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CSC2512: Modern CDCL Sat Solvers
CDCL = Conflict Driven Clause Learning 

Input formula F in CNF. Determine whether or not F is 
satisfiable using DPLL with key modifications.
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CSC2512: Modern Sat Solvers
DP—Variable Elimination. In each iteration we eliminate a variable v by 
replace the set of clauses C with C – X –Y + R—remove all clauses with the 
eliminated variable (X the clauses containing v and Y the clauses 
containing –v) and add R (all resolvants between clauses in X and Y).

If min(|X|,|Y|) = k, R can contain O(k2) clauses, and the these clauses 
can be longer than any clause in X or Y. 

So DP can take exponential space (and time). 

DPLL on the other time requires only linear space (although exponential 
time). We only need to keep track of a single path in its depth-first search 
(n copies of the program stack, one for each recursive call, when we 
have n variables).

Generally speaking space is more constraining than time on modern 
machines. 

CDCL solvers lie somewhere in the middle. They use more space than DPLL, 
but generally less than DP.
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CSC2512: Modern Sat Solvers
Modern DPLL based CDCL SAT Solvers (Conflict driven clause 
learning)
1. Clause Database: Each clause is stored as an array/vector of 

literals.
– Typically we encode the literals as numbers, e.g., x = 0, -x =1, y = 2, -y 

= 3. So a clause [x, -y] would be stored as the vector [0, 3]. Under 
such a scheme negated variables are odd, positive ones are even.

2. Watch Literals: We distinguish two literals of each clause as 
being the watch literals. Each of these literals is said to watch 
the clause. (Input unit clauses don’t have two literals so they 
are are directly placed on the trail). Typically the literals at 
index 0 and index 1 are used for watches.

3. Literal Watch Lists: For each literal we store a list of watched
clauses—these are the clauses that the literal serves as a 
watch for. 
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CSC2512: Sat Solvers
Main Data structures:
4. Trail: an array/vector storing the current partial truth 

assignment being explored. We grow the trail as we 
descend the search tree, shrink it as we backtrack. 
– Each element on the trail is a pair 

(literal, clause index/pointer).
– Implemented as an array treated as a stack where there is a 

top pointer (trail_top) indicating the last entry in the stack. 
Removing items is done by decreasing trail_top. New items are 
added to the array at index trail_top. 

5. UP Stack. The trail also doubles as a UP Stack. We need 
two stack pointers, trail_top that points to next empty 
slot on the trail, and up_stack_top that points to the 
next literal that needs to be Unit Propagated. We can 
tell if the UP Stack is empty by testing to see if 
up_stack_top == trail_top
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CSC2512: Sat Solvers
Detecting Units the Old Way

For each literal keep a list of clauses it appears in.

Keep a count of the false literals in the clause.

If x is made false, increment the count for every clause it is in. If 
that count is equal to the clause length -1 the clause has 
become unit.

Examine the clause to find the literal it implies 

Requires work for every clause x appears in
Requires work to restore the counts on backtrack.
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CSC2512: Sat Solvers
Detecting Units the new way with watch literals

UP—processes a clause only when one of its watches 
become false. Then either:
• The other watch is true and we don’t need to do 

anything (the clause is already satisfied)
• the false watch is replaced by a new unset literal.
• If no replacement can be found, we set the other watch 

to be true. 
• The other watch is already false we know that all literals 

in the clause are false, and we have a conflict (a 
falsified clause)
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CSC2512: Sat Solvers
Unit Propagation:
While UP-stack is not empty

1. x = Trail[up_stack_top]; up_stack_top += 1 //nxt var to UP
2. For each clause C watched by -x //-x is false

//(check if that clause has become unit).
a. y = C’s other watch.
b. If y is TRUE continue
c. If there exists z = a non-false literal in c with z ≠ x and z ≠ y 

then move C from x’s watched clause list to z’s watched clause 
list.

d. Else //all lits in C are false except possibly for y. 
1. If y is FALSE return C as a conflict clause 
2. Else set y to TRUE and put (y, c) on the trail
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CSC2512: Sat Solvers
So to update with a newly false literal we need only check a 
fraction of the clauses the literal appears in (only those it 
watches). 

No work needs to be done on backtrack—if the watches are 
valid, they will remain valid on backtrack.
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CSC2512: Sat Solvers
Decision Levels.
The solver operates by (a) making decisions—choosing 
which literal to set to true, then (b) running UP until the UP 
stack is empty or a conflict is detected. 

The literal set by decision + all of the literals forced by UP as 
a consequence of that decision constitute a section of the 
trail called a decision level.

When the solver backtracks it always unsets a full decision 
level—a decision literal and all of the literals UP’ed by it. It 
might unset multiple decision levels, but never a subset of 
a decision level. 
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CSC2512: Sat Solvers
Root no decisions made 

x forced by input unit clause (x)

¬y forced by clause becoming unit (¬y, ¬x)

r

Sequence of literals forced by unit propagation

t No more literals forced by unit propagation. Now SAT solver makes 
a decision (setting another literal)

¬k
Sequence of literals forced by unit propagation

forced by clause (¬y, ¬x, r)

forced by clause (¬t, ¬r, ¬k)



Fahiem Bacchus, University of Toronto, 12

CSC2512: Sat Solvers
Unit Propagation:
The solver maintains the invariant that after each decision 
level  is added or removed from the trail every clause has
1. two unassigned watches
2. at least one true watch, or
3. or is a conflict (all literals, and both watches are false). 
(One False one unassigned watch not possible).

The invariant is true as the start of the search: every clause 
has two unassigned watches.
Note that at level 0, no decisions have been made, but we 
might have unit clauses in F. The invariant holds before 
these units are propagated, and after UP is finished.
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CSC2512: Sat Solvers
Add a decision level D to the trail, insert newly decided on 
literal, and run UP to completion). For each clause either 
1. Both watches remain unassigned at level D
2. at least one of the watches was true before D 
3. A watch is made false at level D so it is

1. replaced by an unset watch
2. the other watch is made true
3. Both watches have become false and the clause is detected to 

be a conflict. 
Invariant still holds.
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CSC2512: Sat Solvers
Backtrack from a decision level D to the trail. Either 
1. The clause has two unassigned watches at level D so they 

remain unassigned. 
2. The clause has two false watches at level D. Then both must 

have been made false at level D so on backtrack both will be 
unset. 

3. The clause has a true watch set above level D, and it remains 
set on backtrack

4. The clause has a true watch set at level D. If the other watch 
is false it must have been set at level D and both will be unset 
on backtrack.

Invariant is preserved and more importantly, no clause needs to 
be examined on backtrack! Only need to unassign the literals 
removed from the trail by backtracking. 
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CSC2512: Sat Solvers
Sat(F)

1. Build Clause Database and literal watch lists, add units to trail

2. Dlevel = 0

3. while (TRUE)

4. conflict = UP()

5. if (conflict) 

6. if Dlevel == 0 return UNSAT

7. newClause = LearnClause(conflict)

8. addToClauseDataBase(newClause)

9. backtrack(assertionLevel(newClause)) //undo decision levels 

10. assign(assertedLiteral(newClause), newClause) //put on trail

11. else if  all literals assigned, return SAT (true lits are satisfying assignment)

12. else 

13. x = PickNextLiteral()

14. Dlevel = Dlevel+1

15. assign(x, NIL)  //Literals made true by decision have no clause reason
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CSC2512: Sat Solvers
LearnClause(conflict)

//Starting with a clause that is falsified by the trail learn a new clause
//(also falsified by the trail) by resolution steps.

1. newClause = conflict

2. while(number of lits at decision level Dlevel > 1)

3. (l, cls) = pop(Trail)

4. if ¬l Î newClause //why can’t l be in newClause?

5. newClause = resolve(cls, newClause) //number of lits at Dlevel may change

6. Return(newClause)

assign(lit,cls_reason)

1. push(lit,cls) on Trail         //UP-stack top not updated, so will be UP’ed

2. lit = True

3. var(lit).dlevel = Dlevel //record Dlevel of assignment with lit’s variable 
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CSC2512: Sat Solvers
assertionLevel(clause)

//Clause must be falsified by trail

1. return(second highest Dlevel of any variable in clause)

assertedLiteral(clause)

//Clause must have only one literal with maximum Dlevel

1. return(literal with maximum Dlevel in clause)

backtrack(newDlevel)

//Remove all lits from trail that are at decision levels greater than newDlevel

1. while Dlevel > newDlevel

2. (l, cls) = pop(Trail)

3. l = UNASSIGNED

4. if cls = NIL //decision lit

5. Dlevel = Dlevel -1 
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CSC2512: Clause Learning (Trail)
● X

∎ A
∎ ¬B
∎ C

● ¬Y
∎ D
∎ ¬E
∎ F

● Z
∎ H
∎ I
∎ ¬J
∎ ¬K
(K,¬I,¬H, ¬F,E, ¬D,B)

● X,Y,Z: Decision Variables.
∎ A,¬B,C,D,¬E,F,H,I,¬J,¬K: forced by unit 

propagation
• (K,¬I,¬H, ¬F,E, ¬D,B): Conflict Clause
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CSC2512: Clause Learning (Trail)
● X

∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• Each forced literal was forced 
by some clause becoming 
unit. 



Fahiem Bacchus, University of Toronto, 20

CSC2512: Clause Learning (Trail)
● X

∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

Each clause reason contains
1.One true literal on the path 

(the literal it forced)
2. Literals falsified higher up on 

the path.
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CSC2512: Clause Learning (Trail)
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• We can resolve away any 
sequence of forced literals in 
the conflict clause.

• Such resolutions always yield 
a new falsified clause.

1. (K,¬I,¬H,¬F,E, ¬D,B), (D,B,Y) è
(K,¬I,¬H,¬F,E,B,Y), (¬B, ¬A) à
(K,¬I,¬H,¬F,E,¬A,Y)

2. (K,¬I,¬H,¬F,E, ¬D,B), (¬K,¬I,¬H,E,B) è
(¬I,¬H,¬F,E, ¬D,B)

3. (K,¬I,¬H,¬F,E, ¬D,B), (H,B,E,¬Z) è
(K,¬I,¬F,E,¬D,B,¬Z)

4. …
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CSC2512: Clause Learning (Trail)

• Any forced literal x in any conflict clause can be 
resolved with the reason clause for –x to generate a 
new conflict clause.

• If we continued this process until all forced literals are 
resolved away we would end up with a clause 
containing decision literals only (All-decision clause).

• But empirically the all-decision clause tends not be very 
effective.
– Too specific to this particular part of the search to be 

useful later on.
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CSC2512: 1-UIP clauses

• The standard clause learned is a 1-UIP clause
• LearnClause learns a 1-UIP clause

• This continually involves resolves the trail deepest literal 
in the conflict clause until there is only one literal left in 
the clause that is at the deepest level.
• Since every resolution step replaces a literal by 

literals falsified higher up the trail, we must eventually 
achieve this condition

• The sole remaining literal at the deepest level is 
called the asserted literal. 
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CSC2512: 1-UIP clauses

• A 1-UIP clause is sometimes called an empowering 
clause. It allows UP to force a literal that it wasn’t able 
to before. 
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CSC2512: 1-UIP Clause (Trail)
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

1. (K,¬I,¬H, ¬F,E, ¬D,B), (¬K,¬I,¬H,E,B) 
è (¬I,¬H, ¬F,E, ¬D,B)

2. (¬I,¬H, ¬F,E, ¬D,B), (I,¬H,¬D,¬X)
è (¬H, ¬F,E, ¬D,B,¬X)
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CSC2512: 1-UIP clauses
• The 1-UIP clause forces its asserted literal at a prior 

decision level (if we had the clause before we would 
have forced the asserted literal before).

• We backtrack so as to fix the trail to account for the 
new 1-UIP clause.

• The asserted literal is forced as soon as all other literals 
in the clause became false. The assertionLevel is the 
second deepest decision level in the clause (the 
asserted literal is at the deepest level)

• So we backtrack to that level (not undoing the decision 
or anything forced at that level), add the asserted 
literal to the trail, with the 1-UIP clause as its reason, 
then apply UP again.
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CSC2512: 1-UIP Clause (Trail)
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)
(¬H, ¬F,E, ¬D,B,¬X)

● X
∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬Eç …
∎ F ç …
∎ ¬H ç (¬H,¬F,E, ¬D,B,¬X)

More unit 
propagation
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CSC2512: 1-UIP clauses
• On backtrack the newly asserted literal can generate 

another conflict after UP, this will result in learning a new 
clause and backtrack further. 

• Also note that we are jumping back across 
incompletely tested decisions. 
• We backtracked over Z, but we don’t know if ¬Z might not 

have lead to a solution. 
• All we know is that the trail is now patched to account for the 

newly learnt clause
• Search is no longer “exhaustive” like DPLL

• Empirical evidence is not clear, but (a) it is cheap to 
backtrack, (b) going back far enough to fix the trail 
makes the implementation more efficient, (c) allows the 
search to explore a different area of the space.
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CSC2512: 1-UIP clauses
• What happens if the 1-UIP clause is unit?

• Where do we backtrack to?
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CSC2512: VSIDS Heuristic
• Heuristic for selecting next decision literal (variable)
• Variable State Independent Decaying Sum
• Scientific analysis is scant and intuitions vary: but VSIDS

is thought to encourage resolutions involving most 
recently learnt clauses.
• A counter for each variable. Increment the counter of all 

variables in the original conflict clause (the clause that was 
found to be empty by Unit Prop), and the variables in each 
reason clause resolved with the conflict to generate the 1-UIP 
clause. (Each such variable has its counter incremented only 
once.Periodically divide all counts by 2.

• Pick the unassigned variable with highest count at each 
decision

• Low overhead (counters updated only for variables in 
conflict). Lits kept on heap ordered by counter.
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CSC2512: VSIDS Heuristic
• The variables appearing in recently used clauses (i.e., 

clauses used in resolution steps to generate new learnt 
clauses) will, as we divide by 2, get higher VSIDS scores.

• Variables that at this point in the search are not being used 
in resolution steps will get their VSIDS scores decayed. 

• More recent work (Reading for next week)
An Empirical Study of Branching Heuristics through the Lens 
of Global Learning Rate
Jia Hui Liang, Hari Govind, Pascal Poupart, Krzysztof Czarnecki, 
and Vijay Ganesh.
In the Proceedings of the 20th International Conference on Theory 
and Application of Satisfiability Testing (SAT 2017), Aug 28 – Sep 
1, 2017, Melbourne, Australia
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CSC2512: Phase Saving/Restarts
Restarts
• Periodically restarting the solver (undoing all decisions) is useful.

• Various strategies have been investigated for when to restart. 
• Note also that all newly learnt units act as a restart---search is 

backtracked to decision level 0. 
Phase Savings
• We decide to branch on a variable: what literal to try first?
• Phase saving: use the literal that was the most recent setting of the 

variable on the trail. 
Interaction:  phase saving and restarts interact. The VSIDS scores are 
unchanged after a restart, so a similar set of decisions will typically be 
made after a restart. Similarly, phase savings tends to decide on the 
same value of the decision variables as was used before. So with 
phase savings restarts will tend to put is back into the same part of 
the search space. But perhaps the small changes are important. This 
runs counter to the original intuition behind restarts. 
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CSC2512: Phase Saving/Restarts
Papers: 

1. Randomization in Backtrack Search: Exploiting Heavy-
Tailed Profiles for Solving Hard Scheduling Problems. Carla 
P. Gomes, Bart Selman, Ken McAloon, Carol 
Tretkoff: AIPS 1998: 208-213

2. A Lightweight Component Caching Scheme for Satisfiability 
Solvers Knot Pipatsrisawat and Adnan Darwiche.
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CSC2512: Resolution Power
• With these various features it can be show that CDCL 

solvers (Conflict Driven Clause Learning) are no longer 
limited to tree-resolution instead they can p-simulate
general resolution

• Remains an open question whether or not CDCL 
without restarts is as powerful as general resolution. 
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CSC2512: Clause Minimization
First a few observations:
1. A Conflict Clause is a clause that is falsified by the literals 

made true on the trail. 
2. A Reason clause is a clause associated with a unit implied 

literal on the trail. If R is the reason clause for the literal x. 
Then:
1. x is on the trail (i.e. has been made true). 
2. The clause R contains x, and other literals ¬l1, ¬l2, ..., ¬lk: R 

= (x,  ¬l1, ¬l2, ..., ¬lk) where each ¬li has been made false
on the trail (li has been made true). 

3. Each li is on the trail above x
3. The decision level of a variable x is the decision level at 

which either x ¬x it is on the trail. (Unset variables do not 
have decision levels).  Remember that the decision levels 
start at zero and each decision level consists of a decided 
upon literal along with all the literals forced by unit 
propagation until the next decision. 
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CSC2512: Clause Minimization
4. The decision levels of a Conflict Clause or a reason 

clause are the set of different decision levels of its 
variables. 

5. A trail resolution is a resolution of a conflict clause and 
a reason clause. For example a 1-UIP clause is 
produced by a sequence of trail resolutions. 
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CSC2512: Clause Minimization
Observation: Trail resolutions cannot reduce the number 
of decision levels in a conflict clause.

Each reason clause  (x,  ¬l1, ¬l2, ..., ¬lk) must contain at 
least one literal ¬l1 that is at the same decision level as x.

All the l1 are above x on the trail, so their decision levels 
are less than or equal to x. If they all had a decision 
level less than x, the reason clause would have 
become unit at a previous decision level. 

So if we resolve away ¬x from a conflict clause, we must 
introduce at least one other literal in the clause at x’s 
decision level. 
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CSC2512: Clause Minimization
Observation: The minimum size clause that we can 
produce by doing trail resolutions against a conflict 
clause has size equal to the number of decision levels in 
the clause. 
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CSC2512: Clause Minimization
Clause minimization. Given a conflict clause (typically the 
1-UIP clause) C = (¬l1, ¬l2, ..., ¬lk) where each ¬li has been 
made false on the trail, we want to compute via a 
sequence of trail resolutions a new clause C’ such that 

C’ ⊂ C

Optimally we want to compute the smallest such C’
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CSC2512: Clause Minimization
● X

∎ A ç …
∎ ¬B ç (¬B, ¬X)
∎ C ç (C,B)

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç (¬E, ¬D)
∎ F ç (F,¬C, B,E)

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H,¬F,E,¬D,B)

1. (K,¬I,¬H,¬F,E, ¬D,B), (¬K,¬I,¬H,E,B) 
è (¬I,¬H,¬F,E, ¬D,B)

2. (¬I,¬H,¬F,E, ¬D,B), (I,¬H,¬D,¬X)
è (¬H,¬F,E, ¬D,B,¬X) == 1-UIP clause

3. Further reduction steps
4. (¬H,¬F,E,¬D,B,¬X), (F,¬C,B,E) à

(¬H,¬C, E,¬D,B,¬X)
5. (¬H,¬C, E,¬D,B,¬X), (C,B) à

(¬H, E,¬D,B,¬X)
6. (¬H,E,¬D,B,¬X),(¬E,¬D) à

(¬H,¬D,B,¬X)
7. (¬H,¬D,B,¬X),(¬B,¬X) à

(¬H,¬D,¬X)
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CSC2512: Clause Minimization
The example shows that clause minimization can have a 
tremendous effect on the size of the clause. How do we 
do this:

Clause reduction: simple non recursive method. 

Proc Reduce(C)
for literal x ∈ C {

if (x.ReasonClause \ {x}) ⊂ C 
C = C \ {x}

}  
return C
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CSC2512: Clause Minimization
Clause reduction: more sophisticated method. 

Proc Reduce(C)
for literal x ∈ C {

if (lit_is_removable(x, C))
C = C \ {x}

}  
return C

Proc lit_is_removable(x, C) 
if (x.ReasonClause = NULL) return FALSE
if ((x.ReasonClause \ {¬x}) ⊂ C ) return TRUE
…

In general, there is a recursive definition. x is removable from C if 
every literal (other than ¬x) is either in C or is removable from C. 
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CSC2512: Other Work: Proof extraction
• For any clause c, if we unit propagate –c, in the formula 

F and obtain an empty clause (a conflict) then it must 
be the case that F ⊧ c  by the soundness of UP. 

• However, we can have F ⊧ c but UP(-c) does not 
generate a conflict. UP is not a complete rule of 
inference. 

• Nevertheless, it is “complete” along a sequence of 
resolution steps.
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CSC2512: Other Work: Proof extraction
• Given a resolution proof as a sequence of clauses 

where cn is not an input clause. 
c1, c2, …, cn

• we can observe that if we negate cn and unit 
propagate the literals in the formula c1, c2, …, cn-1 we 
will obtain a conflict (one of these clauses will be 
falsified)

If cn = (A, B) as a result of resolving (A,x) and (B,-x) 
UP falsifies one of these clauses (depending on if
it propagates x or –x first).
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CSC2512: Other Work: Proof extraction
• This gives rise to the RUP (reverse unit propagation) 

technique for extracting proofs from a clause learning SAT 
solver.

• Output to a log all learnt clauses in the sequence they are 
learnt. 

• Verify each learnt clause ci in the order they it was learnt by 
negating ci and unit propagating through the set of clauses 
U {c1, …, ci-1}

• If we obtain a conflict we know that ci is a logical 
consequence of the input formula and the previously 
verified learnt clauses.
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CSC2512: Other Work: Proof extraction
• Eventually we can verify a unit clause (x) whose partner (-x) 

has previously been verified thus showing that the proof is 
sound.

• This procedure verifies the UNSAT result (just like the satisfying 
assignment can be used to verify the SAT result).

• Furthermore, we can instrument the UP checking process so 
that we only keep the learnt clauses and input clauses that 
are eventually needed to verify the final empty clause. 

• Note that this works even when we have lost track of the 
resolution steps involved in computing a learnt clause. 

• This set of clauses responsible for UNSAT can be output.
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CSC2512: Other Work: Proof extraction
• Note also that the final sequence of learnt clauses are 

not a traditional resolution proof. This sequence is called 
a “clausal” proof, and it can be much shorter than a 
resolution proof. 

• Unit Prop is needed to verify a clausal proof, whereas a 
much simple algorithm can verify a resolution proof.

• A clausal proof can be expanded into a resolution 
proof by tracking the clauses the unit prop steps need 
to derive a contradiction. 

Paper: Trimming while Checking Clausal Proofs Marijn J.H. 
Heule, Warren A. Hunt, Jr., and Nathan Wetzler
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CSC2512: Other work: Assumptions
Assumptions. A useful technique is solving subject some 
set of literals called assumptions:
• A = {l1, l2, …, lk}
• We start the SAT solver and force it to pick a next 

unassigned literal in A as a decision until there are no 
more unassigned literals in A.

• If a literal of A is forced to TRUE we skip over it for the 
next decision. 

• If a literal of A is forced to FALSE we stop: Say l1, l2 …, li
are the decisions already made, and lj is forced to 
FALSE: then we have the following clause

(¬l1, ¬l2, …, ¬li,¬lj)
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CSC2512: Other work: Assumptions
• If we assign all literals in A we then continue the normal 

SAT solving process with freedom to pick the decision 
variables as we want.

• If this results in UNSAT, some clause (perhaps empty) 
falsified by the A decisions will be learnt. 

• In any event, if the formula becomes UNSAT under A, 
we obtain a clause falsified by A (the clause specifies 
that some subset of A is impossible). 
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CSC2512: Other work: Assumptions
• Assumptions are very useful for incremental SAT solving 

where we want to SAT solver a sequence of related 
formulas F1, F2, …, Fn

• If F1⊆ F2⊆ ⋯ ⊆ Fn then we can use one instance of the 
SAT solver. Solve F1 then add the additional clauses of F2
and solve again, add the additional clauses of F2 …
• The advantage if this is that the SAT solver gets to 

reuse all of its learnt clauses.
• But if we must remove clauses between SAT solver 

invocations we have a problem: some of the learnt 
clauses might no longer be valid.
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CSC2512: Other work: Assumptions
• For clause removals we can use assumptions: if we will 

later want to remove the clause C = (x1, x2, …, xn) we 
can add a brand new variable (often called a 
selection variable) to the clause:  (x1, x2, …, xn, s)

• Then if we want to include C we assume ¬s. Any learnt 
clauses were derived from resolving against C will now 
also contain s (s appears nowhere else in the formula 
so it can’t be resolved away)

• When we want to exclude C from the formula we don’t 
assume anything. The clause can always be satisfied by 
the SAT solver be making s true—and again since s 
appears nowhere else we will no longer learn any 
clauses from C. (Alternately we can assume s)



CSC2512: Papers for Next Time

• An Empirical Study of Branching Heuristics through 
the Lens of Global Learning Rate
Jia Hui Liang, Hari Govind, Pascal Poupart, Krzysztof 
Czarnecki, and Vijay Ganesh.

• Randomization in Backtrack Search: Exploiting 
Heavy-Tailed Profiles for Solving Hard Scheduling 
Problems. Carla P. Gomes, Bart Selman, Ken 
McAloon, Carol Tretkoff: AIPS 1998: 208-213

• A Lightweight Component Caching Scheme for 
Satisfiability Solvers Knot Pipatsrisawat and Adnan 
Darwiche.

• Trimming while Checking Clausal Proofs Marijn J.H. 
Heule, Warren A. Hunt, Jr., and Nathan Wetzler
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CSC2512: Clause Deletion

• A new clause is learned from every conflict. 
• In practice the solver starts to slow down after it 

accumulates too many clauses. 
• So deleting some of these learned clauses has 

proved to be effective.
• Earlier clauses were deleted whenever memory 

was about to be exhausted. Clauses were 
deleted by size (delete the largest ones first) or 
by activity (delete those clauses that had not 
recently been used in learning new clauses.  
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CSC2512: Clause Deletion

• In 2009 Audemard and Simon developed a new idea for 
selecting which clauses to delete called the LBD score.

• Once we learn a 1-UIP clause, minimize it, and use it to 
backtrack asserting a new literal, we can count the # of 
different decision levels in the clause. This is the LBD 
score. 

• Audemard and Simon found that very aggressive clause 
deletion where every 10,000 learnt clauses ½ with 
highest LBD score are deleted, give a significant boost in 
performance.

• Now however theoretical completeness is sacrificed 
(although it can be regained by slowing increasing the 
clause deletion trigger from 10,000 clauses to 20,000, 
30,000, etc. (any increasing sequence will suffice).   
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CSC2512: Clause Deletion

• Papers for next time:
1. Predicting Learnt Clauses Quality in Modern SAT 

Solvers, Gilles Audemard, Laurent Simon, IJCAI 2009.
2. Coverage-Based Clause Reduction Heuristics for CDCL Solvers, 

Hidetomo Nabeshima and Katsumi Inoue, SAT 2017
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CSC2512: Preprocessing

• An additional essential part of modern 
SAT solvers is preprocessing and 
inprocessing.

• Preprocessing is the technique of 
converting the input CNF F to a new 
CNF F’ such that if F’ is UNSAT then so is 
F, and furthermore if 𝜋 is a satisfying 
model of F’ then 𝜋 can in poly-time be 
converted into 𝜋’ a satisfying model for 
F. 
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CSC2512: Preprocessing

• A number of useful techniques for 
preprocessing have been developed. 
The most important of these is Bounded 
Variable Elimination, Clause 
subsumption, and self-subsuming 
resolutions.
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CSC2512: Preprocessing

• Bounded Variable Elimination. This is a like a 
single step of DP. We eliminate the variable x 
from the formula by taking all clauses A 
containing x and all clauses B containing ¬x 
and generate all resolvant pairs: 

R = {R[c1,c2] | c1∈A c2∈ B}
• All tautologies are removed from R. 

Furthermore, clauses in R might be subsumed by 
other clauses. So we reduce R by removing 
these clauses. 

• Bounded: we preform this step if 
|R| < |A| + |B| 

(i.e., we obtain fewer clauses)
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CSC2512: Preprocessing

• Implementing this efficiently requires 
clever scheduling and data structure 
techniques.
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CSC2512: Preprocessing

• Subsumption. Checking for subsumption can be speeded up 
using Bloom Filters. We map each literal in F to a number in the 
range [0,63]. Then for each clause c we construct a 64 bit map, 
by setting all bits mapped to by literals in c.

• Now if c’ ⊆ c then c’ bit map must be a subset of c bit map. That 
is, the and of these two bit maps must equal c’ bit map. 
– E.g., x = 0, -x = 1, y = 2, -y = 3, z = 4, -z = 5.

c = [x,y,z] = [1, 0, 1, 0, 1, 0]
c’= [x,z]    = [1, 0, 0, 0, 1, 0]

[1, 0, 1, 0, 1, 0] AND [1, 0, 0, 0, 1, 0] = [1, 0, 0, 0, 1, 0] = c’ bit map
• This test is fast, and if it fails then we know that c is not subsumed 

by c’. If it succeeds then we actually have to test for subsumption
as this is a one-way test.
– E.g. r = 4

c” = [x,r] = [1, 0, 0, 0, 1, 0] – same bit map as c’
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CSC2512: Preprocessing

• (A,x) (B,¬x) where B ⊆A. Clearly(B,¬x) is 
not a subset of (A,x), so there is no 
clause subsumption. However, consider 
the resolvant: (A,B) == (A) (since B ⊆A). 
The resolvant subsumes (A,x). So in this 
case we can remove x from (A,x). This is 
called a self-subsuming resolution. 
– E.g.

(a, b, ¬c, x) and (b, ¬x) 
è (a,b,¬c) and  (b, ¬x)
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CSC2512: Paper for next time.

1. Effective Preproessing in SAT through Variable 
and Clause Elimination, Niklas Een and Armin 
Biere, SAT 2005.
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CSC2512: MUSes and MCSes
• MUS computation. 

• In many applications we want to know why something 
is unsatisfiable. We can extract a minimal unsatisfiable 
subset of the formula: a MUS. 

• Note not a minimum unsatisfiable subset (which is a 
much harder problem)

• Since the MUS typically much smaller than the input 
formula F. It can provide much more specific 
information about a cause of unsatisfiablity in F. 
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CSC2512: MUSes and MCSes
• A MUS (Minimal Unsatisfiable Set) M is an UNSAT set of 

clauses M such that for any clause c in M: 
M \ {c} is SAT    //M is set inclusion minimal

• If F is SAT then it contains no MUSes. If it is UNSAT it 
contains at least one MUS and usually contains 
many different MUSes.

• A correction set C of a CNF F is a subset of F such that:
F \ C is SAT

A correction set C is a minimal correction set (MCS) if 
no proper subset of C is a correction set of F
• If F is SAT only the empty set is a MCS. But if F is 

UNSAT, then any MCS cannot be empty and 
generally, there are many MCSes.
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CSC2512: MUSes and MCSes
• MUS/MCS hitting set duality (Reiter AIJ 2087).

• Consider an UNSAT formula F, let AllMuses(F) be the 
collection of all MUSes in F. Each M ∈ AllMuses(F) is a 
set of clauses, a subset of F. That is AllMuses(F) is a 
collection of sets.

• Similarly, let AllMCSes(F) be the collection of all MCSes
of F
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CSC2512: MUSes and MCSes
• Given a collection of sets K, HS is a hitting set of K iff for 

every set S ∈K we have that HS ⋂ S ≠ ∅
• HS has a non-empty intersection with every set in the 

collection.
• A set HS is a minimal hitting set of K if it is a hitting set 

and no proper subset of HS is a hitting set of K.
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CSC2512: MUSes and MCSes
• Reiter’s result:

A set C ⊆ F is an MCS of F iff it is a minimal hitting set of 
AllMuses(F). And a set M ⊆ F is an MUS of F iff it is a 
minimal hitting set of AllMCSes(F). 

Also, a set C ⊆ F is an correction set (not necessarily 
minimal) of F iff it is a hitting set of all unsatisfiable subsets 
of F (not necessarily minimal). And a set M ⊆ F is 
unsatisfiable (not necessarily minimal) iff it is a hitting set of 
all correction sets (not necessarily minimal) of F.
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CSC2512: MUS extraction
• Given an UNSAT formula F, we want to compute one of 

its MUSes (and we don’t care which one). 
• We can do this with a sequence of calls to a SAT solver.
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CSC2512: MUS extraction
• A critical clause of an UNSAT formula U, is a clause whose 

removal makes U SAT. 
• A MUS M is an UNSAT formula all of whose clauses are 

critical.

• Divide F into two sets 
• crits: a set of clauses that we know must be in the MUS 

we are extracting (they are critical).
• unkn a set of clauses that might be in the MUS but we 

don’t know yet.

• crits U unkn is the working formula—it is an unsat formula 
that is a subset of F and thus it contains one of F’s MUSes
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CSC2512: MUS extraction
1. crits ⟵ ∅ unkn ⟵ F
2. while unkn ≠ ∅

1. c ⟵ choose c ∈ unkn
2. sat? = SatSolve(crits U unkn \ {c})
3. if sat?

1. crits = crits U {c} 
4. unkn = unkn - \{c}  

This simple algorithm iteratively tests the clauses of an 
initial UNSAT formula (F) removing clauses not needed to 
retain UNSAT, and keeping those clauses whose removal 
makes the formula SAT.
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CSC2512: MUS extraction
This simple algorithm can be significantly improved.
1. When we find that removing c from unkn makes crits U 

unkn (so c is critical for the MUS contained in crits U 
unkn) we can use the satisfying truth assignment 𝜋 to 
find other critical clauses.

2. When removing c from unkn keeps crits U unkn UNSAT 
(c need not be in the MUS we are extracting), then we 
can extract from the SAT solver a subset of the clauses 
in crits U unkn sufficient to cause UNSAT using 
assumptions
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CSC2512: MUS extraction
Model Rotation. Given that c is found to be critical, find other critical 
clauses. 

When is a clause c critical for the working formula crits U unkn.
There exists a truth assignment satisfying 
(crits U unkn) \ {c}—removing c makes the working formula SAT

We have found a truth assignment 𝜋 satisfying 
(crits U unkn) \ {c}

So we try to change one of the truth assignments in 𝜋 so that we 
satisfy c and every other clause in (crits U unkn), except for one other 
clause c’. So now we have a new truth assignment 𝜋’ that satisfies 
(crits U unkn) \ {c’}

This shows that c’ is also critical for the current working formula and 
we can move it into crits.
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CSC2512: MUS extraction
Assumptions. Instead of giving the SAT solver the CNF 
(crits U unkn) we add a selector variable to each clause 
of F. 

The selector variables are brand new variables (one new 
variable per clause). So every clause ci∈ F is replaced 
with the clause (ci∨ bi) where bi is the new selector 
variable for clause ci. 

Then we call the SAT solver with all clauses in F and the 
assumptions {¬b1,¬b2, …, ¬bm}. These assumptions force 
the SAT solver to try to satisfy all of the clauses ci
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CSC2512: MUS extraction
Assumptions. 
When we want to remove the clause ci from the working 
formula, we stop assuming ¬bi. Now the SAT solver is free 
to satisfy (ci∨ bi) by simply making bi true.

If the working formula is UNSAT then the SAT solver will 
return a subset of the assumptions {¬b1,¬b2, …, ¬bm} in a 
conflict clause (bj1, bj2, …, bjk). This clause says that the 
subset of clauses {cj1, cj2, …, cjk} is UNSAT (at least one of 
them must be falsified by any truth assignment. 

Now we can use this subset to further reduce the working 
formula.
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CSC2512: MUS extraction
1. crits_A ⟵ ∅

2. unkn_A = {¬bi |ci∈ F} //Two sets of assumptions
3. while unkn_A ≠ ∅

1. choose ¬bi∈ unkn_A
2. (sat?, 𝜋, conflict) = 

SatSolve(F, crits_A U unkn_A \ {¬bi})
3. if sat?

1. new_crits = Model_Rotate(ci, 𝜋)
2. crits_A = crits_A U {¬bi |ci∈ new_crits}
3. unkn_A = unkn_A \ {¬bi |ci∈ new_crits}

4. else
1. unkn_A = unkn_A ⋂ {¬bi | bi ∈ conflict}  



Fahiem Bacchus, University of Toronto, 76

CSC2512: MUS extraction
However we can get even better improvements by 
moving beyond the simple algorithm. 

Paper for next time:
Using Minimal Correction Sets to more Efficiently Compute 
Minimal Unsatisfiable Sets, Fahiem Bacchus and George 
Katsirelos (CAV 2015).


