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CSC2512: MaxSAT

• So far we have addressed decision problems.
• Frequently applications involve optimization. 
• MaxSAT: generalization of SAT for dealing with 

optimization.



MaxSat
• MaxSat is a formalism for expressing Boolean 
optimization problems expressed in CNF. 
– Hard clauses:  must be satisfied
– Soft clauses each with a weight, falsifying these incurs a 

cost equal to their weight.

• MaxSat:  find a truth assignment that satisfies all of 
the hard clauses while falsifying a minimum weight of 
soft clauses.  (Equivalently satisfying a maximum 
weight of soft clauses).

• MaxSat solvers are effective in a growing range of 
applications.
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MaxSat Applications
probabilistic inference [Park, 2002]

design debugging [Chen, Safarpour, Veneris, and Marques-Silva, 2009]
[Chen, Safarpour, Marques-Silva, and Veneris, 2010]

maximum quartet consistency [Morgado and Marques-Silva, 2010]

software package management [Argelich, Berre, Lynce, Marques-Silva, and Rapicault, 2010]
[Ignatiev, Janota, and Marques-Silva, 2014]

Max-Clique [Li and Quan, 2010; Fang, Li, Qiao, Feng, and Xu, 2014; Li, Jiang, and Xu, 
2015]
fault localization [Zhu, Weissenbacher, and Malik, 2011; Jose and Majumdar, 2011]
restoring CSP consistency  [Lynce and Marques-Silva, 2011]

reasoning over bionetworks [Guerra and Lynce, 2012]
MCS enumeration [Morgado, Liffiton, and Marques-Silva, 2012]

heuristics for cost-optimal planning [Zhang and Bacchus, 2012]

optimal covering arrays [Ansótegui,Izquierdo,Many`a,andTorres-Jiménez,2013b]
correlation clustering [Berg and Järvisalo, 2013; Berg and Järvisalo, 2016]

treewidth computation [Berg and Järvisalo, 2014]
Bayesian network structure learning [Berg, Järvisalo, and Malone, 2014]

causal discovery [Hyttinen, Eberhardt, and Ja ̈rvisalo, 2014]

visualization [Bunte, Järvisalo, Berg, Myllymäki, Peltonen, and Kaski, 2014]
model-based diagnosis [Marques-Silva, Janota, Ignatiev, and Morgado, 2015]

cutting planes for IPs [Saikko, Malone, and Järvisalo, 2015]
argumentation dynamics [Wallner, Niskanen, and Ja ̈rvisalo, 2016]

4



Improvements in MaxSat Solving
WEIGHTED (2008-2016)
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Improvements in MaxSat Solving
UNWEIGHTED (2008-2016)
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Problem Sizes 

• Largest problems solved in 2017 MaxSat Evaluation, 

>6,000,000 variables and > 13,000,000 clauses (solved 

by MaxHS in < 800 sec.)

• MaxSat is considerably harder than SAT, SAT solvers 

can solve bigger problems
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CSC2512: MaxSAT

MaxSAT

• A set of clauses each with an associated rational 
valued or infinite weight greater than zero:

{c1:w1, c2:w2, …, cm:wm} with wi > 0
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CSC2512: SoftCSPs and MaxSAT

MaxSAT

• A cost of a truth assignment π is the sum of the weights of the 
clauses it falsifies.

• If any of the weights are ∞ then these clauses must be satisfied. 
Such clauses are called hard clauses. 

• A feasible solution is a truth assignment satisfying all of the hard 
clauses (Equivalently it is a truth assignment with finite cost).

• An Optimal solution is a feasible solution of minimum cost.
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CSC2512: SoftCSPs and MaxSAT

MaxSAT

• If all weights are 1, this is equivalent to finding a truth assignment 
that satisfies a maximum number of clauses.

• With non-unit weights, equivalent to finding a truth assignment 
satisfying a maximum weight of clauses.

• If wi was zero we could discard the clause. If wi was negative then 
we would be trying to solve a different type of optimization (we 
would want to falsify the clause)...we could however reformulate 
the problem to make it into a maxsat problem. 
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CSC2512: SoftCSPs and MaxSAT

MaxSAT

• In the literature the following classes are sometimes distinguished:
1. Maxsat all weights are 1 (theoretical studies often restricted to 

this case)
2. Partial Maxsat has some weights of ∞ (i.e., some hard clauses)

• When weights are 1, we can see that MaxSat is solvable by a sequence 
of SAT calls: Can the formula be satisfied by falsifying k clauses for k=1, 
k=2, k=3 ...

• This illustrates that MaxSat with unit weights is in the class FPNP which 
are the functions that can be computed by a polytime function that has 
access to a NP oracle (each oracle call is charged as a single operation)

• MaxSat is also hard to approximate being in the class APX-Complete. 
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CSC2512: SoftCSPs and MaxSAT

MaxSAT

• When the weights are finite precision rationals MaxSat remains in the 
class FPNP as long as there is a fixed bound on the precision. 
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CSC2512: MAXSAT

Resolution.
• Resolution in SAT preserves the set of models of the formula:

• If Φ is a set of clauses and {(A,x), (B,-x)} ⊂ Φ
• Then for any truth assignment π such that π ⊧ Φ, we have that 

π ⊧ Φ ∪ {(A,B)}

MaxSAT requires that models retain the same cost.
• An inference rule that transforms Φ to Φ’ (e.g., by adding  

new clauses to Φ) is sound for MaxSAT iff for all truth 
assignments π, the sum of the costs of the clauses of Φ
falsified by π is equal to the sum of the costs of the clauses 
of Φ’ falsified by π.
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CSC2512: MAXSAT

Resolution is not sound for MaxSAT.
• Consider simple case where the weight of each clauses is 1. 
• {(y,x), (z,-x)} 
• π(x) = T, π(y) = F, π(z) = F: Cost(π) = 1
• {(y,x), (z,-x), (y,z)} (adding the resolvant)
• Cost(π) = 2

MaxSat Resolution is a version of resolution that is sound for 
MaxSAT. Ordinary resolution adds a new clause to the 
formula. MaxSat resolution makes a more complex 
transformation of the formula in order to preserve costs. 
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CSC2512: MAXSAT
MaxSat Resolution Rule: Simple case each clause has weight 1
MaxR((x,a1,…,as),(-x,b1, …, bt)) =
• (a1,…,as,b1, …, bt)
• (x,a1,…,as,-b1)
• (x,a1,…,as,b1,-b2)
• …
• (x,a1,…,as,b1,…,bt-1,-bt)
• (-x,b1, …, bt,-a1)
• (-x,b1, …, bt,a1,-a2)
• …
• (-x,b1, …, bt,a1,…,as-1,-as)

These are called 
Compensation 
Clauses
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CSC2512: MAXSAT

1. We remove the input clauses and replace them with the 
conclusion clauses.

2. Any tautologies are discarded
3. Any repeated literals are collapsed into one.
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CSC2512: MAXSAT
Soundness. π falsifies 1 clause of {(x,a1,…,as),(-x,b1, …, bt)}  
(a) π falsifies (-x,b1, …, bt) and (a1,…,as)
• (a1,…,as,b1, …, bt) ✗
• (x,a1,…,as,-b1) ✔

• (x,a1,…,as,b1,-b2) ✔

• … ✔

• (x,a1,…,as,b1,…,bt-1,-bt) ✔

• (-x,b1, …, bt,-a1) ✔

• (-x,b1, …, bt,a1,-a2) ✔

• … ✔

• (-x,b1, …, bt,a1,…,as-1,-as) ✔
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CSC2512: MAXSAT
Soundness. {(x,a1,…ai-1,ai,…,as),(-x,b1, …, bt)}  π falsifies 1 clause
(b) π falsifies (-x,b1, …, bt) but satisfies (a1,…ai-1,ai,…,as). Let ai be the first
literal s.t. π(ai)=T

• (a1,…ai-1,ai,…,as,b1, …, bt) ✔

• (x,a1,…,as,-b1) ✔

• (x,a1,…,as,b1,-b2) ✔

• … ✔

• (x,a1,…,as,b1,…,bt-1,-bt) ✔

• (-x,b1, …, bt,-a1) ✔

• (-x,b1, …, bt,a1,-a2)… ✔

• (-x,b1, …, bt,a1,…,ai-1,-ai) ✗
• (-x,b1, …, bt,a1,…,ai-1,ai,-ai+1) ✔

• …(-x,b1, …, bt,a1,…,ai-1,ai,…,-as)  ✔
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CSC2512: MAXSAT
Soundness. (c) If π falsifies (x,a1,…,as) a symmetric 
argument holds.
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CSC2512: MAXSAT
Soundness. (d) If π satisfies both (-x,b1, …, bt) and 
(x,a1,…,as), say π(x) = True, then some bj is true. 
{(x,a1,…,as),(-x,b1, …,bj,…,bt)}  π satisfies all clauses
• (a1,...,as,b1, …,bj,…bt)  ✔

• (x,a1,…,as,-b1) ✔

• (x,a1,…,as,b1,-b2) ✔

• … ✔

• (x,a1,…,as,b1,…,bt-1,-bt) ✔

• (-x,b1, …,bj,… bt,-a1) ✔

• (-x,b1, …,bj,…,bt,a1,-a2) ✔

• … ✔

• (-x,b1, …,bj,…,bt,a1,…,-as)  ✔
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CSC2512: MAXSAT
Completeness.
• It is more difficult to prove that this rule is complete. But this 

was done in “Resolution for Max-Sat” by Maria L. Bonet, 
Jordi Levi, and Felip Manya (Artificial Intellgence 171 
(2007) pp. 606-618

Saturation--DP style Algorithm
A set of clauses C is said to be saturated w.r.t. a variable x if for every 
pair of clauses 
C1 = (x, A) and C2 = (-x,B)
there is a literal ℓ such that ℓ ∈ A and -ℓ ∈ B

A set of clauses C’ is a saturation of C w.r.t. x if C’ is obtained from C 
by applying MaxR a finite number of times resolving on x and C’ is 
saturated w.r.t. x . 
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CSC2512: MAXSAT
Saturation: A set of clauses C is saturated w.r.t. x if and only if every 
possible application of MaxR resolving on x only introduces compensation 
clauses (i.e., the resolvant (A,B) is a tautology).

It can be shown that from C we can obtain a saturation of C w.r.t. x by 
applying MaxR resolving on x until we obtain saturation. That is, this 
process must terminate. 

• Saturation is not unique—different saturations can be obtained 
depending on the sequencing of our MaxR resolutions

• If we saturate w.r.t. x and then saturate w.r.t. y, the result might no longer 
be saturated w.r.t. x. In general, we might not be able to saturate w.r.t. 
two variables at once. 
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CSC2512: MAXSAT
• If C is saturated w.r.t. x, and C’ is the subset of C consisting of those 

clauses not containing x. Then any assignment π satisfying C’ and not 
assigning x can be extended to an assignment satisfying C.

• This is a DP like property—once we saturate w.r.t x we can extend any 
solution to be over x.
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CSC2512: MAXSAT
Complete procedure for solving MaxSat with MaxR:

1. Order the variables x1, …, xn

2. Construct two sequences of sets of clauses C0, .., Cn and D1, …, Dn. 

1. C0 is the original set of clauses of the MaxSat theory

2. for i = 1, .., n, Ci ∪ Di is a saturation of Ci-1 w.r.t. xi 

where Ci is a set of clauses not containing x1, …, xi, and Di is a set of 
clauses containing xi. 

In other words. Saturate the original formula w.r.t. x1, then put aside the 
clauses with x1 in D1, saturate the other clauses C1 w.r.t. x2, put aside the 
clauses with x2 in D2, saturate the other clauses C2 w.r.t., x3 ….
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CSC2512: MAXSAT
Complete procedure for solving MaxSat with MaxR:

1. Order the variables x1, …, xn

2. Construct two sequences of sets of clauses C0, .., Cn and D1, …, Dn. 

1. C0 is the original set of clauses of the MaxSat theory

2. for i = 1, .., n, Ci ∪ Di is a saturation of Ci-1 w.r.t. xi 

where Ci is a set of clauses not containing x1, …, xi, and Di is a set of 
clauses containing xi. 

Notice that Cn does not contain any variables. So it is either empty (indicating 
that the original formula is SAT or it contains multiple copies of the empty 
clause. The number of copies is equal to the minimum number of clauses of 
the original theory that must be falsified:

C ⊦ ∅1, …, ∅m, D1, …, Dn
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CSC2512: MAXSAT
The number of copies is equal to the minimum number of clauses of the 
original theory that must be falsified:

C ⊦ ∅1, …, ∅m, D1, …, Dn

So after these rounds of saturation the answer is given by counting the 
number of empty clauses remaining (the Di are satisfiable).
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CSC2512: MAXSAT
Used in this way MaxR is mostly of theoretical interest, and there are many 
open theoretical questions:
1. It is not simple to convert an ordinary resolution proof (in which a clause 

might be used multiple times) into a MaxR proof (where every inference 
steps removes the clauses being resolved on).

2. Not much is known about the minimum sizes of MaxR proofs: for the 
saturation procedure we have that n*m*2n (where m is the number of 
clauses) is an upper bound on the number of MaxR steps required. 

3. Are there other non-ordered MaxR proof procedures? Can these be 
smaller? 
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CSC2512: MAXSAT
Weighted MaxR: MaxR as defined only works with unweighted (weight 1) 
clauses but it can be extended to the weighted case
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CSC2512: MAXSAT
wtMaxR((x,a1,…,as : w1),(-x,b1, …, bt : w2)) =
• (a1,…,as,b1, …, bt: min(w1,w2))
• (x,a1,…,as : w1-min(w1,w2))
• (-x,b1, …, bt : w2-min(w1,w2))
• (x,a1,…,as,-b1: min(w1,w2))
• (x,a1,…,as,b1,-b2: min(w1,w2))
• …
• (x,a1,…,as,b1,…,bt-1,-bt: min(w1,w2))
• (-x,b1, …, bt,-a1: min(w1,w2))
• (-x,b1, …, bt,a1,-a2: min(w1,w2))
• …
• (-x,b1, …, bt,a1,…,as-1,-as: min(w1,w2))
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CSC2512: MAXSAT

1. The input clauses are retained, but their weights reduced.
2. Any tautologies are removed
3. Any repeated literals are collapsed into one.
4. Clauses of zero weight are removed—one of the input 

clauses is always removed. 

Contraction: replace (A, w1) and (A, w2) with (A, w1+w2)
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CSC2512: MAXSAT

1. The weighted max sat resolution rule can be shown to be 
sound (easy) and complete. That is, from a weighted 
MaxSat instance C we can derive via wtMaxR:

C ⊦ (∅ : w), D

where D is satisfiable, and w is the weight of the optimal 
solution to C. 
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CSC2512: MAXSAT
Using MaxR in practice:

Certain special cases of (A, x), (B, -x) yield simple sets of 
clauses under MaxR. 

MaxR is used in Branch and Bound search exploiting various 
special cases:
• In the reduced theory at the current node of the search 

space look for special cases (often detectable via unit 
propagation), apply MaxR to obtain an increase in the 
lower bound (i.e., derive an empty clause with certain 
weight). 
• That is MaxR is used as a lower bounding technique. 
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CSC2512: Branch and Bound

• B&B relies on two bounds
• UB: mincost(P) ≤ UB. 
• LB: A lower bound function. This function must be able to supply a 

lower bound on the cost that must be incurred below each node 
that will be encountered during search
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CSC2512: Branch and Bound

UB
• Initially we can set UB by finding any low cost solution, e.g., via 

local search or a greedy solution. 
• If there are hard constraints we need to find a feasible solution, 

any feasible solution will provide an upper bound. If feasible 
solution to the hard constraints then all complete assignments 
have infinite cost.

LB
• Various techniques are used for computing LB including
• Linear programming relaxations. 
• MaxR resolutions
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CSC2512: Branch and Bound

X=a X≠a

P

LB(P|X=a) + ∆(X=a) ≥ UB
è Backtrack

If all variables assigned 
èFound better solution
èReset UB. 
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CSC2512: MAXSAT
MiniMaxSat

• A Branch and Bound MaxSat Solver. At each node it 
selects a variable to branch on, reduces the input CNF by 
that assignment, then tries to compute a lower bound for 
the cost of that reduced CNF.

• If this lower bound exceeds the current upper bound we 
backtrack.
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CSC2512: MAXSAT
MiniMaxSat

• Computes the lower bound using MaxR and unit propagation. 
• In the reduced theory we perform Unit Propagation treating all 

soft clauses as hard allowing the solver to detect special cases 
where MaxR can yield a new weighted empty clause. That 
weight can be added to the LB (at this node)

• All inferences must be undone on backtrack, as the MaxR steps 
are wrt to the node’s formula not wrt to the global formula. 

• B&B effective on small combinatorially hard problems, e.g., hard 
instances of maxcut and maxclique. But it does not scale well to 
larger instances (the B&B tree grows too large).
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CSC2512: MAXSAT
Readings:

1. MiniMaxSat: a New Weighted Max-SAT Solver Federico 
Heras, Javier Larrosa, and Albert Oliveras. SAT 2007 (a 
branch and bound approach using MaxR to compute lower 
bounds)
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CSC2512: MAXSAT
Solving MaxSat as a sequence of Decision Problems.

• Branch and Bound solvers do not work well when we have 
larger MaxSat theories. However, we can still run SAT 
solvers on such theories. 

• This leads to a method of solving MaxSat by solving a 
sequence of SAT decision instances.

• Various techniques have been developed to make this 
process effective. 
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Simplest version: (Een & Sorensson, 2006, MiniSat+) UNIT WEIGHTS

1. Input MaxSat CNF Φ
2. Add a blocking variable bi to every soft clause Ci of Φ. That is we 

replace the clause Ci with the clause Ci ∨ bi

3. k = 0
4. If Sat(Φ ∪ cnf(∑bi ≤ k)) return k. 
5. Else k = k+1 GOTO 4.

The blocking variables do not appear anywhere else in the formula. If we 
turn them on---the soft clause is “blocked” (i.e., automatically satisfied). 
By making bi true, we satisfy the clause Ci ∨ bi and now the Sat solver can 
find a solution that does not have to satisfy the original soft clause Ci. The 
cardinality constraint restricts the Sat solver from falsifying more than k soft 
clauses
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CSC2512: MAXSAT
Simplest version: (Een & Sorensson, 2006, MiniSat+) UNIT 

WEIGHTS
Φ = {(x), (y), (-x, -y), (p), (q)}

1. Φ = {(x,b1), (y,b2), (-x, -y,b3), (p,b4), (q,b5)}
b1 + b2 + b3 + b4 + b5 = 0

2. Φ = {(x,b1), (y,b2), (-x, -y,b3), (p,b4), (q,b5)}
b1 + b2 + b3 + b4 + b5 = 1

è SAT, e.g., b1 = 1, x = 0, y = 1, p = 1, q = 1.

The theory becomes hard to solve as the sum of the b 
variables becomes larger. ∑bi = k has n choose k different 
solutions which grows exponentially with k. 
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CSC2512: MAXSAT
More refined versions exploit CORES.

First, it is useful to divide the MaxSat formula F into H U S
where H is the set of hard clauses (those with infinite weight)
and S is the set of soft clauses.



Cores
• A set of soft clauses ! ⊆ S is a core of F if

! ∪ hard(F) is UNSAT

• Note that in SAT a core is a subset of clauses that are 
UNSAT. In MaxSat we always have to satisfy the hard 
clauses, so more useful to define cores relative to the 
hard clauses. 
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Cores via Assumptions
• The current best performing algorithms for MaxSat

need to extract cores of the formula
• Currently most accessible way to do this is to use SAT 

solving with assumptions…built into most SAT solvers.
• Assumptions must be a set of literals. 

• SAT_ASSUME(H, Asmp)
– Sat solve the CNF H under the assumption that every 

literal in Asmp is true.
– Return SAT and ! if ! ⊧ H and makes every literal in Asmp

true
– Return UNSAT and a conflict clause (¬l1, ¬l2, …, ¬lk) 

implied by H where each li ∈ Asmp. 
• At least one of the subset of assumptions {l1, l2, …, lk} must be 

falsified in every model of H.
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Cores via Assumptions
• To extract MaxSat cores we use as assumptions the negation 

of the blocking variables—if these are assumed to be true 
then their corresponding soft clause must be satisfied. 

• So if we have the clauses C1 ∨ b1, C2 ∨ b2, …, Cm ∨ bm with 
the blocking variables added to the soft clauses Ci 

• Then if we SAT solve SAT_ASSUME(H, {¬b1, ¬b2, …, ¬bm})
– If the sat solver returns SAT we obtain a truth assignment " that 

satisfies all hard clauses H, and makes every literal bi in the 
assumptions true. Thus since H ⊧ ¬bi à ci we have that " ⊧ ci. 
That is, " satisfies all soft clauses.

– If the sat solver returns UNSAT, we obtain a conflict clause (bk1, 
bk2, …, bkn) entailed by H. That is any model of H must make at 
least one of these bi falseó any model must falsify at least one 
of the corresponding soft clauses. Thus, the conflict clause 
specifies a core of F. 
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Cores via Assumptions
• Things are easier if we first transform F to an equivalent 

MaxSat formula with only unit soft clauses (¬bi). Now the 
¬bi can directly be used as assumptions. This can be 
done by taking every soft clause Ci and replacing it with 
– The soft clause (¬bi)
– The hard clause (Ci ∨ bi) 

• This transformation preserves the cost of all models.
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Conversion to Unit Softs
The Fb conversion. 
F = H U S è Fb = Hb U Sb 

• Hb = H U { (Ci ∨ bi) | Ci ∈ S} with new variable bi
– Make softs into hard clause with new “blocking variables”

• Sb = {(¬bi) | Ci ∈ S}
– Add new literals as unit soft clauses. 
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Conversion to Unit Softs
• This new ”only unit softs” instance is equivalent:

• Every feasible model of F, !, can be extended to a feasible model !b of Fb 

with the same cost.
– For each new variable bi in Fb set !b ⊧ bi to FALSE iff ! ⊧ ci

– Hence !b satisfies the soft unit clause (¬bi) iff ! satisfies the corresponding soft clause 
ci.

• Every feasible model of Fb, !b restricted to the variables of F is a feasible 
model ! of F. cost(!) ≤ cost(!b). !b ⊧ (ci ∨ bi) so if !b satisfies (¬bi) its 
restriction ! must satisfy ci. 

– Note cost(!) ≤ cost(!b) since we can have feasible models !b that have more cost than 
they need to in Fb. E.g., we could have that !b ⊧ ci and yet !b ⊧ bi. !b incurs the cost of 
falsifying (¬bi) when it doesn’t need to as it already satisfies ci. 

• However, this is sufficient to show that an optimal model of Fb 

restricted to the variables of F is an optimal model of F. 
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Summation Circuits
• MaxSat solvers using sequences of relaxations 

exploit cardinality constraints. 
• Often these are CNF encodings of summation 

circuits that output a unary representation of the 
sum of their inputs. 
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l1 l2 l3 … lk

CNF	Cardinality	Constraint

sk … s3 s2 s1



Summation Circuits
• The output is a string of 0’s followed by 1’s with (as 

many 1’s as there are true inputs).
• The clauses of the summation circuit ensure that 

o si ⟺ l1 + l2 ... + lk ≥ i
o ¬si ⟺ l1 + l2 ... + lk < i

50
0 1 0 … 1

CNF	Cardinality	Constraint

0 … 0 1 1



Cardinality Constraints
• So we can impose the constraint ∑ li < % by adding the 

clauses of the summation circuit along with the 
assumption -sk
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l1 l2 l3 … ik

CNF	Cardinality	Constraint

sk … 0 s2 s1

2li < 3 =



Sat Solving a sequence of relaxations
• A sequence of SAT instances are created (usually 

incrementally) where each instance is more relaxed so 
that it allows a larger weight of soft clauses to be 
falsified. 

• The amount of additional weight that can be falsified is 
restricted so that the first time the formula becomes SAT 
the resulting satisfying models are optimal solutions to 
the original MaxSat formula. 
– i.e., there is no lesser relaxation that is satisfiable.

• We can also go the other direction starting with most 
relaxed and working down until we reach a relaxation 
that is UNSAT.
– This works ok, better on some problems but not as well on most  

problems.
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CARDINALITY LAYER
• The needed relaxations are achieved by adding a 

CARDINALITY LAYER to the hard clauses of F.
• The inputs of the CARDINALITY LAYER are the blocking 

variables whose truth counts the number of soft clauses that 
are relaxed (and thus can be falsified)—limiting how many of 
these that can be true limits the number of soft clauses that 
can be falsified.

• The outputs of the CARDINALITY LAYER can be set by 
assumptions to restrict how many and which groups of softs 
that can be falsified.
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UNWEIGHTED INSTANCES
• First we assume that all soft clauses have the same 

weight—so solving MaxSat is the same as minimizing 
the number of falsified softs.

• Later we will show the technique for lifting to the 
weighted case (i.e., differing weights).
– This technique is simple but it seems to lead to some 

inefficiencies.
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Example

• Standard reduction of MaxSat to a sequence of SAT 

problems

– Is the formula satisfiable falsifying 0 softs?

– Is the formula satisfiable falsifying 1 soft?

– …

– Is the formula satisfiable falsifying k softs?

• Stop as soon as the answer is yes…the truth assignment 

(excluding the new variables in the cardinality layer) is 

an optimal solution.
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Cardinality Layer Simple Example

56

F = H U S
S = { (¬b1), (¬b2), …, (¬bn) }

H	(only	the	hards)

b1 b2 b3 … bn

CARDINALITY	LAYER
=	;<=(∑ li)

sn … s3 s2 s1



Cardinality Layer Simple Example

57

On the i-th iteration solve SAT_ASSUME(H U Card,¬si)

H

CARDINALITY	LAYER
=	./0(∑ li)

sn … s3 s2 s1

b1 b2 b3 … bn



Cardinality Layer Simple Example

58

On the i-th iteration solve SAT_ASSUME(H U Card,¬si) 

H

CARDINALITY	LAYER
=	./0(∑ li)

sn … s3 s2 s1

b1 b2 b3 … bn



Cardinality Layer Simple Example

59

On the i-th iteration solve SAT_ASSUME(H U Card,¬si) 

H

CARDINALITY	LAYER
=	./0(∑ li)

sn … s3 s2 s1

b1 b2 b3 … bn



Cardinality Layer

• In these algorithms the unit soft clauses are not part of 
the SAT solver’s CNF.
– Their literals serve as inputs to the cardinality layer. 

• When we set various various literals in the cardinality 
layer as assumptions these assumptions restrict the 
allowed T/F settings of unit soft clauses.
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Cardinality Layer
• Clause learning can allow the SAT solver to refute entire 

subsets of CARD(A) rather than having to refute each !
∈ CARD(A) individually.

• The learnt clauses can contain the new variables added 
to construct the Cardinality Layer. This can support 
learning more powerful clauses that speed up the 
refutation.

• Different proposed algorithms construct differently 
structured Cardinality Layers.  
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MSU3 using Incremental Cardinality 
Constraints

• Used in OpenWBO.
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MSU3 Incremental

63

• Consider F = H U S where

• S = {(¬b1), (¬b2), …, (¬b8)}

• H = ∑i=18 bi≥4
• We want to falsify all 8 literals ¬bi but at at least  4 

of these literals must be made true—at least 4 soft 
clauses must be falsified

• Every set of 5 or more soft clauses is a core

• What will MSU3 do on this input formula?



MUS3 Incremental

64

Start with empty Cardinality Constraint Layer inputs 
only

Literals assumed FALSE

First SAT solve is SAT_ASSUME(H,{¬b1,¬b2,…,¬b8}),
I.e., try to falsify zero softs.

H

b1 b2 b3 b4 b5 b6 b7 b8



MUS3 Incremental

65

• UNSAT; say we get the core (b1,b2,b3,b4,b5)
• Add one to overall cost
• Build summation network over softs in core

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 s1



MUS3 Incremental

66

• We know that the sum must be at least one—set 
s1= 1.

• Now SAT_ASSUME(H U Card,{¬s2,¬b6,¬b7,¬b8}), 
• Allow one soft to be falsified among ¬b1—¬b5 but 

no more!

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1



MUS3 Incremental

67

• Get another core, add 1 to overall cost.
• Get another conflict, (s2, b6)

} Either we must falsify two of ¬b1...¬b5 or one of ¬b1...¬b5 and 
¬b6

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1



MUS3 Incremental

68

• Now the incremental part. MUS3-Incremental 
reuses the previous summation constraint and its 
variables subsuming them into a new summation 
constraint that accounts for the new core (s2, b6)

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1



MUS3 Incremental

69

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

Summation

t6 t5 t4 t3 1 1

• We know that the sum must be at least 2—set t1
and t2 to 1.

• Now SAT_ASSUME(H U Card,{¬t3,¬b7,¬b8}), 
• Allow two softs to be falsified among ¬b1—¬b6



MUS3 Incremental
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H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

Summation

u7 u6 u5 u4 1 1 1

• Another core (t3, b7), add 1 to the overall cost.
• Now SAT_ASSUME(H U Card,{¬u4,¬b8}), allow up to 3 

falsified softs

Summation



MUS3 Incremental
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H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

Summation

w8 w7 w6 w5 1 1 1 1

• Another core (u4, b8); Add one to overall cost. Then 
SAT_ASSUME(H U Card,{¬w5})

Summation

Summation



MUS3 Incremental
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H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

Summation

w8 w7 w6 w5 1 1 1 1

• SAT – optimal solution with overall cost = accumulated 
overall cost 

Summation

Summation



OLL

• Used in RC2.
• A. Morgado, C. Dodaro, and J. Marques-

Silva. Core-guided MaxSAT with soft 
cardinality constraints. CP 2014

• Uses summation circuits like MUS3 but 
links up the summation circuits in a more 
flexible way.
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OLL

74

With same example 
Start with Cardinality Constraint Layer with inputs only

Literals assumed FALSE

First SAT solve is SAT_ASSUME(H,{¬b1,¬b2,…,¬b8}),
I.e., try to falsify zero softs.

H

b1 b2 b3 b4 b5 b6 b7 b8



OLL
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• UNSAT; say we get the core (b1,b2,b3, b4, b5)
• Build summation network over softs in core

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 s1



OLL

76

• We know that the sum must be at least one—set 
s1= 1.

• Now SAT_ASSUME(H U CARD,{¬s2,¬b6,¬b7,¬b8}), 
• Allow one soft to be falsified among ¬b1—¬b5

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1



OLL

77

• Get another core 
• Get another conflict, e.g., (s2, b6)

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1



OLL

78

• Like MSU3 we create a new summation constraint 
but unlike MSU3 we do not subsume the prior 
summation constraint into the new one. Only the 
literals of the conflict. 

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1



OLL
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H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1

Summation

t2 1



OLL

80

H

b1 b2 b3 b4 b5 b6 b7 b8
Summation

s5 s4 s3 s2 1

Summation

t2 1

• Then SAT_ASSUME(H U CARD,{¬s3,¬t2,¬b7,¬b8})...continue in 
this way



PMRES

• Used in Eva500a.
• Narodytska,N., Bacchus,F. Maximum 

satisfiability using core-guided MaxSAT
resolution. AAAI 2014

• Does not use summation circuits, rather it 
uses a circuit that detects if more than one 
literal is true. 
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PM-Res

82

• The di and si variables are new. 
• We make di if di-1 or li-1 are true.

– di encodes that at least one of the first i-1 inputs is 
true.

• di ∧ li → si one of the first i-1 inputs was true and li
is true (i.e., sum of l1 .. li is ≥ 1 AND li is true)

l1 l2 l3 ... ln-1 ln

d2 d3 ... dn-1 dn

s2 s3 ... sn-1 sn



PM-Res
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• Draw this as below. 

l1 l2 l3 ... ln-1 ln

s2 s3 ... sn-1 sn

PMRes



PMRes
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Using same example
Start with Cardinality Constraint Layer with inputs only

Literals assumed FALSE

First SAT solve is SAT_ASSUME(H,{¬b1,¬b2,…,¬b8}),
I.e., try to falsify zero softs.

H

b1 b2 b3 b4 b5 b6 b7 b8



PMRes

85

• UNSAT; say we get the core (b1,b2,b3, b4, b5)
• Build PMRes circuit over softs in core. 
• In the new formula (with the PMRes circuit) we 

always assume the negation of all outputs of the 
cardinality layer

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5



PMRes

86

• Now SAT_ASSUME(HUCard,{¬s2, ¬s3, ¬s4, ¬s5, 
¬b6,¬b7,¬b8}), 

• è We can falsify at most one of the softs ¬b1, ..., 
¬b5 but no other softs.

• UNSAT (we must falsify at least 4)

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5



PMRes

87

• Various conflicts, say SAT_ASSUME(H,{¬s2, ¬s3, ¬s4, 
¬s5, ¬b6,¬b7,¬b8}) returns the core 
(b6, b7, b8,¬s2,¬s3) 

• PMRes then builds a new PMRes circuit with these 
literals as input.

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5



PMRes

88

• new core (b6,b7,b8,¬s2,¬s3) 
• PMRes then builds a new PMRes circuit with these 

as input.

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5



PMRes
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• SAT_ASSUME(H,{¬s4, ¬s5, ¬t2, ¬t3, ¬t4, ¬t5})
• It gets complex...

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5



PMRes

90

• But subject to these assumptions at most two 
original softs can be falsified.

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5



PMRes

91

• PMRes continues in this way until it it achieves SAT.

H

b1 b2 b3 b4 b5 b6 b7 b8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5



Dealing with Weights.
• These algorithms employ the technique of 

clause cloning to deal with weighted softs.
• When a core is found e.g., {b1, b2, b3, b4} 

where the soft clauses (¬bi) have different 
weights.
– Let minWt be the minimum weigh among the 

softs in the core. 
– Add minWt to the overall cost (instead of 1)
– Make a copy of those literals that have cost 

greater than minWt. Give these copies weight = 
original weight – minWt
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Weighted instances

93

Say S = {(¬b1), (¬b2), (¬b3), (¬b4)} with wt(¬bi) = i

First SAT solve is SAT_ASSUME(H,{¬b1,¬b2,¬b3,¬b4}),

H

b1 b2 b3 b4



Weighted instances

94

UNSAT; say we get the core (b1,b2,b3)
As before build summation network over softs in core. 
minWt=1, so we must clone ¬b2 and ¬b2. 

H

b1 b2 b3 b4 b2 b3
Summation

s3 s2 s1

Clones.	
wt(¬b2)	=1
wt(¬b3)	=	2



Weighted instances

95

Now SAT_ASSUME(H,{¬s2,¬b4, ¬b2 ,¬b3}),

H

b1 b2 b3 b4 b2 b3
Summation

s3 s2 s1

Clones.	
wt(¬b2)	=1
wt(¬b3)	=	1



Solving a sequence of relaxations

• The approach can be very effective. Much more effective 
than the naive approach of restricting the sum over all 
falsified soft clauses.

• The discovered cores are exploited in a non-trivial 
manner to constraint the search for the set of soft 
clauses that can be falsified.
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Solving a sequence of relaxations
• The structure of the Cardinality layer becomes quite 

complex, and although clear empirical differences can be 
observed among the different ways of constructing the 
Cardinality layer, there is no real understanding of this.
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Solving a sequence of relaxations
• As the cardinality layer grows the SAT solver has a 

harder and harder time solving it.
• The approach of clause cloning for dealing with weighted 

instances is limited.
• On unweighted instances (all softs have the same 

weight) sequence of sat approaches are often the best 
approaches. 
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Implicit Hitting Set (IHS) Approach to MaxSat

• First developed by [Davies PhD]
• IHS solvers utilize both a SAT solver and an 

Integer Program solver (IP)
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Implicit Hitting Set (IHS) Approach to MaxSat

• Unlike the previous approaches, IHS solvers never modify the 
input MaxSat F. 
– The SAT solver is always run on instances that are no more 

complex that the input F. 
• The cores exploited by IHS solvers are cores of the input 

formula F (not cores of F augmented by cardinality 
constraints). 

• All numeric reasoning about weights is delegated to an 
Integer Programming solver (e.g., CPLEX)
– designed for optimization
– weights can be floating point numbers
– the underlying LP + Cuts approach is very powerful
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Cores and hitting sets
• Remember 

– A set of soft clauses ! ⊆ S is a core of F if ! ∪ H
is UNSAT

– Feasible solutions satisfy the hard clauses H
• Let K be any set of cores of F and π any 

feasible solution. π must falsify at least one 
soft clause of every core in K.

• Let A = {c | $ ⊭ c} be the set of clauses 
falsified by $

• Then A is a hitting set of K (non-empty 
intersection with every member of K). 
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Cores and hitting sets

• Let MCHS(K) be a minimum cost hitting set of K–this 

is a set of soft clauses. 

• For every feasible solution !
cost(π ) = wt(A) ≥ wt(MCHS(K))

• The weight of a minimum cost hitting set of any set of 

cores is a lower bound on the cost of an optimal 

solution. 

• Therefore, for any set of cores K and any feasible 

solution π if cost(π ) = wt(MCHS(K)), π must be an 

optimal solution.

• This leads to a simple algorithm for finding an optimal 

solution.
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hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an 
optimal 
solution

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

103

UNSAT

SAT



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an 
optimal 
solution

104

UNSAT

SAT

1 satisfies	H	and	all	soft	
clauses	except	possibly	
the	softs	in	hs.	So	
cost(1)	≤	wt(MCHS(!))  

! = ! U {softs in returned conflict}
ℎC =	MCHS(!)



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an 
optimal 
solution

105

UNSAT

SAT

If UNSAT the conflict returned 
is a core

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an 
optimal 
solution

106

UNSAT

SAT

The returned core must be 
new, not previously in !-—
the new core contains no 
softs from hs, but every core 
in ! contains a soft of hs. 

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an 
optimal 
solution

107

UNSAT

SAT

This process must terminate 
as there are only a finite 
number of cores.

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)



IP solver used to compute MCHS 
(when an MCHS is needed)

• The MCHS (aka, set-cover) problem is an 
NP-Hard optimization problem. But in 
practice it can often be solved efficiently by 
an integer programming solver. 

– Typically IBM’s CPLEX is used

– Seems to be the most effective way of finding 
an MCHS.
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The IHS Algorithm
• This basic IHS algorithm is not that effective.

109

Solved Unsolved



The IHS Algorithm
• The IP hitting set model is being incrementally 

improved by adding new cores. 
• Generally many cores have to be accumulated 

before the IP model is strong enough to yield 
hitting sets whose removal yields SAT.

• Always computing an MCHS on these “too 
weak” IP models becomes very expensive.  
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The IHS Algorithm
• Various are employed techniques to improve 

the IP model more quickly
• Most importantly computing an MCHS can be 

delayed and performed only occasionally. 
Much cheaper to compute non-minimum hitting 
sets can be used instead.

• This leads to a different formulation of IHS 
algorithms (this formulation is what is used in 
current IHS solvers).
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hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an 
optimal 
solution

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

112

UNSAT

SAT



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an 
optimal 
solution

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

113

UNSAT

SAT

Use a non 
minimum cost 
hitting set 
instead.



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an 
optimal 
solution

! = ! U {softs in returned conflict}
ℎ3 =	any	hitting	set	of	!

114

UNSAT

SAT

Use a non 
minimum cost 
hitting set 
instead.



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an 
optimal 
solution

! = ! U {softs in returned conflict}
ℎ3 =	any	hitting	set	of	!
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UNSAT

SAT

Ok, always returns new 
core



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an 
optimal 
solution

! = ! U {softs in returned conflict}
ℎ3 =	any	hitting	set	of	!
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UNSAT

SAT

But now, we 
cannot conclude 
1 is	optimal



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	
install	as	new	
incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!

117

UNSAT

SAT

However 3 might	
be	lowest	cost	
model	we	have	
seen	so	far.



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	
install	as	new	
incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!

118

UNSAT

SAT

We must continue 



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	
install	as	new	
incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!
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UNSAT

SAT

We must continue 

Make sure that 
we don’t cycle by 
returning the 
same hs as 
before! 



hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	
cheapest	model	
found	install	as	
new	incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!
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UNSAT

SAT

To terminate we 
must occasionally 
compute an MCHS. 



hs = {}
! = {}

SatAssume
(H,	S\hs)

If	3 is	the	
cheapest	model	
found	install	as	
new	incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!
Occasionally (via some policy):

hs = MCHS(!)
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UNSAT

SAT

To terminate we 
must occasionally 
compute an MCHS. 



hs = {}
! = {}

SatAssume
(H,	S\hs)

If	3 is	the	
cheapest	model	
found	install	as	
new	incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!
Occasionally (via some policy):

hs = MCHS(!); LB = wt(hs)
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UNSAT

SAT

MCHS provides a 
lower bound!



hs = {}
! = {}

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	install	as	
new	incumbent.	
If LB ≥ 
cost(incumbent) return 
incumbent

! = ! U {softs in returned conflict}
ℎ? =	any	hitting	set	of	!
Occasionally (via some policy):
hs = MCHS(!); LB = wt(hs)
If LB ≥ cost(incumbent) return incumbent

123

UNSAT

SAT

Lower bound meets 
upper bound becomes 
new termination 
condition.



IHS Algorithm 
• As long at computing an MCHS is never 

“starved” (i.e., always eventually we 
compute the MCHS) the algorithm must 
terminate. 

• Maintaining an UB model also allows the 
IP technique of reduced cost fixing to be 
exploited
– Fahiem Bacchus, Antti Hyttinen, Matti 

Jarvisalo, and Paul Saikko; Reduced Cost 
Fixing in MaxSAT, CP 2018
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Implicit Hitting Set Solvers

• The SAT solving episodes are much simpler—they 
involve restrictions of the original MaxSat formula 
rather than augmentations of that formula.

• In practice, like other CEGAR approaches, only a 
few thousand cores need to be generated before 
the MCHS lower bound meets the optimal cost.

• But there are other cases where the number of 
cores required is too large, making both finding 
them and solving the MCHS too expensive. 

• Currently it is usually a more effective way of 
dealing with a diverse collection of weights. 

125


