
CSC2512
Advanced Propositional

Reasoning

Fahiem Bacchus, University of Toronto, 2

CSC2512: SMT Solvers
• SMT == Sat Modulo Theory Solvers

• Basic idea is to augment a SAT solver with special
purpose “theory” solvers that can more efficiently solve
certain sub-formulas.

• We gain from the effectiveness of the theory solver and
from the fact that the user can now express some of
their problem in the language of one of the theory
solvers.

• Typical SMT solvers implement a variety of theories.

Fahiem Bacchus, University of Toronto, 3

CSC2512: Theories
• A “theory” in SMT is a specialized logical language that

contains a specific set of function and predicate
symbols (perhaps with equality) and might also contain
a specific domains of values that the
variables/constants/functions can take on or specific
meanings for the predicate symbols.

• From the point of view of first-order logic, a theory is a
sorted first-order language with a specific signature (set
of function and predicate symbols) and potentially a
specific domain.

Fahiem Bacchus, University of Toronto, 4

CSC2512: Theories
• Given a theory we can express terms in that theory by using

variables, the constants, and functions of the theory.
• E.g., if any rational number is a constant of the theory,

every variable has the REALS as a domain of possible
values, and +, -, * are the binary function symbols then

1 + ½*x +2*y
is an example term. (x and y are variables).

• Given the predicate symbols we can apply any k-ary
predicate to k terms to obtain an atomic formula
• E.g., if ‘=‘ is a binary predicate symbol whose meaning is

standard equality of the REALS
1 + ½ * x + 2 * y = 4 *z

is an example atomic formula.

Fahiem Bacchus, University of Toronto, 5

CSC2512: Theories
• We can apply negation to an atomic formula to get a new

formula
• E.g., if 1 + ½ * x + 2 * y = 4 *z is an atomic formula, then

¬(1 + ½ * x + 2 * y = 4 *z)
is a formula.

• Normally we would rewrite this as
1 + ½ * x + 2 * y ≠ 4 *z

• Atomic formulas and their negations are called literals.
• We can also have conjunctions and disjunctions of literals

• E.g., (1 + ½ * x + 2 * y = 4 *z) ∧ z = 1

• Note that usually we do not allow quantifiers. So the formulas
of the theory are qff—quantifier free formulas

Fahiem Bacchus, University of Toronto, 6

CSC2512: Theories
• Theories are designed to have restricted sets of

predicates/functions and particular interpretations so
that we can effectively determine whether or not a
quantifier free formula is satisfiable.

• That is, does there exist a value for the variables such
that the formula is true
• I.e., if the formula is a conjunction each conjunct is

true, if the formula is a disjunction at least one
disjunct is true.

• E.g., (1 + ½ * x + 2 * y = 4 *z) ∧ z = 1 is satisfiable. The
assignment x=2, y=1, z=1 satisfies it.

Fahiem Bacchus, University of Toronto, 7

CSC2512: Uninterpreted Function Symbols

• This theory does not restrict the domains of the variable,
nor the number or types of the constants and function
symbols. However it only contains a single predicate
symbol equality ‘=’

• So in this theory we can express things like
f(f(a)) = a ∧ g(a) ≠ g(f(a)) ∧ f(f(f(a))) = a

• Note we could also state things like
z = 2 ∧ z = 1 ∧ 2 = 1

BUT ‘1’ and ‘2’ no longer have their standard
interpretation! (So it is misleading to use these symbols).

Fahiem Bacchus, University of Toronto, 8

CSC2512: Uninterpreted Function Symbols

• We can determine if a conjunction of literals is
satisfiable (again under the interpretation that the
function and constant symbols have no special
meaning) by using an nlog(n) congruence closure
algorithm.

Fahiem Bacchus, University of Toronto, 9

CSC2512: Uninterpreted Function Symbols
• Let E be the set of equalities. We use the equalities in E to

form equivalence classes.
• We continue to augment the set E by the rule, if si and ti are

in the same equivalence class (i.e., if si = ti) for i = 1, …, k.
Then we can add the equality

f(s1, …, sk) = f(t1, …, tk) to E

for any k-ary function symbol f mentioned in E.
and recompute the equivalence classes.

• We continue this until we can no longer find any new
equivalence.

• Finally we verify that for all inequalities t1 ≠ t2, that t1 and t2
are NOT in the same equivalence class.
• If they are then the conjunction is UNSAT, else it is SAT.

Fahiem Bacchus, University of Toronto, 10

CSC2512: Uninterpreted Function Symbols

• NOTE this procedure checks the SAT status of a
conjunction of literals (atomic formula and their
negations).

• If we had an arbitrary quantifier free formula !
(conjunction/disjunctions) we could convert ! to DNF
and then check each conjunct to see if it is SAT. ! is SAT
iff at least one of its conjuncts is.

• HOWEVER this could be very expensive as the DNF
might contain an exponential number of terms.

Fahiem Bacchus, University of Toronto, 11

CSC2512: Real Arithmetic
• In this theory you there is a constant symbol for every

rational number; the function symbols +, -, *; and the
single predicate symbol ≤.

• In addition all terms (constant symbols and function
applications) are interpreted as being REALS.

• Tarsky proved that even with quantifiers a set of
formulas written in this language and under this
interpretation of the terms is decidable.

• However, the procedure to decide if a conjunction of
formulas in this theory is satisfiable requires doubly
exponential time. So arbitrary formulas in this theory
can’t efficiently be reasoned with.

Fahiem Bacchus, University of Toronto, 12

CSC2512: Real Arithmetic

• LRA is the restriction of this theory to linear expressions.
• The function * can only be applied if at least one of

its operands is a rational constant.
• So in LRA we can express quantifier free formulas like

2x + 1/2y + 3z ≤ 4 ∧ ¬(6z + y ≤ 5)
• Note that =, ≠, <, >, ≥ can be encoded as negations or

disjunctions of ≤. So we assume that we have access to
these predicates as well.

• Satisfiability of this fragment can be tested with Fourier–
Motzkin elimination.

Fahiem Bacchus, University of Toronto, 13

CSC2512: Real Arithmetic

Fourier–Motzkin elimination:
1. Eliminate inequalities t1 ≠ t2 à t1 < t2 ∨ t2 < t1

Replace weak inequalities t1 ≤ t2 à t1 < t2 ∨ t1 = t2
These steps introduce disjunctions.

2. Convert to DNF, so that we have a set of conjunctions
of equalities/strict inequalities. (This step could be
exponential).

3. Process each conjunct looking for a single satisfiable
conjunct.

Fahiem Bacchus, University of Toronto, 14

CSC2512: Real Arithmetic
Process each Conjunct looking for a single satisfiable conjunct.
1. Convert each equality t1 = t2 to the form x = t3 where x is a

variable and t3 is an expression not containing x.

If this can’t be done the conjunct either converts to a trivial
equality t = t and can be dropped

Or to an unsatisfiable equality, e.g., 2 = 3 and the conjunct
is unsatisfiable.

2. Replace x everywhere else by t3 and drop the equality x = t3

3. This leaves us with a conjunct containing only strict
inequalities. Now we can apply Fourier-Motzkin elimination
on the strict inequalities.

Fahiem Bacchus, University of Toronto, 15

CSC2512: Real Arithmetic

Fourier–Motzkin elimination on the strict inequalities
1. Pick a variable x to eliminate and rewrite all

inequalities containing x to the form
(1) x < t2 or (2) t1 < x.

2. For every pair of x inequalities one of the form (1) and
one of the form (2)
Add the inequality t1 < t2

3. Remove all inequalities containing x.
4. Repeat 4-6 for each variable.
5. The remaining inequalities contain only rational

constants and we can check if they are all SAT. If any
are not then this conjunct is UNSAT.

Fahiem Bacchus, University of Toronto, 16

CSC2512: Real Arithmetic

This procedure can also be exponential.

Modern SMT solvers use Simplex based algorithms to solve
a conjunctive set of linear equations.

As with uninterpreted functions we can check a
conjunction effectively, but checking an arbitrary formula
requires a potentially exponential conversion to DNF

Fahiem Bacchus, University of Toronto, 17

CSC2512: Arrays

This theory contains three types of variables and constaints:
• Arrays, indices, array elements

And two function symbols read and write
read is a function of an array and an index to an element
write is a function of an array, an index, and an element
to a new array
These function symbols are constrained by the axioms:

Satisfiability Modulo Theories 19

equations. The original equations are unsatisfiable iff there exist two distinct binary
constants, c1 and c2, such that c1 ⇠ c2.

Example 5. Let x be of width 4 and consider the equation 1 � x = x � 0. Step (ii)
produces three new equations: 1 = x[3 : 3], x[0 : 0] = 0, and x[3 : 1] = x[2 : 0]. Then,
step (iii) requires that the last equation be replaced with x[3 : 3]�x[2 : 1] = x[2 : 1]�
x[0 : 0]. Repeating step (ii) on this equation gives x[3 : 3] = x[2 : 2], x[2 : 2] = x[1 : 1],
and x[1 : 1] = x[0 : 0]. The equivalence relation induced by all of these equations
equates 0 and 1, so the original equation is unsatisfiable.

Almost any extensions beyond this core fragment of the theory, including just
allowing disequalities, make the constraint satisfiability problem NP-hard. Recent
results show that, depending on the extension, the problem can be NP-complete,
PSPACE-complete, or up to NEXPTIME-complete for the full fragment [77].
Solvers typically handle the general case by first employing a set of rewrite rules
to simplify and normalize parts of the input and then encoding the result as a propo-
sitional satisfiability problem. This can be done by assigning a propositional variable
to each bit in each bit vector variable and then using propositional logic formulas
to encode each equation in terms of these variables—a process known as bit blast-
ing. In reality, the situation is more nuanced as several bit blasting SMT solvers,
including non-DPLL(T) solvers such as Boolector and STP, bit blast some of their
internal formulas only as needed, and so combine aspects of both the lazy and the
eager approach.

Both the rewrite rules and the method of encoding can dramatically affect per-
formance, as detailed in an extensive set of publications on the subject [7, 19, 24,
35, 36, 42, 80, 98, 116].

4.7 Arrays

Consider a signature S with sorts A, I,E (for arrays, indices and array elements) and
function symbols: read, of rank AIE and write of rank AIEA. Then, consider the
theory consisting of all S -structures satisfying the axioms:

1. 8a:A8 i:I8v:E read(write(a, i,v), i) = v,
2. 8a:A8 i, j:I8v:E i 6= j) read(write(a, i,v), j) = read(a, j),
3. 8a8b:A (8 i:I read(a, i) = read(b, i))) a = b.

This is the theory of functional arrays with extensionality. (Axiom (3) may be omit-
ted to obtain a theory without extensionality.) This theory is especially useful for
modeling memories or array data structures. The full theory is undecidable although
it contains a number of decidable fragments [32].

A simple algorithm for constraint satisfiability can be obtained by naive instan-
tiation of the axioms plus the use of congruence closure (e.g., [104]). Let F be a
set of S -literals. With no loss of generality, assume that each element of F is a flat
literal, that is, of the form a = b, a 6= b, v = read(a, i), and b = write(a, i,v), where

Fahiem Bacchus, University of Toronto, 18

CSC2512: Arrays

• Different methods have been developed to reason
about conjunctions of formulas involving these
functions and equality.

• E.g., read(a,i) = x ∧ read(b,i) ≠ x ∧ x ≠ w ∧
a = write(b,j,w) is UNSAT

• If i = j then
x = read(a,i)

= read(a,j) // i = j
= read(write(b,j,w), j) // a = write(b,j,w)
= w //Axiom 1

with x ≠ w this is UNSAT

Fahiem Bacchus, University of Toronto, 19

CSC2512: Arrays

• Different methods have been developed to reason
about conjunctions of formulas involving these
functions and equality.

• E.g., read(a,i) = x ∧ read(b,i) ≠ x ∧ x ≠ w ∧
a = write(b,j,w) is UNSAT

• If i ≠ j then
x = read(a,i)

= read(write(b,j,w), i) // a = write(b,j,w)
= read(b, i) // axiom 2
≠ x

Also UNSAT

Fahiem Bacchus, University of Toronto, 20

CSC2512: Arrays

• This of reasoning can be done with congruence closure
as it corresponds to a sequence of equalities.

Fahiem Bacchus, University of Toronto, 21

CSC2512: Other theories

• SMT solvers implement other theories as well including
integer arithmetic, difference logic, languages for
reasoning about bit vectors…

• In general these techniques can deal effectively with
conjunctions of literals in the theory.

Fahiem Bacchus, University of Toronto, 22

CSC2512: Integrating Theory Reasoning

• Given a collection of atomic formulas in a theory, e.g.,
{2x + 3y ≤ 4z, 2/3z ≤ y, ...} we map each different atomic
formula to a new propositional variable.
• 2x + 3y ≤ 4z à v1
• 2/3z ≤ y à v2

• Then given a negated atomic formula we map that to
the negated propositional variable

• We map conjunctions and disjunctions of literals to the
corresponding conjunctions and disjunctions of
propositional literals.

• This mapping is called the Boolean Abstraction B

Fahiem Bacchus, University of Toronto, 23

CSC2512: Integrating Theory Reasoning

• E.g.,
• 2x + 3y ≤ 4z à v1
• 2/3z ≤ y à v2
• x + z ≤ 6 à v3

• Now the formula

((2x + 3y > 4z) ∨ (x + z > 6)) ∧ (2x + 3y ≤ 4z)

maps to the propositional formula
(¬v1 ∨ ¬v2) ∧ v3

Fahiem Bacchus, University of Toronto, 24

CSC2512: Integrating Theory Reasoning

• The reverse mapping (the Concretization) maps the
propositional literals back to the atomic formulas or to
the negation of these atomic formulas
• v1 à 2x + 3y ≤ 4z
• ¬v2 à 2/3 z > y
• v1 ∧ ¬v2 à (2x + 3y ≤ 4z) ∧ (2/3 z > y)

Fahiem Bacchus, University of Toronto, 25

CSC2512: Simplest Lazy Approach
Given a formula F over theory literals (conjunctions and disjunctions) construct the
corresponding Boolean Abstraction which is a propositional formula P.
Then
1. P = ToCNF(P)
2. (sat?, !) = SatSolve(P)

// ! is a set of true literals that satisfies P true
3. if not sat?

return F is UNSAT
4. else C = Concretization(!)

// C is a conjunction of theory literals
5. tsat? = TheorySolve(C)

// Check if this conjunction of theory literals is SAT
// Using the Theory Solver

6. If tsat?
return F is SAT

7. not-! = ⋁ {¬l | l ∈ !}
//not-! is a clause that blocks the model !

8. P = P + not-!
//Add this clause to P

9. GOTO 2
//Find another conjunct that might satisfy F.

Fahiem Bacchus, University of Toronto, 26

CSC2512: Simplest Lazy Approach
The models of P correspond to conjuncts in the DNF of F.

So the SAT solver is computing these conjuncts and then
checking if they are SAT.

If any of them are SAT, F is SAT.

We might get lucky and find a satisfying conjunct quickly,
where as actually converting F to DNF might take a long
time.

But if F is UNSAT this simple method will eventually have to
examine all conjunctions of F’s DNF.

Fahiem Bacchus, University of Toronto, 27

CSC2512: More Sophisticated Approaches
Simplest extension is to ask the TheorySolver to return a
reason why the conjunct it was passed is UNSAT.

5. tsat? = TheorySolve(C)
// Check if this conjunction of theory literals is SAT
// Using the Theory Solver

è
(tsat?, Conflict) = TheorySolve(C)
// Check if this conjunction of theory literals is SAT
// Using the Theory Solver. If UNSAT return a subset
// negated literals of C one of which must be made
// true. I.e., a clausal reason.

Fahiem Bacchus, University of Toronto, 28

CSC2512: More Sophisticated Approaches

(tsat?, Conflict) = TheorySolve(C)
// Check if this conjunction of theory literals is SAT
// Using the Theory Solver. If UNSAT return a subset
// negated literals of C one of which must be made
// true. I.e., a clausal reason.

E.g., TheorySolve(2x + 3y ≤ 4z, 2/3z ≤ y, x + z > 6) if this
conjunction of theory literals is UNSAT might return

Conflict = (¬(2x + 3y ≤ 4z) ∨ ¬(x + z > 6))
these two literals were sufficient to cause UNSAT

Fahiem Bacchus, University of Toronto, 29

CSC2512: More Sophisticated Approaches
(tsat?, Conflict) = TheorySolve(C)

Now instead of adding
not-! = ⋁ {¬l | l ∈ !}

To the SAT formula we add the Boolean abstraction of Conflict.

If the Conflict extraction process is good, i.e., it can produce
short conflicts, this can cut down the number of potential
theory conjuncts that have to be tested exponentially.
Note that if we can find a (theory) MUS of C this could be a
good conflicts (a locally minimal one).

Fahiem Bacchus, University of Toronto, 30

CSC2512: More Sophisticated Approaches
We could also call the Theory solver eagerly.

As we build up the SAT trail making literals true, we can ask if theory solver
if the theory conjunct corresponding to the currently true literals is SAT.

If not we backtrack the SAT solver.

Could also the theory solver to generate new theory literals forced by the
currently true theory literals—a form of Theory Propagation.

Can also ask the theory solver for an theory explanation for the literals it
forces—the Boolean abstraction of these explanations forms a reason
clause in the SAT solver and we can now do Theory augmented clause
learning.

Which of these if effective depends on how much time the Theory Solver
takes.

Fahiem Bacchus, University of Toronto, 31

CSC2512: Reading for Next time

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast
decision procedures. In Proceedings of the 16th International Conference on
Computer Aided Verification, CAV’04 (Boston, Massachusetts), volume 3114 of
LNCS, pages 175–188. Springer, 2004.

Murphy Berzish, Vijay Ganesh and Yunhui Zheng. Z3str3: A string solver with theory-
aware heuristics. In Proceedings of 2017 Formal Methods in Computer Aided
Design, {FMCAD} 2017.

