?

– …

– Is the formula satisfiable falsifying k softs?

• Stop as soon as the answer is yes…the truth assignment

(excluding the new variables in the cardinality layer) is

an optimal solution.

55

Cardinality Layer Simple Example

56

F = H U S
S = { (¬b1), (¬b2), …, (¬bn) }

H	(only	the	hards)

b1 b2 b3 … bn

CARDINALITY	LAYER
=	;<=(∑ li)

sn … s3 s2 s1

Cardinality Layer Simple Example

57

On the i-th iteration solve SAT_ASSUME(H U Card,¬si)

H

CARDINALITY	LAYER
=	./0(∑ li)

sn … s3 s2 s1

b1 b2 b3 … bn

Cardinality Layer Simple Example

58

On the i-th iteration solve SAT_ASSUME(H U Card,¬si)

H

CARDINALITY	LAYER
=	./0(∑ li)

sn … s3 s2 s1

b1 b2 b3 … bn

Cardinality Layer Simple Example

59

On the i-th iteration solve SAT_ASSUME(H U Card,¬si)

H

CARDINALITY	LAYER
=	./0(∑ li)

sn … s3 s2 s1

b1 b2 b3 … bn

Cardinality Layer

• In these algorithms the unit soft clauses are not part of
the SAT solver’s CNF.
– Their literals serve as inputs to the cardinality layer.

• When we set various various literals in the cardinality
layer as assumptions these assumptions restrict the
allowed T/F settings of unit soft clauses.

60

Cardinality Layer
• Clause learning can allow the SAT solver to refute entire

subsets of CARD(A) rather than having to refute each !
∈ CARD(A) individually.

• The learnt clauses can contain the new variables added
to construct the Cardinality Layer. This can support
learning more powerful clauses that speed up the
refutation.

• Different proposed algorithms construct differently
structured Cardinality Layers.

61

MSU3 using Incremental Cardinality
Constraints

• Used in OpenWBO.

62

MSU3 Incremental

63

• Consider F = H U S where

• S = {(¬b1), (¬b2), …, (¬b8)}

• H = ∑i=18 bi≥4
• We want to falsify all 8 literals ¬bi but at at least 4

of these literals must be made true—at least 4 soft
clauses must be falsified

• Every set of 5 or more soft clauses is a core

• What will MSU3 do on this input formula?

MUS3 Incremental

64

Start with empty Cardinality Constraint Layer inputs
only

Literals assumed FALSE

First SAT solve is SAT_ASSUME(H,{¬b1,¬b2,…,¬b8}),
I.e., try to falsify zero softs.

H

b1 b2 b3 b4 b5 b6 b7 b8

MUS3 Incremental

65

• UNSAT; say we get the core (b1,b2,b3,b4,b5)
• Add one to overall cost
• Build summation network over softs in core

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 s1

MUS3 Incremental

66

• We know that the sum must be at least one—set
s1= 1.

• Now SAT_ASSUME(H U Card,{¬s2,¬b6,¬b7,¬b8}),
• Allow one soft to be falsified among ¬b1—¬b5 but

no more!

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1

MUS3 Incremental

67

• Get another core, add 1 to overall cost.
• Get another conflict, (s2, b6)

} Either we must falsify two of ¬b1...¬b5 or one of ¬b1...¬b5 and
¬b6

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1

MUS3 Incremental

68

• Now the incremental part. MUS3-Incremental
reuses the previous summation constraint and its
variables subsuming them into a new summation
constraint that accounts for the new core (s2, b6)

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1

MUS3 Incremental

69

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

Summation

t6 t5 t4 t3 1 1

• We know that the sum must be at least 2—set t1
and t2 to 1.

• Now SAT_ASSUME(H U Card,{¬t3,¬b7,¬b8}),
• Allow two softs to be falsified among ¬b1—¬b6

MUS3 Incremental

70

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

Summation

u7 u6 u5 u4 1 1 1

• Another core (t3, b7), add 1 to the overall cost.
• Now SAT_ASSUME(H U Card,{¬u4,¬b8}), allow up to 3

falsified softs

Summation

MUS3 Incremental

71

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

Summation

w8 w7 w6 w5 1 1 1 1

• Another core (u4, b8); Add one to overall cost. Then
SAT_ASSUME(H U Card,{¬w5})

Summation

Summation

MUS3 Incremental

72

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

Summation

w8 w7 w6 w5 1 1 1 1

• SAT – optimal solution with overall cost = accumulated
overall cost

Summation

Summation

OLL

• Used in RC2.
• A. Morgado, C. Dodaro, and J. Marques-

Silva. Core-guided MaxSAT with soft
cardinality constraints. CP 2014

• Uses summation circuits like MUS3 but
links up the summation circuits in a more
flexible way.

73

OLL

74

With same example
Start with Cardinality Constraint Layer with inputs only

Literals assumed FALSE

First SAT solve is SAT_ASSUME(H,{¬b1,¬b2,…,¬b8}),
I.e., try to falsify zero softs.

H

b1 b2 b3 b4 b5 b6 b7 b8

OLL

75

• UNSAT; say we get the core (b1,b2,b3, b4, b5)
• Build summation network over softs in core

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 s1

OLL

76

• We know that the sum must be at least one—set
s1= 1.

• Now SAT_ASSUME(H U CARD,{¬s2,¬b6,¬b7,¬b8}),
• Allow one soft to be falsified among ¬b1—¬b5

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1

OLL

77

• Get another core
• Get another conflict, e.g., (s2, b6)

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1

OLL

78

• Like MSU3 we create a new summation constraint
but unlike MSU3 we do not subsume the prior
summation constraint into the new one. Only the
literals of the conflict.

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1

OLL

79

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1

Summation

t2 1

OLL

80

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1

Summation

t2 1

• Then SAT_ASSUME(H U CARD,{¬s3,¬t2,¬b7,¬b8})...continue in
this way

PMRES

• Used in Eva500a.
• Narodytska,N., Bacchus,F. Maximum

satisfiability using core-guided MaxSAT
resolution. AAAI 2014

• Does not use summation circuits, rather it
uses a circuit that detects if more than one
literal is true.

81

PM-Res

82

• The di and si variables are new.
• We make di if di-1 or li-1 are true.

– di encodes that at least one of the first i-1 inputs is
true.

• di ∧ li → si one of the first i-1 inputs was true and li
is true (i.e., sum of l1 .. li is ≥ 1 AND li is true)

l1 l2 l3 ... ln-1 ln

d2 d3 ... dn-1 dn

s2 s3 ... sn-1 sn

PM-Res

83

• Draw this as below.

l1 l2 l3 ... ln-1 ln

s2 s3 ... sn-1 sn

PMRes

PMRes

84

Using same example
Start with Cardinality Constraint Layer with inputs only

Literals assumed FALSE

First SAT solve is SAT_ASSUME(H,{¬b1,¬b2,…,¬b8}),
I.e., try to falsify zero softs.

H

b1 b2 b3 b4 b5 b6 b7 b8

PMRes

85

• UNSAT; say we get the core (b1,b2,b3, b4, b5)
• Build PMRes circuit over softs in core.
• In the new formula (with the PMRes circuit) we

always assume the negation of all outputs of the
cardinality layer

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5

PMRes

86

• Now SAT_ASSUME(HUCard,{¬s2, ¬s3, ¬s4, ¬s5,
¬b6,¬b7,¬b8}),

• è We can falsify at most one of the softs ¬b1, ...,
¬b5 but no other softs.

• UNSAT (we must falsify at least 4)

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5

PMRes

87

• Various conflicts, say SAT_ASSUME(H,{¬s2, ¬s3, ¬s4,
¬s5, ¬b6,¬b7,¬b8}) returns the core
(b6, b7, b8,¬s2,¬s3)

• PMRes then builds a new PMRes circuit with these
literals as input.

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5

PMRes

88

• new core (b6,b7,b8,¬s2,¬s3)
• PMRes then builds a new PMRes circuit with these

as input.

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5

PMRes

89

• SAT_ASSUME(H,{¬s4, ¬s5, ¬t2, ¬t3, ¬t4, ¬t5})
• It gets complex...

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5

PMRes

90

• But subject to these assumptions at most two
original softs can be falsified.

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5

PMRes

91

• PMRes continues in this way until it it achieves SAT.

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5

Dealing with Weights.
• These algorithms employ the technique of

clause cloning to deal with weighted softs.
• When a core is found e.g., {b1, b2, b3, b4}

where the soft clauses (¬bi) have different
weights.
– Let minWt be the minimum weigh among the

softs in the core.
– Add minWt to the overall cost (instead of 1)
– Make a copy of those literals that have cost

greater than minWt. Give these copies weight =
original weight – minWt

92

Weighted instances

93

Say S = {(¬b1), (¬b2), (¬b3), (¬b4)} with wt(¬bi) = i

First SAT solve is SAT_ASSUME(H,{¬b1,¬b2,¬b3,¬b4}),

H

b1 b2 b3 b4

Weighted instances

94

UNSAT; say we get the core (b1,b2,b3)
As before build summation network over softs in core.
minWt=1, so we must clone ¬b2 and ¬b2.

H

b1 b2 b3 b4 b2 b3
Summation

s3 s2 s1

Clones.	
wt(¬b2)	=1
wt(¬b3)	=	2

Weighted instances

95

Now SAT_ASSUME(H,{¬s2,¬b4, ¬b2 ,¬b3}),

H

b1 b2 b3 b4 b2 b3
Summation

s3 s2 s1

Clones.	
wt(¬b2)	=1
wt(¬b3)	=	1

Solving a sequence of relaxations

• The approach can be very effective. Much more effective
than the naive approach of restricting the sum over all
falsified soft clauses.

• The discovered cores are exploited in a non-trivial
manner to constraint the search for the set of soft
clauses that can be falsified.

96

Solving a sequence of relaxations
• The structure of the Cardinality layer becomes quite

complex, and although clear empirical differences can be
observed among the different ways of constructing the
Cardinality layer, there is no real understanding of this.

97

Solving a sequence of relaxations
• As the cardinality layer grows the SAT solver has a

harder and harder time solving it.
• The approach of clause cloning for dealing with weighted

instances is limited.
• On unweighted instances (all softs have the same

weight) sequence of sat approaches are often the best
approaches.

98

Implicit Hitting Set (IHS) Approach to MaxSat

• First developed by [Davies PhD]
• IHS solvers utilize both a SAT solver and an

Integer Program solver (IP)

99

Implicit Hitting Set (IHS) Approach to MaxSat

• Unlike the previous approaches, IHS solvers never modify the
input MaxSat F.
– The SAT solver is always run on instances that are no more

complex that the input F.
• The cores exploited by IHS solvers are cores of the input

formula F (not cores of F augmented by cardinality
constraints).

• All numeric reasoning about weights is delegated to an
Integer Programming solver (e.g., CPLEX)
– designed for optimization
– weights can be floating point numbers
– the underlying LP + Cuts approach is very powerful

100

Cores and hitting sets
• Remember

– A set of soft clauses ! ⊆ S is a core of F if ! ∪ H
is UNSAT

– Feasible solutions satisfy the hard clauses H
• Let K be any set of cores of F and π any

feasible solution. π must falsify at least one
soft clause of every core in K.

• Let A = {c | $ ⊭ c} be the set of clauses
falsified by $

• Then A is a hitting set of K (non-empty
intersection with every member of K).

101

Cores and hitting sets

• Let MCHS(K) be a minimum cost hitting set of K–this

is a set of soft clauses.

• For every feasible solution !
cost(π) = wt(A) ≥ wt(MCHS(K))

• The weight of a minimum cost hitting set of any set of

cores is a lower bound on the cost of an optimal

solution.

• Therefore, for any set of cores K and any feasible

solution π if cost(π) = wt(MCHS(K)), π must be an

optimal solution.

• This leads to a simple algorithm for finding an optimal

solution.

102

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

103

UNSAT

SAT

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

104

UNSAT

SAT

1 satisfies	H	and	all	soft	
clauses	except	possibly	
the	softs	in	hs.	So	
cost(1)	≤	wt(MCHS(!))

! = ! U {softs in returned conflict}
ℎC =	MCHS(!)

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

105

UNSAT

SAT

If UNSAT the conflict returned
is a core

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

106

UNSAT

SAT

The returned core must be
new, not previously in !-—
the new core contains no
softs from hs, but every core
in ! contains a soft of hs.

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

107

UNSAT

SAT

This process must terminate
as there are only a finite
number of cores.

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

IP solver used to compute MCHS
(when an MCHS is needed)

• The MCHS (aka, set-cover) problem is an
NP-Hard optimization problem. But in
practice it can often be solved efficiently by
an integer programming solver.

– Typically IBM’s CPLEX is used

– Seems to be the most effective way of finding
an MCHS.

108

The IHS Algorithm
• This basic IHS algorithm is not that effective.

109

Solved Unsolved

The IHS Algorithm
• The IP hitting set model is being incrementally

improved by adding new cores.
• Generally many cores have to be accumulated

before the IP model is strong enough to yield
hitting sets whose removal yields SAT.

• Always computing an MCHS on these “too
weak” IP models becomes very expensive.

110

The IHS Algorithm
• Various are employed techniques to improve

the IP model more quickly
• Most importantly computing an MCHS can be

delayed and performed only occasionally.
Much cheaper to compute non-minimum hitting
sets can be used instead.

• This leads to a different formulation of IHS
algorithms (this formulation is what is used in
current IHS solvers).

111

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

112

UNSAT

SAT

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

113

UNSAT

SAT

Use a non
minimum cost
hitting set
instead.

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	any	hitting	set	of	!

114

UNSAT

SAT

Use a non
minimum cost
hitting set
instead.

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	any	hitting	set	of	!

115

UNSAT

SAT

Ok, always returns new
core

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	any	hitting	set	of	!

116

UNSAT

SAT

But now, we
cannot conclude
1 is	optimal

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	
install	as	new	
incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!

117

UNSAT

SAT

However 3 might	
be	lowest	cost	
model	we	have	
seen	so	far.

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	
install	as	new	
incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!

118

UNSAT

SAT

We must continue

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	
install	as	new	
incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!

119

UNSAT

SAT

We must continue

Make sure that
we don’t cycle by
returning the
same hs as
before!

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	
cheapest	model	
found	install	as	
new	incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!

120

UNSAT

SAT

To terminate we
must occasionally
compute an MCHS.

hs = {}
! = {}

SatAssume
(H,	S\hs)

If	3 is	the	
cheapest	model	
found	install	as	
new	incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!
Occasionally (via some policy):

hs = MCHS(!)

121

UNSAT

SAT

To terminate we
must occasionally
compute an MCHS.

hs = {}
! = {}

SatAssume
(H,	S\hs)

If	3 is	the	
cheapest	model	
found	install	as	
new	incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!
Occasionally (via some policy):

hs = MCHS(!); LB = wt(hs)

122

UNSAT

SAT

MCHS provides a
lower bound!

hs = {}
! = {}

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	install	as	
new	incumbent.	
If LB ≥
cost(incumbent) return
incumbent

! = ! U {softs in returned conflict}
ℎ? =	any	hitting	set	of	!
Occasionally (via some policy):
hs = MCHS(!); LB = wt(hs)
If LB ≥ cost(incumbent) return incumbent

123

UNSAT

SAT

Lower bound meets
upper bound becomes
new termination
condition.

IHS Algorithm
• As long at computing an MCHS is never

“starved” (i.e., always eventually we
compute the MCHS) the algorithm must
terminate.

• Maintaining an UB model also allows the
IP technique of reduced cost fixing to be
exploited
– Fahiem Bacchus, Antti Hyttinen, Matti

Jarvisalo, and Paul Saikko; Reduced Cost
Fixing in MaxSAT, CP 2018

124

Implicit Hitting Set Solvers

• The SAT solving episodes are much simpler—they
involve restrictions of the original MaxSat formula
rather than augmentations of that formula.

• In practice, like other CEGAR approaches, only a
few thousand cores need to be generated before
the MCHS lower bound meets the optimal cost.

• But there are other cases where the number of
cores required is too large, making both finding
them and solving the MCHS too expensive.

• Currently it is usually a more effective way of
dealing with a diverse collection of weights.

125

