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CSC2512: SMT Solvers
• SMT == Sat Modulo Theory Solvers

• Basic idea is to augment a SAT solver with special 
purpose “theory” solvers that can more efficiently solve 
certain sub-formulas.

• We gain from the effectiveness of the theory solver and 
from the fact that the user can now express some of 
their problem in the language of one of the theory 
solvers.

• Typical SMT solvers implement a variety of theories. 



Fahiem Bacchus, University of Toronto, 3

CSC2512: Theories
• A “theory” in SMT is a specialized logical language that 

contains a specific set of function and predicate 
symbols (perhaps with equality) and might also contain 
a specific domains of values that the 
variables/constants/functions can take on or specific 
meanings for the predicate symbols. 

• From the point of view of first-order logic, a theory is a 
sorted first-order language with a specific signature (set 
of function and predicate symbols) and potentially a 
specific domain.
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CSC2512: Theories
• Given a theory we can express terms in that theory by using 

variables, the constants, and functions of the theory.
• E.g., if any rational number is a constant of the theory, 

every variable has the REALS as a domain of possible 
values, and +, -, * are the binary function symbols then 

1 + ½*x +2*y 
is an example term. (x and y are variables).

• Given the predicate symbols we can apply any k-ary
predicate to k terms to obtain an atomic formula
• E.g., if ‘=‘ is a binary predicate symbol whose meaning is 

standard equality of the REALS
1 + ½ * x + 2 * y = 4 *z 

is an example atomic formula. 
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CSC2512: Theories
• We can apply negation to an atomic formula to get a new 

formula
• E.g., if 1 + ½ * x + 2 * y = 4 *z is an atomic formula, then 

¬(1 + ½ * x + 2 * y = 4 *z)
is a formula. 

• Normally we would rewrite this as
1 + ½ * x + 2 * y ≠ 4 *z

• Atomic formulas and their negations are called literals.
• We can also have conjunctions and disjunctions of literals

• E.g., (1 + ½ * x + 2 * y = 4 *z) ∧ z = 1 

• Note that usually we do not allow quantifiers. So the formulas 
of the theory are qff—quantifier free formulas
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CSC2512: Theories
• Theories are designed to have restricted sets of 

predicates/functions and particular interpretations so 
that we can effectively determine whether or not a 
quantifier free formula is satisfiable.

• That is, does there exist a value for the variables such 
that the formula is true
• I.e., if the formula is a conjunction each conjunct is 

true, if the formula is a disjunction at least one 
disjunct is true.

• E.g., (1 + ½ * x + 2 * y = 4 *z) ∧ z = 1 is satisfiable. The 
assignment x=2, y=1, z=1 satisfies it.
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CSC2512: Uninterpreted Function Symbols

• This theory does not restrict the domains of the variable, 
nor the number or types of the constants and function 
symbols. However it only contains a single predicate 
symbol equality ‘=’

• So in this theory we can express things like
f(f(a)) = a ∧ g(a) ≠ g(f(a)) ∧ f(f(f(a))) = a

• Note we could also state things like
z = 2 ∧ z = 1 ∧ 2 = 1 

BUT ‘1’ and ‘2’ no longer have their standard 
interpretation! (So it is misleading to use these symbols).
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CSC2512: Uninterpreted Function Symbols

• We can determine if a conjunction of literals is 
satisfiable (again under the interpretation that the 
function and constant symbols have no special 
meaning) by using an nlog(n) congruence closure 
algorithm.
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CSC2512: Uninterpreted Function Symbols
• Let E be the set of equalities. We use the equalities in E to 

form equivalence classes. 
• We continue to augment the set E by the rule, if si and ti are 

in the same equivalence class (i.e., if si = ti) for i = 1, …, k. 
Then we can add the equality 

f(s1, …, sk) = f(t1, …, tk) to E

for any k-ary function symbol f mentioned in E.
and recompute the equivalence classes.

• We continue this until we can no longer find any new 
equivalence.

• Finally we verify that for all inequalities t1 ≠ t2,  that t1 and t2
are NOT in the same equivalence class. 
• If they are then the conjunction is UNSAT, else it is SAT.
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CSC2512: Uninterpreted Function Symbols

• NOTE this procedure checks the SAT status of a 
conjunction of literals (atomic formula and their 
negations). 

• If we had an arbitrary quantifier free formula !
(conjunction/disjunctions) we could convert ! to DNF 
and then check each conjunct to see if it is SAT. ! is SAT 
iff at least one of its conjuncts is.

• HOWEVER this could be very expensive as the DNF 
might contain an exponential number of terms.
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CSC2512: Real Arithmetic
• In this theory you there is a constant symbol for every 

rational number; the function symbols +, -, *; and the 
single predicate symbol ≤.

• In addition all terms (constant symbols and function 
applications) are interpreted as being REALS.

• Tarsky proved that even with quantifiers a set of 
formulas written in this language and under this 
interpretation of the terms is decidable. 

• However, the procedure to decide if a conjunction of 
formulas in this theory is satisfiable requires doubly 
exponential time. So arbitrary formulas in this theory 
can’t efficiently be reasoned with.



Fahiem Bacchus, University of Toronto, 12

CSC2512: Real Arithmetic

• LRA is the restriction of this theory to linear expressions. 
• The function * can only be applied if at least one of 

its operands is a rational constant. 
• So in LRA we can express quantifier free formulas like

2x + 1/2y + 3z ≤ 4 ∧ ¬(6z + y ≤ 5)
• Note that =, ≠, <, >, ≥ can be encoded as negations or 

disjunctions of ≤. So we assume that we have access to 
these predicates as well.

• Satisfiability of this fragment can be tested with Fourier–
Motzkin elimination.
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CSC2512: Real Arithmetic

Fourier–Motzkin elimination:
1. Eliminate inequalities t1 ≠ t2 à t1 < t2 ∨ t2 < t1

Replace weak inequalities t1 ≤ t2 à t1 < t2 ∨ t1 = t2
These steps introduce disjunctions. 

2. Convert to DNF, so that we have a set of conjunctions 
of equalities/strict inequalities. (This step could be 
exponential).

3. Process each conjunct looking for a single satisfiable 
conjunct.
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CSC2512: Real Arithmetic
Process each Conjunct looking for a single satisfiable conjunct.
1. Convert each equality t1 = t2 to the form x = t3 where x is a 

variable and t3 is an expression not containing x. 

If this can’t be done the conjunct either converts to a trivial 
equality t = t and can be dropped

Or to an unsatisfiable equality, e.g., 2 = 3 and the conjunct 
is unsatisfiable. 

2. Replace x everywhere else by t3 and drop the equality x = t3 

3. This leaves us with a conjunct containing only strict 
inequalities. Now we can apply Fourier-Motzkin elimination 
on the strict inequalities. 
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CSC2512: Real Arithmetic

Fourier–Motzkin elimination on the strict inequalities
1. Pick a variable x to eliminate and rewrite all 

inequalities containing x to the form 
(1) x < t2 or (2) t1 < x.

2. For every pair of x inequalities one of the form (1) and 
one of the form (2)
Add the inequality t1 < t2

3. Remove all inequalities containing x.
4. Repeat 4-6 for each variable.
5. The remaining inequalities contain only rational 

constants and we can check if they are all SAT. If any 
are not then this conjunct is UNSAT. 
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CSC2512: Real Arithmetic

This procedure can also be exponential. 

Modern SMT solvers use Simplex based algorithms to solve 
a conjunctive set of linear equations. 

As with uninterpreted functions we can check a 
conjunction effectively, but checking an arbitrary formula 
requires a potentially exponential conversion to DNF
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CSC2512: Arrays

This theory contains three types of variables and constaints:
• Arrays, indices, array elements

And two function symbols read and write
read is a function of an array and an index to an element
write is a function of an array, an index, and an element 
to a new array
These function symbols are constrained by the axioms:

Satisfiability Modulo Theories 19

equations. The original equations are unsatisfiable iff there exist two distinct binary
constants, c1 and c2, such that c1 ⇠ c2.

Example 5. Let x be of width 4 and consider the equation 1 � x = x � 0. Step (ii)
produces three new equations: 1 = x[3 : 3], x[0 : 0] = 0, and x[3 : 1] = x[2 : 0]. Then,
step (iii) requires that the last equation be replaced with x[3 : 3]�x[2 : 1] = x[2 : 1]�
x[0 : 0]. Repeating step (ii) on this equation gives x[3 : 3] = x[2 : 2], x[2 : 2] = x[1 : 1],
and x[1 : 1] = x[0 : 0]. The equivalence relation induced by all of these equations
equates 0 and 1, so the original equation is unsatisfiable.

Almost any extensions beyond this core fragment of the theory, including just
allowing disequalities, make the constraint satisfiability problem NP-hard. Recent
results show that, depending on the extension, the problem can be NP-complete,
PSPACE-complete, or up to NEXPTIME-complete for the full fragment [77].
Solvers typically handle the general case by first employing a set of rewrite rules
to simplify and normalize parts of the input and then encoding the result as a propo-
sitional satisfiability problem. This can be done by assigning a propositional variable
to each bit in each bit vector variable and then using propositional logic formulas
to encode each equation in terms of these variables—a process known as bit blast-
ing. In reality, the situation is more nuanced as several bit blasting SMT solvers,
including non-DPLL(T ) solvers such as Boolector and STP, bit blast some of their
internal formulas only as needed, and so combine aspects of both the lazy and the
eager approach.

Both the rewrite rules and the method of encoding can dramatically affect per-
formance, as detailed in an extensive set of publications on the subject [7, 19, 24,
35, 36, 42, 80, 98, 116].

4.7 Arrays

Consider a signature S with sorts A, I,E (for arrays, indices and array elements) and
function symbols: read, of rank AIE and write of rank AIEA. Then, consider the
theory consisting of all S -structures satisfying the axioms:

1. 8a:A8 i:I8v:E read(write(a, i,v), i) = v,
2. 8a:A8 i, j:I8v:E i 6= j ) read(write(a, i,v), j) = read(a, j),
3. 8a8b:A (8 i:I read(a, i) = read(b, i))) a = b.

This is the theory of functional arrays with extensionality. (Axiom (3) may be omit-
ted to obtain a theory without extensionality.) This theory is especially useful for
modeling memories or array data structures. The full theory is undecidable although
it contains a number of decidable fragments [32].

A simple algorithm for constraint satisfiability can be obtained by naive instan-
tiation of the axioms plus the use of congruence closure (e.g., [104]). Let F be a
set of S -literals. With no loss of generality, assume that each element of F is a flat
literal, that is, of the form a = b, a 6= b, v = read(a, i), and b = write(a, i,v), where
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CSC2512: Arrays

• Different methods have been developed to reason 
about conjunctions of formulas involving these 
functions and equality.

• E.g., read(a,i) = x ∧ read(b,i) ≠ x ∧ x ≠ w ∧
a = write(b,j,w) is UNSAT

• If i = j then 
x = read(a,i) 

= read(a,j)  // i = j
= read(write(b,j,w), j) // a = write(b,j,w)
= w //Axiom 1

with  x ≠ w this is UNSAT
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CSC2512: Arrays

• Different methods have been developed to reason 
about conjunctions of formulas involving these 
functions and equality.

• E.g., read(a,i) = x ∧ read(b,i) ≠ x ∧ x ≠ w ∧
a = write(b,j,w) is UNSAT

• If i ≠ j then 
x = read(a,i) 

= read(write(b,j,w), i)  // a = write(b,j,w)
= read(b, i) // axiom 2
≠ x 

Also UNSAT
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CSC2512: Arrays

• This of reasoning can be done with congruence closure 
as it corresponds to a sequence of equalities.
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CSC2512: Other theories

• SMT solvers implement other theories as well including 
integer arithmetic, difference logic, languages for 
reasoning about bit vectors…

• In general these techniques can deal effectively with 
conjunctions of literals in the theory.
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CSC2512: Integrating Theory Reasoning 

• Given a collection of atomic formulas in a theory, e.g., 
{2x + 3y ≤ 4z, 2/3z ≤ y, ...} we map each different atomic 
formula to a new propositional variable.
• 2x + 3y ≤ 4z  à v1
• 2/3z ≤ y         à v2

• Then given a negated atomic formula we map that to 
the negated propositional variable

• We map conjunctions and disjunctions of literals to the 
corresponding conjunctions and disjunctions of 
propositional literals.  

• This mapping is called the Boolean Abstraction B
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CSC2512: Integrating Theory Reasoning 

• E.g., 
• 2x + 3y ≤ 4z  à v1
• 2/3z ≤ y        à v2
• x + z ≤ 6        à v3

• Now the formula 

((2x + 3y > 4z) ∨ (x + z > 6)) ∧ (2x + 3y ≤ 4z)

maps to the propositional formula
(¬v1 ∨ ¬v2) ∧ v3
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CSC2512: Integrating Theory Reasoning 

• The reverse mapping (the Concretization) maps the 
propositional literals back to the atomic formulas or to 
the negation of these atomic formulas
• v1   à 2x + 3y ≤ 4z
• ¬v2 à 2/3 z > y
• v1 ∧ ¬v2 à (2x + 3y ≤ 4z) ∧ (2/3 z > y)
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CSC2512: Simplest Lazy Approach
Given a formula F over theory literals (conjunctions and disjunctions) construct the 
corresponding Boolean Abstraction which is a propositional formula P.
Then
1. P = ToCNF(P)
2. (sat?, !) = SatSolve(P)  

// ! is a set of true literals that satisfies P true
3. if not sat? 

return F is UNSAT
4. else C = Concretization(!) 

// C is a conjunction of theory literals
5. tsat? = TheorySolve(C)

// Check if this conjunction of theory literals is SAT 
// Using the Theory Solver

6. If tsat? 
return F is SAT

7. not-! = ⋁ {¬l | l ∈ !}
//not-! is a clause that blocks the model  !

8. P = P + not-!
//Add this clause to P

9. GOTO 2 
//Find another conjunct that might satisfy F.
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CSC2512: Simplest Lazy Approach
The models of P correspond to conjuncts in the DNF of F.

So the SAT solver is computing these conjuncts and then 
checking if they are SAT.

If any of them are SAT, F is SAT.

We might get lucky and find a satisfying conjunct quickly, 
where as actually converting F to DNF might take a long 
time.

But if F is UNSAT this simple method will eventually have to 
examine all conjunctions of F’s DNF.
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CSC2512: More Sophisticated Approaches
Simplest extension is to ask the TheorySolver to return a 
reason why the conjunct it was passed is UNSAT.

5. tsat? = TheorySolve(C)
// Check if this conjunction of theory literals is SAT 
// Using the Theory Solver

è
(tsat?, Conflict) = TheorySolve(C)
// Check if this conjunction of theory literals is SAT 
// Using the Theory Solver. If UNSAT return a subset 
// negated literals of C one of which must be made 
// true. I.e., a clausal reason.
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CSC2512: More Sophisticated Approaches

(tsat?, Conflict) = TheorySolve(C)
// Check if this conjunction of theory literals is SAT 
// Using the Theory Solver. If UNSAT return a subset 
// negated literals of C one of which must be made 
// true. I.e., a clausal reason.

E.g., TheorySolve(2x + 3y ≤ 4z, 2/3z ≤ y, x + z > 6) if this 
conjunction of theory literals is UNSAT might return

Conflict = (¬(2x + 3y ≤ 4z) ∨ ¬(x + z > 6)) 
these two literals were sufficient to cause UNSAT
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CSC2512: More Sophisticated Approaches
(tsat?, Conflict) = TheorySolve(C)

Now instead of adding 
not-! = ⋁ {¬l | l ∈ !}

To the SAT formula we add the Boolean abstraction of Conflict.

If the Conflict extraction process is good, i.e., it can produce 
short conflicts, this can cut down the number of potential 
theory conjuncts that have to be tested exponentially. 
Note that if we can find a (theory) MUS of C this could be a 
good conflicts (a locally minimal one).
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CSC2512: More Sophisticated Approaches
We could also call the Theory solver eagerly. 

As we build up the SAT trail making literals true, we can ask if theory solver 
if the theory conjunct corresponding to the currently true literals is SAT. 

If not we backtrack the SAT solver.

Could also the theory solver to generate new theory literals forced by the 
currently true theory literals—a form of Theory Propagation.

Can also ask the theory solver for an theory explanation for the literals it 
forces—the Boolean abstraction of these explanations forms a reason 
clause in the SAT solver and we can now do Theory augmented clause 
learning.

Which of these if effective depends on how much time the Theory Solver 
takes. 
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