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CSC2512: Other Work: Proof extraction
• For any clause c, if we unit propagate –c, in the formula 

F and obtain an empty clause (a conflict) then it must 
be the case that F ⊧ c  by the soundness of UP. 

• However, we can have F ⊧ c but UP(-c) does not 
generate a conflict. UP is not a complete rule of 
inference. 

• Nevertheless, it is “complete” along a sequence of 
resolution steps.
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CSC2512: Other Work: Proof extraction
• Given a resolution proof as a sequence of clauses 

where cn is not an input clause. 
c1, c2, …, cn

• we can observe that if we negate cn and unit 
propagate the literals in the formula c1, c2, …, cn-1 we 
will obtain a conflict (one of these clauses will be 
falsified)

If cn = (A, B) as a result of resolving (A,x) and (B,-x) 
UP falsifies one of these clauses (depending on if
it propagates x or –x first).
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CSC2512: Other Work: Proof extraction
• This gives rise to the RUP (reverse unit propagation) 

technique for extracting proofs from a clause learning SAT 
solver.

• Output to a log all learnt clauses in the sequence they are 
learnt. 

• Verify each learnt clause ci in the order they it was learnt by 
negating ci and unit propagating through the set of clauses 
U {c1, …, ci-1}

• If we obtain a conflict we know that ci is a logical 
consequence of the input formula and the previously 
verified learnt clauses.
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CSC2512: Other Work: Proof extraction
• Eventually we can verify a unit clause (x) whose partner (-x) 

has previously been verified thus showing that the proof is 
sound.

• This procedure verifies the UNSAT result (just like the satisfying 
assignment can be used to verify the SAT result).

• Furthermore, we can instrument the UP checking process so 
that we only keep the learnt clauses and input clauses that 
are eventually needed to verify the final empty clause. 

• Note that this works even when we have lost track of the 
resolution steps involved in computing a learnt clause. 

• This set of clauses responsible for UNSAT can be output.
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CSC2512: Other Work: Proof extraction
• Note also that the final sequence of learnt clauses are 

not a traditional resolution proof. This sequence is called 
a “clausal” proof, and it can be much shorter than a 
resolution proof. 

• Unit Prop is needed to verify a clausal proof, whereas a 
much simple algorithm can verify a resolution proof.

• A clausal proof can be expanded into a resolution 
proof by tracking the clauses the unit prop steps need 
to derive a contradiction. 

Paper: Trimming while Checking Clausal Proofs Marijn J.H. 
Heule, Warren A. Hunt, Jr., and Nathan Wetzler
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CSC2512: Other work: Assumptions
Assumptions. A useful technique is solving subject some 
set of literals called assumptions:
• A = {l1, l2, …, lk}
• We start the SAT solver and force it to pick a next 

unassigned literal in A as a decision until there are no 
more unassigned literals in A.

• If a literal of A is forced to TRUE we skip over it for the 
next decision. 

• If a literal of A is forced to FALSE we stop: Say l1, l2 …, li
are the decisions already made, and lj is forced to 
FALSE: then we have the following clause

(¬l1, ¬l2, …, ¬li,¬lj)
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CSC2512: Other work: Assumptions
• If we assign all literals in A we then continue the normal 

SAT solving process with freedom to pick the decision 
variables as we want.

• If this results in UNSAT, some clause (perhaps empty) 
falsified by the A decisions will be learnt. 

• In any event, if the formula becomes UNSAT under A, 
we obtain a clause falsified by A (the clause specifies 
that some subset of A is impossible). 
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CSC2512: Other work: Assumptions
• Assumptions are very useful for incremental SAT solving 

where we want to SAT solver a sequence of related 
formulas F1, F2, …, Fn

• If F1 ⊆ F2 ⊆ ⋯ ⊆ Fn then we can use one instance of the 
SAT solver. Solve F1 then add the additional clauses of F2
and solve again, add the additional clauses of F2 …
• The advantage if this is that the SAT solver gets to 

reuse all of its learnt clauses.
• But if we must remove clauses between SAT solver 

invocations we have a problem: some of the learnt 
clauses might no longer be valid.
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CSC2512: Other work: Assumptions
• For clause removals we can use assumptions: if we will 

later want to remove the clause C = (x1, x2, …, xn) we 
can add a brand new variable (often called a 
selection variable) to the clause:  (x1, x2, …, xn, s)

• Then if we want to include C we assume ¬s. Any learnt 
clauses were derived from resolving against C will now 
also contain s (s appears nowhere else in the formula 
so it can’t be resolved away)

• When we want to exclude C from the formula we can 
assume s. C and all clauses learnt using C contain s so
all of these clauses will be satisfied by assuming s and 
the solver will then solve the remaining clause.



CSC2512: Papers

• An Empirical Study of Branching Heuristics 
through the Lens of Global Learning Rate
Jia Hui Liang, Hari Govind, Pascal Poupart, 
Krzysztof Czarnecki, and Vijay Ganesh. IJCAI 
2018

• DRAT-trim: Efficient Checking and Trimming 
Using Expressive Clausal Proofs Nathan Wetzler, 
Marijn J. H. Heule, Warren A. Hunt Jr. Sat  2014.

• Speeding Up Assumption-Based SAT, Randy 
Hickey, Fahiem Bacchus. Sat 2019
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CSC2512: Clause Deletion

• A new clause is learned from every conflict. 
• In practice the solver starts to slow down after it 

accumulates too many clauses. 
• So deleting some of these learned clauses has 

proved to be effective.
• Earlier clauses were deleted whenever memory 

was about to be exhausted. Clauses were 
deleted by size (delete the largest ones first) or 
by activity (delete those clauses that had not 
recently been used in learning new clauses.  
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CSC2512: Clause Deletion

• In 2009 Audemard and Simon developed a new idea for 
selecting which clauses to delete called the LBD score.

• Once we learn a 1-UIP clause, minimize it, and use it to 
backtrack asserting a new literal, we can count the 
number of different decision levels in the clause. This is 
called the clause’s LBD score. 

• Audemard and Simon found that very aggressive clause 
deletion, where frequently ½ of the  learnt clauses 
highest LBD score are deleted, gives a significant boost 
in performance.

• Now however theoretical completeness is sacrificed 
(although it can be regained by slowing increasing the 
clause deletion trigger from 10,000 clauses to 20,000, 
30,000, etc. (any increasing sequence will suffice).   
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CSC2512: Papers

1. Predicting Learnt Clauses Quality in Modern SAT 
Solvers, Gilles Audemard, Laurent Simon, IJCAI 2009.

2. Coverage-Based Clause Reduction Heuristics for CDCL Solvers, 
Hidetomo Nabeshima and Katsumi Inoue, SAT 2017
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CSC2512: Preprocessing

• An additional essential part of modern 
SAT solvers is preprocessing and 
inprocessing.

• Preprocessing is the technique of 
converting the input CNF F to a new 
CNF F’ such that if F’ is UNSAT then so is 
F, and furthermore if ! is a satisfying 
model of F’ then ! can in poly-time be 
converted into !’ a satisfying model for 
F. 
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CSC2512: Preprocessing

• A number of useful techniques for 
preprocessing have been developed. 
The most important of these is Bounded 
Variable Elimination, Clause 
subsumption, and self-subsuming 
resolutions.
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CSC2512: Preprocessing

• Bounded Variable Elimination. This uses a single 
step of the DP algorithm. We eliminate the 
variable x from the formula by taking all clauses 
A containing x and all clauses B containing ¬x 
and generate all resolvant pairs: 

R = {R[c1,c2] | c1 ∈A  c2 ∈ B}
• All tautologies are removed from R. 

Furthermore, clauses in R might be subsumed by 
other clauses. So we reduce R by removing 
these clauses. 

• Bounded: we preform this step if 
|R| < |A| + |B| 

(i.e., we obtain fewer clauses)
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CSC2512: Preprocessing

• Implementing this efficiently requires 
clever scheduling and data structure 
techniques.
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CSC2512: Preprocessing

• Subsumption. Checking for subsumption can be speeded up 
using Bloom Filters. We map each literal in F to a number in the 
range [0,63]. Then for each clause c we construct a 64 bit map, 
by setting all bits mapped to by literals in c.

• Now if c’ ⊆ c then the bit map of c’ must be a subset of c bit 
map. That is, the and of these two bit maps must equal the bit 
map of c’. 

– E.g., Say we do the following mapping
x = 0, -x = 1, y = 2, -y = 3, z = 4, -z = 5.

then the bit map of the two clauses
c = (x,y,z) = [1, 0, 1, 0, 1, 0]
c’= (x,z) = [1, 0, 0, 0, 1, 0]

[1, 0, 1, 0, 1, 0] AND [1, 0, 0, 0, 1, 0] = [1, 0, 0, 0, 1, 0] = c’ bit map
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CSC2512: Preprocessing

• This test is fast, and if it fails then we know 
that c is not subsumed by c’. If it succeeds 
then we don’t actually know that c is 
subsumed by c’. This is a one way test. So if 
the test succeeds (i.e., the AND of the two 
bit maps is equal to the bit map of c’ we 
have to follow this with actually testing to 
see c’ ⊆ c 

– E.g. if in the variable mapping r = 4 then 
c” = (x,r) = [1, 0, 0, 0, 1, 0] – same bit map as c’
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CSC2512: Preprocessing

• (A,x) (B,¬x) where B ⊆A. Clearly(B,¬x) is 
not a subset of (A,x), so there is no 
clause subsumption. However, consider 
the resolvant: (A,B) == (A) (since B ⊆A). 
The resolvant subsumes (A,x). So in this 
case we can remove x from (A,x). This is 
called a self-subsuming resolution. 
– E.g.

(a, b, ¬c, x) and (b, ¬x) 
è (a,b,¬c) and  (b, ¬x)
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CSC2512: Papers

1. Effective Preproessing in SAT through Variable 
and Clause Elimination, Niklas Een and Armin 
Biere, SAT 2005.
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CSC2512: MUSes and MCSes
• MUS computation. 

• In many applications we want to know why something 
is unsatisfiable. We can extract a minimal unsatisfiable 
subset of the formula: a MUS. 

• Note not a minimum unsatisfiable subset (which is a 
much harder problem)

• Since the MUS typically much smaller than the input 
formula F. It can provide much more specific 
information about a cause of unsatisfiablity in F. 
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CSC2512: MUSes and MCSes
• A MUS (Minimal Unsatisfiable Set) M is an UNSAT set of 

clauses M such that for any clause c in M: 
M \ {c} is SAT    //M is set inclusion minimal

• If F is SAT then it contains no MUSes. If it is UNSAT it 
contains at least one MUS and usually contains 
many different MUSes.

• A correction set C of a CNF F is a subset of F such that:
F \ C is SAT

A correction set C is a minimal correction set (MCS) if 
no proper subset of C is a correction set of F
• If F is SAT only the empty set is a MCS. But if F is 

UNSAT, then any MCS cannot be empty and 
generally, there are many MCSes.
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CSC2512: MUSes and MCSes
• MUS/MCS hitting set duality (Reiter AIJ 2087).

• Consider an UNSAT formula F, let AllMuses(F) be the 
collection of all MUSes in F. Each M ∈ AllMuses(F) is a set 
of clauses, a subset of F. That is AllMuses(F) is a 
collection of sets.

• Similarly, let AllMCSes(F) be the collection of all MCSes
of F
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CSC2512: MUSes and MCSes
• Given a collection of sets K, HS is a hitting set of K iff for 

every set S ∈ K we have that HS ⋂ S ≠ ∅
• HS has a non-empty intersection with every set in the 

collection.
• A set HS is a minimal hitting set of K if it is a hitting set 

and no proper subset of HS is a hitting set of K.
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CSC2512: MUSes and MCSes
• Reiter’s result:

A set C ⊆ F is an MCS of F iff it is a minimal hitting set of 
AllMuses(F). And a set M ⊆ F is an MUS of F iff it is a minimal 
hitting set of AllMCSes(F). 

Also, a set C ⊆ F is an correction set (not necessarily 
minimal) of F iff it is a hitting set of all unsatisfiable subsets 
of F (not necessarily minimal). And a set M ⊆ F is 
unsatisfiable (not necessarily minimal) iff it is a hitting set of 
all correction sets (not necessarily minimal) of F.
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CSC2512: MUS extraction
• Given an UNSAT formula F, we want to compute one of 

its MUSes (and we don’t care which one). 
• We can do this with a sequence of calls to a SAT solver.
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CSC2512: MUS extraction
• A critical clause of an UNSAT formula U, is a clause whose 

removal makes U SAT. 
• A MUS M is an UNSAT formula all of whose clauses are 

critical.

• Divide F into two sets 
• crits: a set of clauses that we know must be in the MUS 

we are extracting (they are critical).
• unkn a set of clauses that might be in the MUS but we 

don’t know yet.

• crits U unkn is the working formula—it is an unsat formula 
that is a subset of F and thus it contains one of F’s MUSes
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CSC2512: MUS extraction
1. crits ⟵ ∅ unkn ⟵ F
2. while unkn ≠ ∅

1. c ⟵ choose c ∈ unkn
2. sat? = SatSolve(crits U unkn \ {c})
3. if sat?

1. crits = crits U {c} 
4. unkn = unkn - \{c}  

This simple algorithm iteratively tests the clauses of an 
initial UNSAT formula (F) removing clauses not needed to 
retain UNSAT, and keeping those clauses whose removal 
makes the formula SAT.
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CSC2512: MUS extraction
This simple algorithm can be significantly improved.
1. When we find that removing c from unkn makes crits U 

unkn (so c is critical for the MUS contained in crits U 
unkn) we can use the satisfying truth assignment ! to 
find other critical clauses.

2. When removing c from unkn keeps crits U unkn UNSAT 
(c need not be in the MUS we are extracting), then we 
can extract from the SAT solver a subset of the clauses 
in crits U unkn sufficient to cause UNSAT using 
assumptions
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CSC2512: MUS extraction
Model Rotation. Given that c is found to be critical, find other critical 
clauses. 

When is a clause c critical for the working formula crits U unkn.
There exists a truth assignment satisfying 
(crits U unkn) \ {c}—removing c makes the working formula SAT

We have found a truth assignment ! satisfying 
(crits U unkn) \ {c}

So we try to change one of the truth assignments in ! so that we 
satisfy c and every other clause in (crits U unkn), except for one other 
clause c’. So now we have a new truth assignment !’ that satisfies 
(crits U unkn) \ {c’}

This shows that c’ is also critical for the current working formula and 
we can move it into crits.
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CSC2512: MUS extraction
Assumptions. Instead of giving the SAT solver the CNF 
(crits U unkn) we add a selector variable to each clause 
of F. 

The selector variables are brand new variables (one new 
variable per clause). So every clause ci ∈ F is replaced 
with the clause (ci ∨ bi) where bi is the new selector 
variable for clause ci. 

Then we call the SAT solver with all clauses in F and the 
assumptions {¬b1,¬b2, …, ¬bm}. These assumptions force 
the SAT solver to try to satisfy all of the clauses ci
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CSC2512: MUS extraction
Assumptions. 
When we want to remove the clause ci from the working 
formula, we stop assuming ¬bi. Now the SAT solver is free 
to satisfy (ci ∨ bi) by simply making bi true.

If the working formula is UNSAT then the SAT solver will 
return a subset of the assumptions {¬b1,¬b2, …, ¬bm} in a 
conflict clause (bj1, bj2, …, bjk). This clause says that the 
subset of clauses {cj1, cj2, …, cjk} is UNSAT (at least one of 
them must be falsified by any truth assignment. 

Now we can use this subset to further reduce the working 
formula.
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CSC2512: MUS extraction
1. crits_A ⟵ ∅
2. unkn_A = {¬bi |ci ∈ F}    //Two sets of assumptions
3. while unkn_A ≠ ∅

1. choose ¬bi ∈ unkn_A
2. (sat?, $, conflict) = 

SatSolve(F, crits_A U unkn_A \ {¬bi})
3. if sat?

1. new_crits = Model_Rotate(ci, $)
2. crits_A = crits_A U {¬bi |ci ∈ new_crits}
3. unkn_A = unkn_A \ {¬bi |ci ∈ new_crits}

4. else
1. unkn_A = unkn_A ⋂ {¬bi | bi ∈ conflict}  
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CSC2512: MUS extraction
However we can get even better improvements by 
moving beyond the simple algorithm. 

Paper:
Using Minimal Correction Sets to more Efficiently Compute 
Minimal Unsatisfiable Sets, Fahiem Bacchus and George 
Katsirelos (CAV 2015).


