
CSC2512
Advanced Propositional

Reasoning

Fahiem Bacchus, University of Toronto, 2

CSC2512: Modern CDCL Sat Solvers
CDCL = Conflict Driven Clause Learning

Input formula F in CNF. Determine whether or not F is
satisfiable using DPLL with key modifications.

Fahiem Bacchus, University of Toronto, 3

CSC2512: Modern Sat Solvers
DP—Variable Elimination. In each iteration we eliminate a variable v by
replace the set of clauses C with C – X –Y + R—remove all clauses with the
eliminated variable (X the clauses containing v and Y the clauses
containing –v) and add R (all resolvants between clauses in X and Y).

If min(|X|,|Y|) = k, R can contain O(k2) clauses, and the these clauses
can be longer than any clause in X or Y.

So DP can take exponential space (and time).

DPLL on the other time requires only linear space (although exponential
time). We only need to keep track of a single path in its depth-first search
(n copies of the program stack, one for each recursive call, when we
have n variables).

Generally speaking space is more constraining than time on modern
machines.

CDCL solvers lie somewhere in the middle. They use more space than DPLL,
but generally less than DP.

Fahiem Bacchus, University of Toronto, 4

CSC2512: Modern Sat Solvers
Modern DPLL based CDCL SAT Solvers (Conflict driven clause
learning)
1. Clause Database: Each clause is stored as an array/vector of

literals.
– Typically we encode the literals as numbers, e.g., x = 0, -x =1, y = 2, -y

= 3. So a clause [x, -y] would be stored as the vector [0, 3]. Under
such a scheme negated variables are odd, positive ones are even.

2. Watch Literals: We distinguish two literals of each clause as
being the watch literals. Each of these literals is said to watch
the clause. (Input unit clauses don’t have two literals so they
are are directly placed on the trail). Typically the literals at
index 0 and index 1 are used for watches.

3. Literal Watch Lists: For each literal we store a list of watched
clauses—these are the clauses that the literal serves as a
watch for.

Fahiem Bacchus, University of Toronto, 5

CSC2512: Sat Solvers
Main Data structures:
4. Trail: an array/vector storing the current partial truth

assignment being explored. We grow the trail as we
descend the search tree, shrink it as we backtrack.
– Each element on the trail is a pair

(literal, clause index/pointer).
– Implemented as an array treated as a stack where there is a

top pointer (trail_top) indicating the last entry in the stack.
Removing items is done by decreasing trail_top. New items are
added to the array at index trail_top.

5. UP Stack. The trail also doubles as a UP Stack. We need
two stack pointers, trail_top that points to next empty
slot on the trail, and up_stack_top that points to the
next literal that needs to be Unit Propagated. We can
tell if the UP Stack is empty by testing to see if
up_stack_top == trail_top

Fahiem Bacchus, University of Toronto, 6

CSC2512: Sat Solvers
Detecting Units the Old Way

For each literal keep a list of clauses it appears in.

Keep a count of the false literals in the clause.

If x is made false, increment the count for every clause it is in. If
that count is equal to the clause length -1 the clause has
become unit.

Examine the clause to find the literal it implies

Requires work for every clause x appears in
Requires work to restore the counts on backtrack.

Fahiem Bacchus, University of Toronto, 7

CSC2512: Sat Solvers
Detecting Units the new way with watch literals

UP—processes a clause only when one of its watches
become false. Then either:
• The other watch is true and we don’t need to do

anything (the clause is already satisfied)
• the false watch is replaced by a new unset literal.
• If no replacement can be found, we set the other watch

to be true.
• The other watch is already false we know that all literals

in the clause are false, and we have a conflict (a
falsified clause)

Fahiem Bacchus, University of Toronto, 8

CSC2512: Sat Solvers
Unit Propagation:
While UP-stack is not empty

1. x = Trail[up_stack_top]; up_stack_top += 1 //nxt var to UP
2. For each clause C watched by -x //-x is false

//(check if that clause has become unit).
a. y = C’s other watch.
b. If y is TRUE continue
c. If there exists z = a non-false literal in c with z ≠ x and z ≠ y

then move C from x’s watched clause list to z’s watched clause
list.

d. Else //all lits in C are false except possibly for y.
1. If y is FALSE return C as a conflict clause
2. Else set y to TRUE and put (y, c) on the trail

Fahiem Bacchus, University of Toronto, 9

CSC2512: Sat Solvers
So to update with a newly false literal we need only check a
fraction of the clauses the literal appears in (only those it
watches).

No work needs to be done on backtrack—if the watches are
valid, they will remain valid on backtrack.

Fahiem Bacchus, University of Toronto, 10

CSC2512: Sat Solvers
Decision Levels.
The solver operates by (a) making decisions—choosing
which literal to set to true, then (b) running UP until the UP
stack is empty or a conflict is detected.

The literal set by decision + all of the literals forced by UP as
a consequence of that decision constitute a section of the
trail called a decision level.

When the solver backtracks it always unsets a full decision
level—a decision literal and all of the literals UP’ed by it. It
might unset multiple decision levels, but never a subset of
a decision level.

Fahiem Bacchus, University of Toronto, 11

CSC2512: Sat Solvers
Root no decisions made

x forced by input unit clause (x)

¬y forced by clause becoming unit (¬y, ¬x)

r

Sequence of literals forced by unit propagation

t No more literals forced by unit propagation. Now SAT solver makes
a decision (setting another literal)

¬k
Sequence of literals forced by unit propagation

forced by clause (¬y, ¬x, r)

forced by clause (¬t, ¬r, ¬k)

Fahiem Bacchus, University of Toronto, 12

CSC2512: Sat Solvers
Unit Propagation:
The solver maintains the invariant that after each decision
level is added or removed from the trail every clause has
1. two unassigned watches
2. at least one true watch, or
3. or is a conflict (all literals, and both watches are false).
(One False one unassigned watch not possible).

The invariant is true as the start of the search: every clause
has two unassigned watches.
Note that at level 0, no decisions have been made, but we
might have unit clauses in F. The invariant holds before
these units are propagated, and after UP is finished.

Fahiem Bacchus, University of Toronto, 13

CSC2512: Sat Solvers
Add a decision level D to the trail, insert newly decided on
literal, and run UP to completion). For each clause either
1. Both watches remain unassigned at level D
2. at least one of the watches was true before D
3. A watch is made false at level D so it is

1. replaced by an unset watch
2. the other watch is made true
3. Both watches have become false and the clause is detected to

be a conflict.
Invariant still holds.

Fahiem Bacchus, University of Toronto, 14

CSC2512: Sat Solvers
Backtrack from a decision level D to the trail. Either
1. The clause has two unassigned watches at level D so they

remain unassigned.
2. The clause has two false watches at level D. Then both must

have been made false at level D so on backtrack both will be
unset.

3. The clause has a true watch set above level D, and it remains
set on backtrack

4. The clause has a true watch set at level D. If the other watch
is false it must have been set at level D and both will be unset
on backtrack.

Invariant is preserved and more importantly, no clause needs to
be examined on backtrack! Only need to unassign the literals
removed from the trail by backtracking.

Fahiem Bacchus, University of Toronto, 15

CSC2512: Sat Solvers
Sat(F)

1. Build Clause Database and literal watch lists, add units to trail

2. Dlevel = 0

3. while (TRUE)

4. conflict = UP()

5. if (conflict)

6. if Dlevel == 0 return UNSAT

7. newClause = LearnClause(conflict)

8. addToClauseDataBase(newClause)

9. backtrack(assertionLevel(newClause)) //undo decision levels

10. assign(assertedLiteral(newClause), newClause) //put on trail

11. else if all literals assigned, return SAT (true lits are satisfying assignment)

12. else

13. x = PickNextLiteral()

14. Dlevel = Dlevel+1

15. assign(x, NIL) //Literals made true by decision have no clause reason

Fahiem Bacchus, University of Toronto, 16

CSC2512: Sat Solvers
LearnClause(conflict)

//Starting with a clause that is falsified by the trail learn a new clause
//(also falsified by the trail) by resolution steps.

1. newClause = conflict

2. while(number of lits at decision level Dlevel > 1)

3. (l, cls) = pop(Trail)

4. if ¬l Î newClause //why can’t l be in newClause?

5. newClause = resolve(cls, newClause) //number of lits at Dlevel may change

6. Return(newClause)

assign(lit,cls_reason)

1. push(lit,cls) on Trail //UP-stack top not updated, so will be UP’ed

2. lit = True

3. var(lit).dlevel = Dlevel //record Dlevel of assignment with lit’s variable

Fahiem Bacchus, University of Toronto,
17

CSC2512: Sat Solvers
assertionLevel(clause)

//Clause must be falsified by trail

1. return(second highest Dlevel of any variable in clause)

assertedLiteral(clause)

//Clause must have only one literal with maximum Dlevel

1. return(literal with maximum Dlevel in clause)

backtrack(newDlevel)

//Remove all lits from trail that are at decision levels greater than newDlevel

1. while Dlevel > newDlevel

2. (l, cls) = pop(Trail)

3. l = UNASSIGNED

4. if cls = NIL //decision lit

5. Dlevel = Dlevel -1

Fahiem Bacchus, University of Toronto, 18

CSC2512: Clause Learning (Trail)
● X

∎ A
∎ ¬B
∎ C

● ¬Y
∎ D
∎ ¬E
∎ F

● Z
∎ H
∎ I
∎ ¬J
∎ ¬K
(K,¬I,¬H, ¬F,E, ¬D,B)

● X,Y,Z: Decision Variables.
∎ A,¬B,C,D,¬E,F,H,I,¬J,¬K: forced by unit

propagation
• (K,¬I,¬H, ¬F,E, ¬D,B): Conflict Clause

Fahiem Bacchus, University of Toronto, 19

CSC2512: Clause Learning (Trail)
● X

∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• Each forced literal was forced
by some clause becoming
unit.

Fahiem Bacchus, University of Toronto, 20

CSC2512: Clause Learning (Trail)
● X

∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

Each clause reason contains
1.One true literal on the path

(the literal it forced)
2. Literals falsified higher up on

the path.

Fahiem Bacchus, University of Toronto, 21

CSC2512: Clause Learning (Trail)
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• We can resolve away any
sequence of forced literals in
the conflict clause.

• Such resolutions always yield
a new falsified clause.

1. (K,¬I,¬H,¬F,E, ¬D,B), (D,B,Y) è
(K,¬I,¬H,¬F,E,B,Y), (¬B, ¬A) à
(K,¬I,¬H,¬F,E,¬A,Y)

2. (K,¬I,¬H,¬F,E, ¬D,B), (¬K,¬I,¬H,E,B) è
(¬I,¬H,¬F,E, ¬D,B)

3. (K,¬I,¬H,¬F,E, ¬D,B), (H,B,E,¬Z) è
(K,¬I,¬F,E,¬D,B,¬Z)

4. …

Fahiem Bacchus, University of Toronto, 22

CSC2512: Clause Learning (Trail)

• Any forced literal x in any conflict clause can be
resolved with the reason clause for –x to generate a
new conflict clause.

• If we continued this process until all forced literals are
resolved away we would end up with a clause
containing decision literals only (All-decision clause).

• But empirically the all-decision clause tends not be very
effective.
– Too specific to this particular part of the search to be

useful later on.

Fahiem Bacchus, University of Toronto, 23

CSC2512: 1-UIP clauses

• The standard clause learned is a 1-UIP clause
• LearnClause learns a 1-UIP clause

• This continually involves resolves the trail deepest literal
in the conflict clause until there is only one literal left in
the clause that is at the deepest level.
• Since every resolution step replaces a literal by

literals falsified higher up the trail, we must eventually
achieve this condition

• The sole remaining literal at the deepest level is
called the asserted literal.

Fahiem Bacchus, University of Toronto, 24

CSC2512: 1-UIP clauses

• A 1-UIP clause is sometimes called an empowering
clause. It allows UP to force a literal that it wasn’t able
to before.

Fahiem Bacchus, University of Toronto, 25

CSC2512: 1-UIP Clause (Trail)
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

1. (K,¬I,¬H, ¬F,E, ¬D,B), (¬K,¬I,¬H,E,B)
è (¬I,¬H, ¬F,E, ¬D,B)

2. (¬I,¬H, ¬F,E, ¬D,B), (I,¬H,¬D,¬X)
è (¬H, ¬F,E, ¬D,B,¬X)

Fahiem Bacchus, University of Toronto, 26

CSC2512: 1-UIP clauses
• The 1-UIP clause forces its asserted literal at a prior

decision level (if we had the clause before we would
have forced the asserted literal before).

• We backtrack so as to fix the trail to account for the
new 1-UIP clause.

• The asserted literal is forced as soon as all other literals
in the clause became false. The assertionLevel is the
second deepest decision level in the clause (the
asserted literal is at the deepest level)

• So we backtrack to that level (not undoing the decision
or anything forced at that level), add the asserted
literal to the trail, with the 1-UIP clause as its reason,
then apply UP again.

Fahiem Bacchus, University of Toronto, 27

CSC2512: 1-UIP Clause (Trail)
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)
(¬H, ¬F,E, ¬D,B,¬X)

● X
∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬Eç …
∎ F ç …
∎ ¬H ç (¬H,¬F,E, ¬D,B,¬X)

More unit
propagation

Fahiem Bacchus, University of Toronto, 28

CSC2512: 1-UIP clauses
• On backtrack the newly asserted literal can generate

another conflict after UP, this will result in learning a new
clause and backtrack further.

• Also note that we are jumping back across
incompletely tested decisions.
• We backtracked over Z, but we don’t know if ¬Z might not

have lead to a solution.
• All we know is that the trail is now patched to account for the

newly learnt clause
• Search is no longer “exhaustive” like DPLL

• Empirical evidence is not clear, but (a) it is cheap to
backtrack, (b) going back far enough to fix the trail
makes the implementation more efficient, (c) allows the
search to explore a different area of the space.

Fahiem Bacchus, University of Toronto, 29

CSC2512: 1-UIP clauses
• What happens if the 1-UIP clause is unit?

• Where do we backtrack to?

Fahiem Bacchus, University of Toronto, 30

CSC2512: VSIDS Heuristic
• Heuristic for selecting next decision literal (variable)
• Variable State Independent Decaying Sum
• Scientific analysis is scant and intuitions vary: but VSIDS

is thought to encourage resolutions involving most
recently learnt clauses.
• A counter for each variable. Increment the counter of all

variables in the original conflict clause (the clause that was
found to be empty by Unit Prop), and the variables in each
reason clause resolved with the conflict to generate the 1-UIP
clause. (Each such variable has its counter incremented only
once.Periodically divide all counts by 2.

• Pick the unassigned variable with highest count at each
decision

• Low overhead (counters updated only for variables in
conflict). Lits kept on heap ordered by counter.

Fahiem Bacchus, University of Toronto, 31

CSC2512: VSIDS Heuristic
• The variables appearing in recently used clauses (i.e.,

clauses used in resolution steps to generate new learnt
clauses) will, as we divide by 2, get higher VSIDS scores.

• Variables that at this point in the search are not being used
in resolution steps will get their VSIDS scores decayed.

• More recent work (Reading for next week)
An Empirical Study of Branching Heuristics through the Lens
of Global Learning Rate
Jia Hui Liang, Hari Govind, Pascal Poupart, Krzysztof Czarnecki,
and Vijay Ganesh.
In the Proceedings of the 20th International Conference on Theory
and Application of Satisfiability Testing (SAT 2017), Aug 28 – Sep
1, 2017, Melbourne, Australia

Fahiem Bacchus, University of Toronto, 32

CSC2512: Phase Saving/Restarts
Restarts
• Periodically restarting the solver (undoing all decisions) is useful.

• Various strategies have been investigated for when to restart.
• Note also that all newly learnt units act as a restart---search is

backtracked to decision level 0.
Phase Savings
• We decide to branch on a variable: what literal to try first?
• Phase saving: use the literal that was the most recent setting of the

variable on the trail.
Interaction: phase saving and restarts interact. The VSIDS scores are
unchanged after a restart, so a similar set of decisions will typically be
made after a restart. Similarly, phase savings tends to decide on the
same value of the decision variables as was used before. So with
phase savings restarts will tend to put is back into the same part of
the search space. But perhaps the small changes are important. This
runs counter to the original intuition behind restarts.

Fahiem Bacchus, University of Toronto, 33

CSC2512: Phase Saving/Restarts
Papers:

1. Randomization in Backtrack Search: Exploiting Heavy-
Tailed Profiles for Solving Hard Scheduling Problems. Carla
P. Gomes, Bart Selman, Ken McAloon, Carol
Tretkoff: AIPS 1998: 208-213

2. A Lightweight Component Caching Scheme for Satisfiability
Solvers Knot Pipatsrisawat and Adnan Darwiche.

Fahiem Bacchus, University of Toronto, 34

CSC2512: Resolution Power
• With these various features it can be show that CDCL

solvers (Conflict Driven Clause Learning) are no longer
limited to tree-resolution instead they can p-simulate
general resolution

• Remains an open question whether or not CDCL
without restarts is as powerful as general resolution.

Fahiem Bacchus, University of Toronto, 35

CSC2512: Clause Minimization
First a few observations:
1. A Conflict Clause is a clause that is falsified by the literals

made true on the trail.
2. A Reason clause is a clause associated with a unit implied

literal on the trail. If R is the reason clause for the literal x.
Then:
1. x is on the trail (i.e. has been made true).
2. The clause R contains x, and other literals ¬l1, ¬l2, ..., ¬lk: R

= (x, ¬l1, ¬l2, ..., ¬lk) where each ¬li has been made false
on the trail (li has been made true).

3. Each li is on the trail above x
3. The decision level of a variable x is the decision level at

which either x ¬x it is on the trail. (Unset variables do not
have decision levels). Remember that the decision levels
start at zero and each decision level consists of a decided
upon literal along with all the literals forced by unit
propagation until the next decision.

Fahiem Bacchus, University of Toronto, 36

CSC2512: Clause Minimization
4. The decision levels of a Conflict Clause or a reason

clause are the set of different decision levels of its
variables.

5. A trail resolution is a resolution of a conflict clause and
a reason clause. For example a 1-UIP clause is
produced by a sequence of trail resolutions.

Fahiem Bacchus, University of Toronto, 37

CSC2512: Clause Minimization
Observation: Trail resolutions cannot reduce the number
of decision levels in a conflict clause.

Each reason clause (x, ¬l1, ¬l2, ..., ¬lk) must contain at
least one literal ¬l1 that is at the same decision level as x.

All the l1 are above x on the trail, so their decision levels
are less than or equal to x. If they all had a decision
level less than x, the reason clause would have
become unit at a previous decision level.

So if we resolve away ¬x from a conflict clause, we must
introduce at least one other literal in the clause at x’s
decision level.

Fahiem Bacchus, University of Toronto, 38

CSC2512: Clause Minimization
Observation: The minimum size clause that we can
produce by doing trail resolutions against a conflict
clause has size equal to the number of decision levels in
the clause.

Fahiem Bacchus, University of Toronto, 39

CSC2512: Clause Minimization
Clause minimization. Given a conflict clause (typically the
1-UIP clause) C = (¬l1, ¬l2, ..., ¬lk) where each ¬li has been
made false on the trail, we want to compute via a
sequence of trail resolutions a new clause C’ such that

C’ ⊂ C

Optimally we want to compute the smallest such C’

Fahiem Bacchus, University of Toronto, 40

CSC2512: Clause Minimization
● X

∎ A ç …
∎ ¬B ç (¬B, ¬X)
∎ C ç (C,B)

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç (¬E, ¬D)
∎ F ç (F,¬C, B,E)

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H,¬F,E,¬D,B)

1. (K,¬I,¬H,¬F,E, ¬D,B), (¬K,¬I,¬H,E,B)
è (¬I,¬H,¬F,E, ¬D,B)

2. (¬I,¬H,¬F,E, ¬D,B), (I,¬H,¬D,¬X)
è (¬H,¬F,E, ¬D,B,¬X) == 1-UIP clause

3. Further reduction steps
4. (¬H,¬F,E,¬D,B,¬X), (F,¬C,B,E) à

(¬H,¬C, E,¬D,B,¬X)
5. (¬H,¬C, E,¬D,B,¬X), (C,B) à

(¬H, E,¬D,B,¬X)
6. (¬H,E,¬D,B,¬X),(¬E,¬D) à

(¬H,¬D,B,¬X)
7. (¬H,¬D,B,¬X),(¬B,¬X) à

(¬H,¬D,¬X)

Fahiem Bacchus, University of Toronto, 41

CSC2512: Clause Minimization
The example shows that clause minimization can have a
tremendous effect on the size of the clause. How do we
do this:

Clause reduction: simple non recursive method.

Proc Reduce(C)
for literal x ∈ C {

if (x.ReasonClause \ {x}) ⊂ C
C = C \ {x}

}
return C

Fahiem Bacchus, University of Toronto, 42

CSC2512: Clause Minimization
Clause reduction: more sophisticated method.

Proc Reduce(C)
for literal x ∈ C {

if (lit_is_removable(x, C))
C = C \ {x}

}
return C

Proc lit_is_removable(x, C)
if (x.ReasonClause = NULL) return FALSE
if ((x.ReasonClause \ {¬x}) ⊂ C) return TRUE
…

In general, there is a recursive definition. x is removable from C if
every literal (other than ¬x) is either in C or is removable from C.

Fahiem Bacchus, University of Toronto, 43

CSC2512: Other Work: Proof extraction
• For any clause c, if we unit propagate –c, in the formula

F and obtain an empty clause (a conflict) then it must
be the case that F ⊧ c by the soundness of UP.

• However, we can have F ⊧ c but UP(-c) does not
generate a conflict. UP is not a complete rule of
inference.

• Nevertheless, it is “complete” along a sequence of
resolution steps.

Fahiem Bacchus, University of Toronto, 44

CSC2512: Other Work: Proof extraction
• Given a resolution proof as a sequence of clauses

where cn is not an input clause.
c1, c2, …, cn

• we can observe that if we negate cn and unit
propagate the literals in the formula c1, c2, …, cn-1 we
will obtain a conflict (one of these clauses will be
falsified)

If cn = (A, B) as a result of resolving (A,x) and (B,-x)
UP falsifies one of these clauses (depending on if
it propagates x or –x first).

Fahiem Bacchus, University of Toronto, 45

CSC2512: Other Work: Proof extraction
• This gives rise to the RUP (reverse unit propagation)

technique for extracting proofs from a clause learning SAT
solver.

• Output to a log all learnt clauses in the sequence they are
learnt.

• Verify each learnt clause ci in the order they it was learnt by
negating ci and unit propagating through the set of clauses
U {c1, …, ci-1}

• If we obtain a conflict we know that ci is a logical
consequence of the input formula and the previously
verified learnt clauses.

Fahiem Bacchus, University of Toronto, 46

CSC2512: Other Work: Proof extraction
• Eventually we can verify a unit clause (x) whose partner (-x)

has previously been verified thus showing that the proof is
sound.

• This procedure verifies the UNSAT result (just like the satisfying
assignment can be used to verify the SAT result).

• Furthermore, we can instrument the UP checking process so
that we only keep the learnt clauses and input clauses that
are eventually needed to verify the final empty clause.

• Note that this works even when we have lost track of the
resolution steps involved in computing a learnt clause.

• This set of clauses responsible for UNSAT can be output.

Fahiem Bacchus, University of Toronto, 47

CSC2512: Other Work: Proof extraction
• Note also that the final sequence of learnt clauses are

not a traditional resolution proof. This sequence is called
a “clausal” proof, and it can be much shorter than a
resolution proof.

• Unit Prop is needed to verify a clausal proof, whereas a
much simple algorithm can verify a resolution proof.

• A clausal proof can be expanded into a resolution
proof by tracking the clauses the unit prop steps need
to derive a contradiction.

Paper: Trimming while Checking Clausal Proofs Marijn J.H.
Heule, Warren A. Hunt, Jr., and Nathan Wetzler

Fahiem Bacchus, University of Toronto, 48

CSC2512: Other work: Assumptions
Assumptions. A useful technique is solving subject some
set of literals called assumptions:
• A = {l1, l2, …, lk}
• We start the SAT solver and force it to pick a next

unassigned literal in A as a decision until there are no
more unassigned literals in A.

• If a literal of A is forced to TRUE we skip over it for the
next decision.

• If a literal of A is forced to FALSE we stop: Say l1, l2 …, li
are the decisions already made, and lj is forced to
FALSE: then we have the following clause

(¬l1, ¬l2, …, ¬li,¬lj)

Fahiem Bacchus, University of Toronto, 49

CSC2512: Other work: Assumptions
• If we assign all literals in A we then continue the normal

SAT solving process with freedom to pick the decision
variables as we want.

• If this results in UNSAT, some clause (perhaps empty)
falsified by the A decisions will be learnt.

• In any event, if the formula becomes UNSAT under A,
we obtain a clause falsified by A (the clause specifies
that some subset of A is impossible).

Fahiem Bacchus, University of Toronto, 50

CSC2512: Other work: Assumptions
• Assumptions are very useful for incremental SAT solving

where we want to SAT solver a sequence of related
formulas F1, F2, …, Fn

• If F1⊆ F2⊆ ⋯ ⊆ Fn then we can use one instance of the
SAT solver. Solve F1 then add the additional clauses of F2
and solve again, add the additional clauses of F2 …
• The advantage if this is that the SAT solver gets to

reuse all of its learnt clauses.
• But if we must remove clauses between SAT solver

invocations we have a problem: some of the learnt
clauses might no longer be valid.

Fahiem Bacchus, University of Toronto, 51

CSC2512: Other work: Assumptions
• For clause removals we can use assumptions: if we will

later want to remove the clause C = (x1, x2, …, xn) we
can add a brand new variable (often called a
selection variable) to the clause: (x1, x2, …, xn, s)

• Then if we want to include C we assume ¬s. Any learnt
clauses were derived from resolving against C will now
also contain s (s appears nowhere else in the formula
so it can’t be resolved away)

• When we want to exclude C from the formula we don’t
assume anything. The clause can always be satisfied by
the SAT solver be making s true—and again since s
appears nowhere else we will no longer learn any
clauses from C. (Alternately we can assume s)

CSC2512: Papers for Next Time

• An Empirical Study of Branching Heuristics through
the Lens of Global Learning Rate
Jia Hui Liang, Hari Govind, Pascal Poupart, Krzysztof
Czarnecki, and Vijay Ganesh.

• Randomization in Backtrack Search: Exploiting
Heavy-Tailed Profiles for Solving Hard Scheduling
Problems. Carla P. Gomes, Bart Selman, Ken
McAloon, Carol Tretkoff: AIPS 1998: 208-213

• A Lightweight Component Caching Scheme for
Satisfiability Solvers Knot Pipatsrisawat and Adnan
Darwiche.

• Trimming while Checking Clausal Proofs Marijn J.H.
Heule, Warren A. Hunt, Jr., and Nathan Wetzler

Fahiem Bacchus, University of Toronto, 52

CSC2512: Clause Deletion

• A new clause is learned from every conflict.
• In practice the solver starts to slow down after it

accumulates too many clauses.
• So deleting some of these learned clauses has

proved to be effective.
• Earlier clauses were deleted whenever memory

was about to be exhausted. Clauses were
deleted by size (delete the largest ones first) or
by activity (delete those clauses that had not
recently been used in learning new clauses.

Fahiem Bacchus, University of Toronto, 53

CSC2512: Clause Deletion

• In 2009 Audemard and Simon developed a new idea for
selecting which clauses to delete called the LBD score.

• Once we learn a 1-UIP clause, minimize it, and use it to
backtrack asserting a new literal, we can count the # of
different decision levels in the clause. This is the LBD
score.

• Audemard and Simon found that very aggressive clause
deletion where every 10,000 learnt clauses ½ with
highest LBD score are deleted, give a significant boost in
performance.

• Now however theoretical completeness is sacrificed
(although it can be regained by slowing increasing the
clause deletion trigger from 10,000 clauses to 20,000,
30,000, etc. (any increasing sequence will suffice).

Fahiem Bacchus, University of Toronto, 54

CSC2512: Clause Deletion

• Papers for next time:
1. Predicting Learnt Clauses Quality in Modern SAT

Solvers, Gilles Audemard, Laurent Simon, IJCAI 2009.
2. Coverage-Based Clause Reduction Heuristics for CDCL Solvers,

Hidetomo Nabeshima and Katsumi Inoue, SAT 2017

Fahiem Bacchus, University of Toronto, 55

CSC2512: Preprocessing

• An additional essential part of modern
SAT solvers is preprocessing and
inprocessing.

• Preprocessing is the technique of
converting the input CNF F to a new
CNF F’ such that if F’ is UNSAT then so is
F, and furthermore if 𝜋 is a satisfying
model of F’ then 𝜋 can in poly-time be
converted into 𝜋’ a satisfying model for
F.

Fahiem Bacchus, University of Toronto, 56

CSC2512: Preprocessing

• A number of useful techniques for
preprocessing have been developed.
The most important of these is Bounded
Variable Elimination, Clause
subsumption, and self-subsuming
resolutions.

Fahiem Bacchus, University of Toronto, 57

CSC2512: Preprocessing

• Bounded Variable Elimination. This is a like a
single step of DP. We eliminate the variable x
from the formula by taking all clauses A
containing x and all clauses B containing ¬x
and generate all resolvant pairs:

R = {R[c1,c2] | c1∈A c2∈ B}
• All tautologies are removed from R.

Furthermore, clauses in R might be subsumed by
other clauses. So we reduce R by removing
these clauses.

• Bounded: we preform this step if
|R| < |A| + |B|

(i.e., we obtain fewer clauses)

Fahiem Bacchus, University of Toronto, 58

CSC2512: Preprocessing

• Implementing this efficiently requires
clever scheduling and data structure
techniques.

Fahiem Bacchus, University of Toronto, 59

CSC2512: Preprocessing

• Subsumption. Checking for subsumption can be speeded up
using Bloom Filters. We map each literal in F to a number in the
range [0,63]. Then for each clause c we construct a 64 bit map,
by setting all bits mapped to by literals in c.

• Now if c’ ⊆ c then c’ bit map must be a subset of c bit map. That
is, the and of these two bit maps must equal c’ bit map.
– E.g., x = 0, -x = 1, y = 2, -y = 3, z = 4, -z = 5.

c = [x,y,z] = [1, 0, 1, 0, 1, 0]
c’= [x,z] = [1, 0, 0, 0, 1, 0]

[1, 0, 1, 0, 1, 0] AND [1, 0, 0, 0, 1, 0] = [1, 0, 0, 0, 1, 0] = c’ bit map
• This test is fast, and if it fails then we know that c is not subsumed

by c’. If it succeeds then we actually have to test for subsumption
as this is a one-way test.
– E.g. r = 4

c” = [x,r] = [1, 0, 0, 0, 1, 0] – same bit map as c’

Fahiem Bacchus, University of Toronto, 60

CSC2512: Preprocessing

• (A,x) (B,¬x) where B ⊆A. Clearly(B,¬x) is
not a subset of (A,x), so there is no
clause subsumption. However, consider
the resolvant: (A,B) == (A) (since B ⊆A).
The resolvant subsumes (A,x). So in this
case we can remove x from (A,x). This is
called a self-subsuming resolution.
– E.g.

(a, b, ¬c, x) and (b, ¬x)
è (a,b,¬c) and (b, ¬x)

Fahiem Bacchus, University of Toronto, 61

CSC2512: Paper for next time.

1. Effective Preproessing in SAT through Variable
and Clause Elimination, Niklas Een and Armin
Biere, SAT 2005.

Fahiem Bacchus, University of Toronto, 62

Fahiem Bacchus, University of Toronto, 63

CSC2512: MUSes and MCSes
• MUS computation.

• In many applications we want to know why something
is unsatisfiable. We can extract a minimal unsatisfiable
subset of the formula: a MUS.

• Note not a minimum unsatisfiable subset (which is a
much harder problem)

• Since the MUS typically much smaller than the input
formula F. It can provide much more specific
information about a cause of unsatisfiablity in F.

Fahiem Bacchus, University of Toronto, 64

CSC2512: MUSes and MCSes
• A MUS (Minimal Unsatisfiable Set) M is an UNSAT set of

clauses M such that for any clause c in M:
M \ {c} is SAT //M is set inclusion minimal

• If F is SAT then it contains no MUSes. If it is UNSAT it
contains at least one MUS and usually contains
many different MUSes.

• A correction set C of a CNF F is a subset of F such that:
F \ C is SAT

A correction set C is a minimal correction set (MCS) if
no proper subset of C is a correction set of F
• If F is SAT only the empty set is a MCS. But if F is

UNSAT, then any MCS cannot be empty and
generally, there are many MCSes.

Fahiem Bacchus, University of Toronto, 65

CSC2512: MUSes and MCSes
• MUS/MCS hitting set duality (Reiter AIJ 2087).

• Consider an UNSAT formula F, let AllMuses(F) be the
collection of all MUSes in F. Each M ∈ AllMuses(F) is a
set of clauses, a subset of F. That is AllMuses(F) is a
collection of sets.

• Similarly, let AllMCSes(F) be the collection of all MCSes
of F

Fahiem Bacchus, University of Toronto, 66

CSC2512: MUSes and MCSes
• Given a collection of sets K, HS is a hitting set of K iff for

every set S ∈K we have that HS ⋂ S ≠ ∅
• HS has a non-empty intersection with every set in the

collection.
• A set HS is a minimal hitting set of K if it is a hitting set

and no proper subset of HS is a hitting set of K.

Fahiem Bacchus, University of Toronto, 67

CSC2512: MUSes and MCSes
• Reiter’s result:

A set C ⊆ F is an MCS of F iff it is a minimal hitting set of
AllMuses(F). And a set M ⊆ F is an MUS of F iff it is a
minimal hitting set of AllMCSes(F).

Also, a set C ⊆ F is an correction set (not necessarily
minimal) of F iff it is a hitting set of all unsatisfiable subsets
of F (not necessarily minimal). And a set M ⊆ F is
unsatisfiable (not necessarily minimal) iff it is a hitting set of
all correction sets (not necessarily minimal) of F.

Fahiem Bacchus, University of Toronto, 68

CSC2512: MUS extraction
• Given an UNSAT formula F, we want to compute one of

its MUSes (and we don’t care which one).
• We can do this with a sequence of calls to a SAT solver.

Fahiem Bacchus, University of Toronto, 69

CSC2512: MUS extraction
• A critical clause of an UNSAT formula U, is a clause whose

removal makes U SAT.
• A MUS M is an UNSAT formula all of whose clauses are

critical.

• Divide F into two sets
• crits: a set of clauses that we know must be in the MUS

we are extracting (they are critical).
• unkn a set of clauses that might be in the MUS but we

don’t know yet.

• crits U unkn is the working formula—it is an unsat formula
that is a subset of F and thus it contains one of F’s MUSes

Fahiem Bacchus, University of Toronto, 70

CSC2512: MUS extraction
1. crits ⟵ ∅ unkn ⟵ F
2. while unkn ≠ ∅

1. c ⟵ choose c ∈ unkn
2. sat? = SatSolve(crits U unkn \ {c})
3. if sat?

1. crits = crits U {c}
4. unkn = unkn - \{c}

This simple algorithm iteratively tests the clauses of an
initial UNSAT formula (F) removing clauses not needed to
retain UNSAT, and keeping those clauses whose removal
makes the formula SAT.

Fahiem Bacchus, University of Toronto, 71

CSC2512: MUS extraction
This simple algorithm can be significantly improved.
1. When we find that removing c from unkn makes crits U

unkn (so c is critical for the MUS contained in crits U
unkn) we can use the satisfying truth assignment 𝜋 to
find other critical clauses.

2. When removing c from unkn keeps crits U unkn UNSAT
(c need not be in the MUS we are extracting), then we
can extract from the SAT solver a subset of the clauses
in crits U unkn sufficient to cause UNSAT using
assumptions

Fahiem Bacchus, University of Toronto, 72

CSC2512: MUS extraction
Model Rotation. Given that c is found to be critical, find other critical
clauses.

When is a clause c critical for the working formula crits U unkn.
There exists a truth assignment satisfying
(crits U unkn) \ {c}—removing c makes the working formula SAT

We have found a truth assignment 𝜋 satisfying
(crits U unkn) \ {c}

So we try to change one of the truth assignments in 𝜋 so that we
satisfy c and every other clause in (crits U unkn), except for one other
clause c’. So now we have a new truth assignment 𝜋’ that satisfies
(crits U unkn) \ {c’}

This shows that c’ is also critical for the current working formula and
we can move it into crits.

Fahiem Bacchus, University of Toronto, 73

CSC2512: MUS extraction
Assumptions. Instead of giving the SAT solver the CNF
(crits U unkn) we add a selector variable to each clause
of F.

The selector variables are brand new variables (one new
variable per clause). So every clause ci∈ F is replaced
with the clause (ci∨ bi) where bi is the new selector
variable for clause ci.

Then we call the SAT solver with all clauses in F and the
assumptions {¬b1,¬b2, …, ¬bm}. These assumptions force
the SAT solver to try to satisfy all of the clauses ci

Fahiem Bacchus, University of Toronto, 74

CSC2512: MUS extraction
Assumptions.
When we want to remove the clause ci from the working
formula, we stop assuming ¬bi. Now the SAT solver is free
to satisfy (ci∨ bi) by simply making bi true.

If the working formula is UNSAT then the SAT solver will
return a subset of the assumptions {¬b1,¬b2, …, ¬bm} in a
conflict clause (bj1, bj2, …, bjk). This clause says that the
subset of clauses {cj1, cj2, …, cjk} is UNSAT (at least one of
them must be falsified by any truth assignment.

Now we can use this subset to further reduce the working
formula.

Fahiem Bacchus, University of Toronto, 75

CSC2512: MUS extraction
1. crits_A ⟵ ∅

2. unkn_A = {¬bi |ci∈ F} //Two sets of assumptions
3. while unkn_A ≠ ∅

1. choose ¬bi∈ unkn_A
2. (sat?, 𝜋, conflict) =

SatSolve(F, crits_A U unkn_A \ {¬bi})
3. if sat?

1. new_crits = Model_Rotate(ci, 𝜋)
2. crits_A = crits_A U {¬bi |ci∈ new_crits}
3. unkn_A = unkn_A \ {¬bi |ci∈ new_crits}

4. else
1. unkn_A = unkn_A ⋂ {¬bi | bi ∈ conflict}

Fahiem Bacchus, University of Toronto, 76

CSC2512: MUS extraction
However we can get even better improvements by
moving beyond the simple algorithm.

Paper for next time:
Using Minimal Correction Sets to more Efficiently Compute
Minimal Unsatisfiable Sets, Fahiem Bacchus and George
Katsirelos (CAV 2015).

