
An Empirical Study of Branching Heuristics
through the Lens of Global Learning Rate

Jia Hui Liang1, Hari Govind V K2,
Pascal Poupart1, Krzysztof Czarnecki1, and Vijay Ganesh1

1 University of Waterloo, Waterloo, Canada
2 College Of Engineering, Thiruvananthapuram, India

Abstract. In this paper, we analyze a suite of 7 well-known branching
heuristics proposed by the SAT community and show that the better
heuristics tend to generate more learnt clauses per decision, a metric we
define as the global learning rate (GLR). Like our previous work on the
LRB branching heuristic, we once again view these heuristics as tech-
niques to solve the learning rate optimization problem. First, we show
that there is a strong positive correlation between GLR and solver effi-
ciency for a variety of branching heuristics. Second, we test our hypothe-
sis further by developing a new branching heuristic that maximizes GLR
greedily. We show empirically that this heuristic achieves very high GLR
and interestingly very low literal block distance (LBD) over the learnt
clauses. In our experiments this greedy branching heuristic enables the
solver to solve instances faster than VSIDS, when the branching time is
taken out of the equation. This experiment is a good proof of concept
that a branching heuristic maximizing GLR will lead to good solver per-
formance modulo the computational overhead. Third, we propose that
machine learning algorithms are a good way to cheaply approximate the
greedy GLR maximization heuristic as already witnessed by LRB. In
addition, we design a new branching heuristic, called SGDB, that uses a
stochastic gradient descent online learning method to dynamically order
branching variables in order to maximize GLR. We show experimentally
that SGDB performs on par with the VSIDS branching heuristic.

1 Introduction

Searching through a large, potentially exponential, search space is a reoccurring
problem in many fields of computer science. Rather than reinventing the wheel
and implementing complicated search algorithms from scratch, many researchers
in fields as diverse as software engineering [7], hardware verification [9], and
AI [16] have come to rely on SAT solvers as a general purpose tool to efficiently
search through large spaces. By reducing the problem of interest down to a
Boolean formula, engineers and scientists can leverage off-the-shelf SAT solvers
to solve their problems without needing expertise in SAT or developing special-
purpose algorithms. Modern conflict-driven clause-learning (CDCL) SAT solvers
can solve a wide-range of practical problems with surprising efficiency, thanks

to decades of ongoing research by the SAT community. Two notable milestones
that are key to the success of SAT solvers are the Variable State Independent
Decaying Sum (VSIDS) branching heuristic (and its variants) [23] and conflict
analysis techniques [22]. The VSIDS branching heuristic has been the dominant
branching heuristic since 2001, evidenced by its presence in most competitive
solvers such as Glucose [4], Lingeling [5], and CryptoMiniSat [26].

One of the challenges in designing branching heuristics is that it is not clear
what constitutes a good decision variable. We proposed one solution to this issue
in our LRB branching heuristic paper [19], which is to frame branching as an
optimization problem. We defined a computable metric called learning rate and
defined the objective as maximizing the learning rate. Good decision variables
are ones with high learning rate. Since learning rate is expensive to compute a
priori, we used a multi-armed bandit learning algorithm to estimate the learning
rate on-the-fly as the basis for the LRB branching heuristic [19].

In this paper, we deepen our previous work and our starting point remains the
same, namely, branching heuristics should be designed to solve the optimization
problem of maximizing learning rate. In LRB, the learning rate metric is defined
per variable. In this paper, we define a new metric, called the global learning
rate (GLR) to measure the solver’s overall propensity to generate conflicts, rather
than the variable-specific metric we defined in the case of LRB. Our experiments
demonstrate that GLR is an excellent objective to maximize.

1.1 Contributions

1. A new objective for branching heuristic optimization: In our previous
work with LRB, we defined a metric that measures learning rate per variable.
In this paper, we define a metric called the global learning rate (GLR), that
measures the number of learnt clauses generated by the solver per decision,
which intuitively is a better metric to optimize since it measures the solver as
a whole. We show that the objective of maximizing GLR is consistent with
our knowledge of existing branching heuristics, that is, the faster branching
heuristics tend to achieve higher GLR. We perform extensive experiments
over 7 well-known branching heuristics to establish the correlation between
high GLR and better solver performance. (Section 3)

2. A new branching heuristic to greedily maximize GLR: To further
scientifically test the conjecture that GLR maximization is a good objective,
we design a new branching heuristic that greedily maximizes GLR by al-
ways selecting decision variables that cause immediate conflicts. It is greedy
in the sense that it optimizes for causing immediate conflicts, and it does
not consider future conflicts as part of its scope. Although the computational
overhead of this heuristic is very high, the variables it selects are “better”
than VSIDS. More precisely, if we ignore the computation time to com-
pute the branching variables, the greedy branching heuristic generally solves
more instances faster than VSIDS. Another positive side-effect of the greedy
branching heuristic is that relative to VSIDS, it has lower learnt clause literal
block distance (LBD) [3], a sign that it is learning higher quality clauses. The

combination of learning faster (due to higher GLR) and learning better (due
to lower LBD) clauses explains the power of the greedy branching heuris-
tic. Globally optimizing the GLR considering all possible future scenarios a
solver can take is simply too prohibitive. Hence, we limited our experiments
to the greedy approach. Although this greedy branching heuristic takes too
long to select variables in practice, it gives us a gold standard of what we
should aim for. We try to approximate it as closely as possible in our third
contribution. (Section 4)

3. A new machine learning branching heuristic to maximize GLR:
We design a second heuristic, called stochastic gradient descent branch-
ing (SGDB), using machine learning to approximate our gold standard, the
greedy branching heuristic. SGDB trains an online logistic regression model
by observing the conflict analysis procedure as the CDCL algorithm solves
an instance. As conflicts are generated, SGDB will update the model to bet-
ter fit its observations. Concurrently, SGDB also uses this model to rank
variables based on their likelihood to generate conflicts if branched on. We
show that in practice, SGDB is on par with the VSIDS branching heuristic
over a large and diverse benchmark but still shy of LRB. However, more
work is required to improve the learning in SGDB. (Section 5)

2 Background

Clause Learning: Clause learning produces a new clause after each conflict
to prevent the same or similar conflicts from reoccurring [22]. This requires
maintaining an implication graph where the nodes are assigned literals and edges
are implications forced by Boolean constraint propagation (BCP). When a clause
is falsified, the CDCL solver invokes conflict analysis to produce a learnt clause
from the conflict. It does so by cutting the implication graph, typically at the
first-UIP [22], into the reason side and the conflict side with the condition that
the decision variables appear on the reason side and the falsified clause appears
on the conflict side. A new learnt clause is constructed by negating the reason
side literals incident to the cut. Literal block distance (LBD) is a popular metric
for measuring the “quality” of a learnt clause [3]. The lower the LBD the better.
Supervised Learning: Suppose there exists some function f : Input→ Output
that we do not have the code for. However, we do have labeled training data in
the form of 〈Inputi, f(Inputi)〉 pairs. Given a large set of these labeled training
data, also called a training set, there exists machine learning algorithms that
can infer a new function f̃ that approximates f . These types of machine learning
algorithms are called supervised learning algorithms. If everything goes well, f̃
will return the correct output with a high probability when given inputs from
the training set, in which case we we say f̃ fits the training set. Ideally, f̃ will
also return the correct output for inputs that are not in the training set, in which
case we say the function generalizes.

Most supervised learning algorithms require the input data to be represented
as a vector of numbers. Feature extraction solves this issue by transforming each

input data into a vector of real numbers, called a feature vector, that summarizes
the input datum. During training, the feature vectors are used for training in
place of the original input, hence learning the function f̃ : Rn → Output where
Rn is the feature vector’s type. Deciding which features to extract has a large
impact on the learning algorithm’s success.

In this paper, we only consider a special subclass of supervised learning called
binary classification. In other words, the function we want to learn has the type
f : Input→ {1, 0}, hence f maps every input to either the class 1 or the class 0.

We use logistic regression [10], a popular technique for binary classification,
to learn a function f̃ that cheaply approximates f . The function learned by
logistic regression has the type f̃ : Rn → [0, 1] where Rn is from the feature
extraction and the output is a probability in [0, 1] that the input is in class 1.
Logistic regression defines the function f̃ as follows.

f̃([x1, x2, ..., xn]) := σ(w0 + w1x1 + w2x2 + ...+ wnxn), σ(z) :=
1

1 + e−z

The weights wi ∈ R measure the significance of each feature. The learning algo-
rithm is responsible for finding values for these weights to make f̃ approximate f
as closely as possible. The sigmoid function σ simply squeezes the linear function
to be between 0 and 1. Hence f̃ outputs a real number between 0 and 1, which
is expected since it is a probability.

The learning algorithm we use to set the weights is called stochastic gradient
descent (SGD) [6], which is a popular algorithm for logistic regression. SGD
minimizes the misclassification rate by taking a step in the opposite direction
of the gradient with respect to each data point. The misclassification rate of a
data point can be computed by the following error function:

Err(x, y,W) = y(1− f̃(x; W)) + (1− y)(f̃(x; W))

where x is the input of a data point, y is the corresponding target class (0 or 1)
for this data point and W is a vector weights. SGD takes a step in the opposite
direction of the gradient as follows:

W′ ←W − α∂Err(x, y,W)

∂W

Here α is the step length (also known as the learning rate, not to be confused
with the unrelated definition of learning rate in LRB). Under normal conditions,
f̃ with the new weights W′ will fit the training set better than with the old
weights W. If training time is not an issue, then SGD can be applied repeatedly
until a fixed point is reached. The parameter 0 < α < 1 controls how aggressively
the technique converges.

A common problem with machine learning in general is overfitting, where the
trained function f̃ predicts correctly for the inputs it has seen in the training
set, but works poorly for inputs it has not seen. We use a common technique
called L2 regularization [24] to mitigate overfitting. L2 regularization introduces
a new term in the error function that favors small weights

Err(x, y,W) = y(1− f̃(x; W)) + (1− y)(f̃(x; W)) + λ||W||22

Here λ is a parameter that determines the importance of the regularization
penalty. How this prevents overfitting is beyond the scope of this paper.

SGD is also commonly used in an online fashion. Each time new data comes
in, SGD is applied to this new data to update the weights, then the data is
discarded. This has two advantages. Discarding the data keeps the memory usage
low, especially useful when data is abundant. Additionally, the distribution in
which the data is created can change over time. Online stochastic gradient does
not assume the distribution is fixed and adjusts the weights accordingly after
enough time. These two advantages are critical in our use of SGD.

3 GLR Maximization as a Branching Heuristic Objective

We framed the branching heuristic as an optimization problem in our earlier
work [19], and we will continue to do so here. Formalizing the problem as an
optimization problem opens up the problem to a wide range of existing opti-
mization algorithms, and we exploited this very idea to develop the LRB [19]
branching heuristic. The big difference between our previous papers and the
current one is that the objective function for optimization in our previous work
was learning per variable, whereas here we define it as the global learning rate
(GLR) discussed below.

The first step to solving an optimization problem is to define the objective.
Ideally the objective of the branching heuristic is to minimize the total running
time. However, it is infeasible to calculate the running time a priori, which makes
it unsuitable as an objective for branching. Instead, we target an easy to compute
feature that correlates with solving time.

We define the global learning rate (GLR) of a solver as GLR := # of conflicts
of decisions .

Our goal is to construct a new branching heuristic to maximize the GLR. We as-
sume that one clause is learnt per conflict. Learning multiple clauses per conflict
has diminishing returns since they block the same conflict. But before we present
our branching heuristic, let us justify why maximizing GLR is a reasonable ob-
jective for a branching heuristic. Past research concludes that clause learning
is the most important feature for good performance in a CDCL solver [15], so
perhaps it is not surprising that increasing the rate at which clauses are learnt
is a reasonable objective. In our experiments, we assume the learning scheme is
first-UIP since it is universally used by all modern CDCL solvers.

3.1 GLR vs Solving Time

We propose the following hypothesis: for a given instance, the branching heuristic
that achieves higher GLR tends to solve that instance faster than heuristics with
lower GLR. We provide empirical evidence in support of the hypothesis.

In the following experiment, we tested the above hypothesis on 7 branch-
ing heuristics: LRB [19], CHB [18], VSIDS (MiniSat [11] variation of VSIDS),
CVSIDS (Chaff [23] variation of VSIDS), Berkmin [13], DLIS [21], and Jeroslow-
Wang [14]. We created 7 versions of MapleSAT [1], one for each branching heuris-
tic, keeping the code unrelated to the branching heuristic untouched. We ran all

Table 1. The GLR, number of instances solved, and average solving time for 7 different
branching heuristics, sorted by the number of solved instances. Timed out runs have a
solving time of 1800s in the average solving time.

Heuristic Avg LBD Avg GLR # Instances Solved Avg Solving Time(s)

LRB 10.797 0.533 1552 905.060

CHB 11.539 0.473 1499 924.065

VSIDS 17.163 0.484 1436 971.425

CVSIDS 19.709 0.406 1309 1043.971

BERKMIN 27.485 0.382 629 1446.337

DLIS 20.955 0.318 318 1631.236

JW 176.913 0.173 290 1623.226

7 branching heuristics on each application and hard combinatorial instance from
every SAT Competition and SAT Race held between 2009 and 2016 with dupli-
cate instances removed. At the end of each run, we recorded the solving time,
GLR at termination, and the average LBD of clauses learnt. All experiments in
this paper were conducted on StarExec [28], a platform purposefully designed
for evaluating SAT solvers. For each instance, the solver was given 1800 seconds
of CPU time and 8GB of RAM. The code for our experiments can be found on
the MapleSAT website [2].

The results are presented in Table 1. Note that sorting by GLR in decreasing
order, sorting by instances solved in decreasing order, sorting by LBD in in-
creasing order, and sorting by average solving time in increasing order produces
essentially the same ranking. This gives credence to our hypothesis that GLR
correlates with branching heuristic effectiveness. Additionally, the experiment
shows that high GLR correlates with low LBD.

To better understand the correlation between GLR and solving time, we
ran a second experiment where for each instance, we computed the Spearman’s
rank correlation coefficient [27] (Spearman correlation for short) between the 7
branching heuristics’ GLR and solving time. We then averaged all the instances’
Spearman correlations by applying the Fisher transformation [12] to these cor-
relations, then computing the mean, then applying the inverse Fisher transfor-
mation. This is a standard technique in statistics to average over correlations.
This second experiment was performed on all the application and hard combina-
torial instances from SAT Competition 2013 using the StarExec platform with
a 5400s timeout and 8GB of RAM. For this benchmark, the average Spearman
correlation is -0.3708, implying a negative correlation between GLR and solving
time, or in other words, a high (resp. low) GLR tends to have low (resp. high)
solving time as we hypothesized. Table 2 shows the results of the same correla-
tion experiment with different solver configurations. The results show that the
correlations remain moderately negative for all the configurations we tried.

Maximizing GLR also makes intuitive sense when viewing the CDCL solver as
a proof system. Every conflict generates a new lemma in the proof. Every decision
is like a new “case” in the proof. Intuitively, the solver wants to generate lemmas

Table 2. The Spearman correlation relating GLR to solving time between the 7 heuris-
tics. The experiment is repeated with different solver configurations. MapleSAT is the
default configuration which is essentially MiniSat [11] with phase saving [25], Luby
restarts [20], and rapid clause deletion [3] based on LBD [3]. Clause activity based
deletion is the scheme implemented in vanilla MiniSat.

Configuration Spearman Correlation

MapleSAT -0.3708

No phase saving -0.4492

No restarting -0.3636

Clause deletion based on clause activity -0.4235

Clause deletion based on LBD -0.3958

Rapid clause deletion based on clause activity -0.3881

quickly using as few cases as possible, or in other words, maximize conflicts with
as few decisions as possible. This is equivalent to maximizing GLR. Of course
in practice, not all lemmas/learnt clauses are of equal quality, so the quality is
also an important objective. We will comment more on this in later sections.

4 Greedy Maximization of GLR

Finding the globally optimal branching sequence that maximizes GLR is in-
tractable in general. Hence we tackle a simpler problem to maximize GLR
greedily instead. Although this is too computationally expensive to be effec-
tive in practice, it provides a proof of concept for GLR maximization and a gold
standard for subsequent branching heuristics.

We define the function c : PA → {1, 0} that maps partial assignments to
either class 1 or class 0. Class 1 is the “conflict class” which means that apply-
ing BCP to the input partial assignment with the current clause database would
encounter a conflict once BCP hits a fixed-point. Otherwise the input partial
assignment is given the class 0 for “non-conflict class”. Note that c is a mathe-
matical function with no side-effects, that is applying it does not alter the state
of the solver. The function c is clearly decidable via one call to BCP, although
it is quite costly when called too often.

The greedy GLR branching (GGB) heuristic is a branching heuristic that
maximizes GLR greedily. When it comes time to branch, the branching heuristic
is responsible for appending a decision variable (plus a sign) to the current partial
assignment. GGB prioritizes decision variables where the new partial assignment
falls in class 1 according to the function c. In other words, GGB branches on
decision variables that cause a conflict during the subsequent call to BCP, if such
variables exist. See Algorithm 1 for the implementation of GGB.

Unfortunately, GGB is very computationally expensive due to the numerous
calls to the c function every time a new decision variable is needed. However, we
show that GGB significantly increases the GLR relative to the base branching
heuristic VSIDS. Additionally, we show that if the time to compute the deci-
sion variables was ignored, then GGB would be a more efficient heuristic than

Algorithm 1 Pseudocode for the GGB heuristic using the function c to greed-
ily maximize GLR. Note that GGB is a meta-heuristic, it takes an existing
branching heuristic (VSIDS in the following pseudocode) and makes it greedier
by causing conflicts whenever possible. In general, VSIDS can be replaced with
any other branching heuristic.
1: function PhaseSaving(Var) . Return the variable plus a sign.
2: return mkLit(V ar, V arsavedPolarity)

3:
4: function VSIDS(Vars) . Return the variable with highest VSIDS activity plus a sign.
5: return PhaseSaving(argmaxv∈V arsvactivity)

6:
7: function GGB
8: CPA← CurrentPartialAssignment
9: V ← UnassignedV ariables
10: oneClass← {v ∈ V | c(CPA ∪ {PhaseSaving(v)}) = 1}
11: zeroClass← V \ oneClass
12: if oneClass 6= ∅ then . Next BCP will cause a conflict.
13: return VSIDS(oneClass)
14: else . Next BCP will not cause a conflict.
15: return VSIDS(zeroClass)

VSIDS. This suggests we need to cheaply approximate GGB to avoid the heavy
computation. A cheap and accurate approximation of GGB would in theory be
a better branching heuristic than VSIDS.

4.1 Experimental Results

In this section, we show that GGB accomplishes its goal of increasing the GLR
and solving instances faster. Experiments were performed with MapleSAT us-
ing the StarExec platform with restarts and clause deletion turned off to mini-
mize the effects of external heuristics. For each of the 300 instances in the SAT
Competition 2016 application category, MapleSAT was ran twice, the first run
configured with VSIDS and the second run configured with GGB. The run with
VSIDS used a timeout of 5000 seconds. The run with GGB used a timeout of 24
hours to account for the heavy computational overhead. We define effective time
as the solving time minus the time spent by the branching heuristic selecting
variables. Figure 1 shows the results of effective time between the two heuris-
tics. Only comparable instances are plotted. An instance is comparable if either
both heuristics solved the instance or one heuristic solved the instance with an
effective time of x seconds while the other heuristic timed out with an effective
time greater than x seconds.

Of the comparable instances, GGB solved 69 instances with a lower effective
time than VSIDS and 29 instances with a higher effective time. Hence if the
branching was free, then GGB would solve instances faster than VSIDS 70%
of the time. GGB achieves a higher GLR than VSIDS for all but 2 instances,
hence it does a good job increasing GLR as expected. Figure 2 shows the same
experiment except the points are colored by the average LBD of all clauses learnt
from start until termination. GGB has a lower LBD than VSIDS for 72 of the 98
comparable instances. We believe this is because GGB by design causes conflicts

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001 0.01 0.1 1 10 100 1000 10000

G
G

B
 E

�

e
c
ti

v
e
 T

im
e

VSIDS E�ective Time
GGB has higher GLR VSIDS has higher GLR

Fig. 1. GGB vs VSIDS. Each point in the plot is a comparable instance. Note that the
axes are in log scale. GGB has a higher GLR for all but 2 instances. GGB has a mean
GLR of 0.74 for this benchmark whereas VSIDS has a mean GLR of 0.59.

earlier when the decision level is low, which keeps the LBD small since LBD
cannot exceed the current decision level.

5 Stochastic Gradient Descent Branching Heuristic

GGB is too expensive in practice due to the computational cost of computing
the c function. In this section, we describe a new branching heuristic called the
stochastic gradient descent branching (SGDB) heuristic that works around this
issue by cheaply approximating c : PA→ {1, 0}.

We use online stochastic gradient descent to learn the logistic regression
function c̃ : Rn → [0, 1] where Rn is the partial assignment’s feature vector and
[0, 1] is the probability the partial assignment is in class 1, the conflict class.
Online training is a good fit since the function c we are approximating is non-
stationary due to the clause database changing over time. For an instance with
n Boolean variables and a partial assignment PA, we introduce the features
x1, ..., xn defined as follows: xi = 1 if variable i ∈ PA, otherwise xi = 0.

Recall that c̃ := σ(w0 + w1x1 + w2x2 + ... + wnxn) is parameterized by the
weights wi, and the goal of SGDB is to find good weights dynamically as the
solver roams through the search space. At the start of the search all weights are
initialized to zero since we assume no prior knowledge.

To train these weights, SGDB needs to generate training data of the form
PA × {1, 0} where 1 signifies the conflicting class, that is, applying BCP on
PA with the current clause database causes a conflict. We leverage the existing
conflict analysis procedure in the CDCL algorithm to create this data. Whenever
the solver performs conflict analysis, SGDB creates a partial assignment PA1

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001 0.01 0.1 1 10 100 1000 10000

G
G

B
 E

�

e
c
ti

v
e
 T

im
e

VSIDS E�ective Time
GGB has lower LBD VSIDS has lower LBD

Fig. 2. GGB vs VSIDS. GGB has a lower average LBD for 72 of the 98 comparable
instances. GGB has a mean average LBD of 37.2 for this benchmark whereas VSIDS
has a mean average LBD of 61.1.

by concatenating the literals on the conflict side of conflict analysis with the
negation3 of the literals in the learnt clause and gives this partial assignment the
label 1. Clearly applying BCP to PA1 with the current clause database leads
to a conflict, hence it is assigned to the conflict class. SGDB creates another
partial assignment PA0 by concatenating all the literals in the current partial
assignment excluding the variables in the current decision level and excluding
the variables in PA1. Applying BCP to PA0 does not lead to a conflict with
the current clause database, because if it did, the conflict would have occurred
at an earlier level. Hence PA0 is given the label 0. In summary, SGDB creates
two data points at every conflict, one for each class (the conflict class and the
non-conflict class) guaranteeing a balance between the two classes.

During conflict, two data points are created. SGDB then applies one step
of stochastic gradient descent on these two data points to update the weights.
Since we are training in an online fashion, the two data points are discarded
after the weights are updated. To reduce the computation cost, regularization
is performed lazily. Regularization, if done eagerly, updates the weights of every
variable on every step of stochastic gradient descent. With lazy updates, only the
weights of non-zero features are updated. As is typical with stochastic gradient
descent, we gradually decrease the learning rate α over time until it reaches a
fixed limit. This helps to rapidly adjust the weights at the start of the search.

When it comes time to pick a new decision variable, SGDB uses the c̃ function
to predict the decision variable that maximizes the probability of creating a par-
tial assignment in class 1, the conflict class. More precisely, it selects the following

3 Recall that the learnt clause is created by negating some literals in the implication
graph, this negation here is to un-negate them.

variable: argmaxv∈UnassignedV arsc̃(CPA∪PhaseSaving(v)) where CPA is the
current partial assignment and PhaseSaving(v) returns v plus the sign which
the phase saving heuristic assigns to v if it were to be branched on. However,
the complexity of the above computation is linear to the number of unassigned
variables. Luckily this can be simplified by the following reasoning:

argmaxv∈UnassignedV arsc̃(CPA ∪ PhaseSaving(v))

= argmaxv∈UnassignedV arsσ(w0 + wv +
∑

l∈vars(CPA)

wl)

Note that σ is a monotonically increasing function.

= argmaxv∈UnassignedV ars(w0 + wv +
∑

l∈vars(CPA)

wl)

Remove the terms common to all the iterations of argmax.

= argmaxv∈UnassignedV arswv

Hence it is equivalent to branching on the unassigned variable with the high-
est weight. By storing the weights in a max priority queue, the variable with
the highest weight can be retrieved in time logarithmic to the number of unas-
signed variables, a big improvement over linear time. The complete algorithm is
presented in Algorithm 2.

Differences with VSIDS: The SGDB branching heuristic presented thus far
has many similarities with VSIDS. During each conflict, VSIDS increments the
activities of the variables in PA1 by 1 whereas SGDB increases the weights of
the variables in PA1 by a gradient. Additionally, the VSIDS decay multiplies
every activity by a constant between 0 and 1, the L2 regularization in stochastic
gradient descent also multiplies every weight by a constant between 0 and 1.
SGDB decreases the weights of variables in PA0 by a gradient, VSIDS does not
have anything similar to this.

Sparse Non-Conflict Extension: The AfterConflictAnalysis procedure
in Algorithm 2 takes time proportional to |PA1| and |PA0|. Unfortunately in
practice, |PA0| is often quite large, about 75 times the size of |PA1| in our
experiments. To shrink the size of PA0, we introduce the sparse non-conflict
extension. With this extension PA0 is constructed by randomly sampling one
assigned literal for each decision level less than the current decision level. Then
the literals in PA1 are removed from PA0 as usual. This construction bounds
the size of PA0 to be less than the number of decision levels. See Algorithm 3
for the pseudocode.

Reason-Side Extension: SGDB constructs the partial assignment PA1 by
concatenating the literals in the conflict side and the learnt clause. Although
PA1 is sufficient for causing the conflict, the literals on the reason side are the
reason why PA1 literals are set in the first place. Inspired by the LRB branching
heuristic with a similar extension, the reason-side extension takes the literals on
the reason side adjacent to the learnt clause in the implication graph and adds

Algorithm 2 Pseudocode for the SGDB heuristic.
1: function PhaseSaving(Var) . return the variable plus a sign
2: return mkLit(V ar, V arSavedPolarity)

3:
4: procedure Initialize
5: for all v ∈ V ars do
6: α← 0.8, λ← 0.1× α, wv ← 0
7: rv ← 0 . Stores the last time v was lazily regularized.

8: conflicts← 0 . The number of conflicts occurred so far.

9:
10: function GetPA1(learntClause, conflictSide)
11: return {¬l | l ∈ learntClause} ∪ conflictSide
12:
13: function GetPA0(PA1)
14: return {v ∈ AssignedV ars | DecisionLevel(v) < currentDecisionLevel} \ PA1

15:
16: procedure AfterConflictAnalysis(learntClause, conflictSide) . Called after a learnt

clause is generated from conflict analysis.
17: if α > 0.12 then
18: α← α− 2× 10−6, λ← 0.1× α
19: conflicts← conflicts+ 1
20: PA1 ← GetPA1(learntClause, conflictSide)
21: PA0 ← GetPA0(PA1)
22: for all v ∈ vars(PA1 ∪ PA0) do . Lazy regularization.
23: if conflicts− rv > 1 then
24: wv ← wv × (1− αλ

2)conflicts−rv−1

25: rv ← conflicts

26: error1 ← σ(w0 +
∑
i∈vars(PA1) wi) . Compute the gradients and descend.

27: error0 ← σ(w0 +
∑
i∈vars(PA0) wi)

28: w0 ← w0 × (1− αλ
2)− α

2 (error1 + error2)

29: for all v ∈ vars(PA1) do
30: wv ← wv × (1− αλ

2)− α
2 (error1)

31: for all v ∈ vars(PA0) do
32: wv ← wv × (1− αλ

2)− α
2 (error0)

33:
34: function SGDB
35: d← argmaxv∈UnassignedV arswv
36: while conflicts− rd > 0 do . Lazy regularization.
37: wd ← wd × (1− αλ

2)conflicts−rd

38: rd ← conflicts

them to PA1. This lets the learning algorithm associate these variables with the
conflict class. See Algorithm 4 for the pseudocode.

5.1 Experimental Results

We ran MapleSAT configured with 6 different branching heuristics (LRB, VSIDS,
SGDB with four combinations of the two extensions) on all the application
and hard combinatorial instances from SAT Competitions 2011, 2013, 2014,
and 2016. At the end of each run, we recorded the elapsed time, the GLR at
termination, and the average LBD of all clauses learnt from start to finish.
Table 3 and Figure 3 show the effectiveness of each branching heuristic in solving
the instances in the benchmark. The reason-side extension (resp. sparse non-
conflict extension) increases the number of solved instances by 97 (resp. 155).
The two extensions together increase the number of solved instances by 219,

Algorithm 3 Pseudocode for the sparse non-conflict extension. Only the GetPA0
code is modified, the rest remains the same as SGDB.
1: function Sample(level)
2: C ← {v ∈ V ars | DecisionLevel(v) = level}
3: return a variable sampled uniformly at random from C

4:
5: function GetPA0(PA1)
6: return (

⋃
i∈{1,2,...,currentDecisionLevel−1} Sample(i)) \ PA1

Algorithm 4 Pseudocode for the reason-side extension. Only the GetPA1 code
is modified, the rest remains the same as SGDB.
1: function GetPA1(learntClause, conflictSide)
2: adjacent←

⋃
lit∈learntClause Reason(¬lit)

3: return {¬l | l ∈ learntClause} ∪ conflictSide ∪ adjacent

and in total solve just 12 instances fewer than VSIDS. LRB solves 93 more
instances than VSIDS. Table 4 shows the GLR and the average LBD achieved
by the branching heuristics. Both extensions individually increased the GLR and
decreased the LBD. The extensions combined increased the GLR and decreased
the LBD even further. The best performing heuristic, LRB, achieves the highest
GLR and lowest LBD in this experiment. It should not be surprising that LRB
has high GLR, our goal when designing LRB was to generate lots of conflicts by
branching on variables likely to cause conflicts. By design, LRB tries to achieve
high GLR albeit indirectly by branching on variables with high learning rate.

6 Threats To Validity

1. Did we overfit? One threat is the possibility that the parameters are
overtuned for the benchmarks and overfit them, and hence work poorly for
untested benchmarks. To avoid overtuning parameters, we chose α

2 in SGD
to be the same as the step-size in LRB from our previous paper [19] and
also chose (1 − αλ

2) to be the same as the locality extension penalty factor
in LRB from the same paper. We fixed these parameters from the start and
never tuned them. Also, note that the training is online per instance.

2. What about optimizing for quality of learnt clauses? This remains a
challenge. We did notice that when we maximize GLR we get a very nice side-
effect of low LBD. Having said that, in the future we plan to explore other
notions of quality and integrate that into a multi-objective optimization
problem view of branching heuristics.

7 Related Work

The VSIDS branching heuristic, currently the most widely implemented branch-
ing heuristic in CDCL solvers, was introduced by the authors of the Chaff solver
in 2001 [23] and later improved by the authors of the MiniSat solver in 2003 [11].

Table 3. # of solved instances by various configurations of SGD, VSIDS, and LRB.

Benchmark Status
SGDB +
No Ext

SGDB +
Reason Ext

SGDB +
Sparse Ext

SGDB +
Both Ext

VSIDS LRB

2011 Application
SAT 84 89 96 93 95 103
UNSAT 87 87 96 94 99 98
BOTH 171 176 192 187 194 201

2011 Hard Combinatorial
SAT 85 92 91 97 88 93
UNSAT 36 50 43 51 48 64
BOTH 121 142 134 148 136 157

2013 Application
SAT 91 92 108 112 127 132
UNSAT 75 75 86 81 86 95
BOTH 166 167 194 193 213 227

2013 Hard Combinatorial
SAT 107 109 118 118 115 116
UNSAT 57 88 60 99 73 111
BOTH 164 197 178 217 188 227

2014 Application
SAT 79 86 100 107 105 116
UNSAT 65 62 79 73 94 76
BOTH 144 148 179 180 199 192

2014 Hard Combinatorial
SAT 82 82 91 86 91 91
UNSAT 41 61 56 73 59 89
BOTH 123 143 147 159 150 180

2016 Application
SAT 52 55 62 62 60 61
UNSAT 52 50 55 57 63 65
BOTH 104 105 117 119 123 126

2016 Hard Combinatorial
SAT 5 7 6 7 3 6
UNSAT 19 29 25 26 42 25
BOTH 24 36 31 33 45 31

TOTAL (no duplicates)
SAT 585 612 672 682 684 718
UNSAT 432 502 500 554 564 623
BOTH 1017 1114 1172 1236 1248 1341

0 200 400 600 800 1,000 1,200 1,400

0

1,000

2,000

3,000

4,000

5,000

Instances solved

S
o
lv

in
g

ti
m

e
(s

)

SGD + No Extensions

SGD + Reason Extension

SGD + Sparse Extension

SGD + Both Extensions

VSIDS

LRB

Fig. 3. A cactus plot of various configurations of SGD, VSIDS, and LRB on the entire
benchmark with duplicate instances removed.

Table 4. GLR and average LBD of various configurations of SGD, VSIDS, and LRB
on the entire benchmark with duplicate instances removed. LRB not solves the most
instances and achieves the highest GLR and lowest average LBD in our experiments.

Metric Status
SGDB +
No Ext

SGDB +
Reason Ext

SGDB +
Sparse Ext

SGDB +
Both Ext

VSIDS LRB

Mean GLR
SAT 0.324501 0.333763 0.349940 0.357161 0.343401 0.375181
UNSAT 0.515593 0.518362 0.542679 0.545567 0.527546 0.557765
BOTH 0.403302 0.409887 0.429420 0.434854 0.419337 0.450473

Mean Avg LBD
SAT 22.553479 20.625091 19.470764 19.242937 28.833872 16.930723
UNSAT 17.571518 16.896552 16.249930 15.832730 22.281780 13.574527
BOTH 20.336537 18.965914 18.037512 17.725416 25.918232 15.437237

Carvalho and Marques-Silva introduced a variation of VSIDS in 2004 where the
bump value is determined by the learnt clause length and backjump size [8]
although their technique is not based on machine learning. Lagoudakis and
Littman introduced a new branching heuristic in 2001 that dynamically switches
between 7 different branching heuristics using reinforcement learning to guide
the choice [17]. Liang et al. introduced two branching heuristics, CHB and LRB,
in 2016 where a stateless reinforcement learning algorithm selects the branching
variables themselves. CHB does not view branching as an optimization problem,
whereas LRB, GGB, SGDB do. As stated earlier, LRB optimizes for learning
rate, a metric defined with respect to variables. GGB and SGDB optimize for
global learning rate, a metric defined with respect to the solver.

8 Conclusion and Future Work

Finding the optimal branching sequence is nigh impossible, but we show that
using the simple framework of optimizing GLR has merit. The crux of the ques-
tion since the success of our LRB heuristic is whether solving the learning rate
optimization problem is indeed a good way of designing branching heuristics.
A second question is whether machine learning algorithms are the way to go
forward. We answer both questions via a thorough analysis of 7 different notable
branching heuristics, wherein we provide strong empirical evidence that better
branching heuristics correlate with higher GLR. Further, we show that higher
GLR correlates with lower LBD, a popular measure of quality of learnt clauses.
Additionally, we designed a greedy branching heuristic to maximize GLR and
showed that it outperformed VSIDS, one of the most competitive branching
heuristics. To answer the second question, we designed the SGDB that is com-
petitive vis-a-vis VSIDS. With the success of LRB and SGDB, we are more
confident than ever before in the wisdom of using machine learning techniques
as a basis for branching heuristics in SAT solvers.

9 Acknowledgement

We thank Sharon Devasia Isac and Nisha Mariam Johnson from the College Of
Engineering, Thiruvananthapuram, for their help in implementing the Berkmin
and DLIS branching heuristics.

References

[1] https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
[2] https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/sgd
[3] Audemard, G., Simon, L.: Predicting Learnt Clauses Quality in Modern SAT

Solvers. In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence. pp. 399–404. IJCAI’09, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (2009)

[4] Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 Competition. In: Proceed-
ings of SAT Competition 2013. pp. 42–43 (2013)

[5] Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV
Report Series Technical Report 10(1) (2010)

[6] Bottou, L.: On-line Learning in Neural Networks. chap. On-line Learning and
Stochastic Approximations, pp. 9–42. Cambridge University Press, New York,
NY, USA (1998)

[7] Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automat-
ically Generating Inputs of Death. In: Proceedings of the 13th ACM Conference
on Computer and Communications Security. pp. 322–335. CCS ’06, ACM, New
York, NY, USA (2006)

[8] Carvalho, E., Silva, J.P.M.: Using Rewarding Mechanisms for Improving Branch-
ing Heuristics. In: SAT 2004 - The Seventh International Conference on The-
ory and Applications of Satisfiability Testing, 10-13 May 2004, Vancouver, BC,
Canada, Online Proceedings (2004)

[9] Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded Model Checking Using Satis-
fiability Solving. Formal Methods in System Design 19(1), 7–34 (2001)

[10] Cox, D.R.: The Regression Analysis of Binary Sequences. Journal of the Royal
Statistical Society. Series B (Methodological) 20(2), 215–242 (1958)

[11] Eén, N., Sörensson, N.: Theory and Applications of Satisfiability Testing: 6th
International Conference, SAT 2003, Santa Margherita Ligure, Italy, May 5-8,
2003, Selected Revised Papers, chap. An Extensible SAT-solver, pp. 502–518.
Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

[12] Fisher, R.A.: Frequency Distribution of the Values of the Correlation Coefficient in
Samples from an Indefinitely Large Population. Biometrika 10(4), 507–521 (1915)

[13] Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust Sat-solver. Discrete Appl.
Math. 155(12), 1549–1561 (Jun 2007)

[14] Jeroslow, R.G., Wang, J.: Solving Propositional Satisfiability Problems. Annals
of Mathematics and Artificial Intelligence 1(1-4), 167–187 (Sep 1990)

[15] Katebi, H., Sakallah, K.A., Marques-Silva, J.a.P.: Empirical Study of the Anatomy
of Modern Sat Solvers. In: Proceedings of the 14th International Conference on
Theory and Application of Satisfiability Testing. pp. 343–356. SAT’11, Springer-
Verlag, Berlin, Heidelberg (2011)

[16] Kautz, H., Selman, B.: Planning As Satisfiability. In: Proceedings of the 10th
European Conference on Artificial Intelligence. pp. 359–363. ECAI ’92, John Wiley
& Sons, Inc., New York, NY, USA (1992)

[17] Lagoudakis, M.G., Littman, M.L.: Learning to Select Branching Rules in the
DPLL Procedure for Satisfiability. Electronic Notes in Discrete Mathematics 9,
344–359 (2001)

[18] Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential Recency
Weighted Average Branching Heuristic for SAT Solvers. In: Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence. pp. 3434–3440. AAAI’16,
AAAI Press (2016)

[19] Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning Rate Based Branch-
ing Heuristic for SAT Solvers. In: Theory and Applications of Satisfiability Testing
- SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings. pp. 123–140 (2016)

[20] Luby, M., Sinclair, A., Zuckerman, D.: Optimal Speedup of Las Vegas Algorithms.
Information Processing Letters 47(4), 173–180 (Sep 1993)

[21] Marques-Silva, J.P.: The Impact of Branching Heuristics in Propositional Satisfia-
bility Algorithms. In: Proceedings of the 9th Portuguese Conference on Artificial
Intelligence: Progress in Artificial Intelligence. pp. 62–74. EPIA ’99, Springer-
Verlag, London, UK, UK (1999)

[22] Marques-Silva, J.P., Sakallah, K.A.: GRASP-A New Search Algorithm for Sat-
isfiability. In: Proceedings of the 1996 IEEE/ACM International Conference on
Computer-aided Design. pp. 220–227. ICCAD ’96, IEEE Computer Society, Wash-
ington, DC, USA (1996)

[23] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: Proceedings of the 38th Annual Design Au-
tomation Conference. pp. 530–535. DAC ’01, ACM, New York, NY, USA (2001)

[24] Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press
(2012)

[25] Pipatsrisawat, K., Darwiche, A.: A Lightweight Component Caching Scheme for
Satisfiability Solvers. In: Proceedings of the 10th International Conference on
Theory and Applications of Satisfiability Testing. pp. 294–299. SAT’07, Springer-
Verlag, Berlin, Heidelberg (2007)

[26] Soos, M.: CryptoMiniSat v4. SAT Competition p. 23 (2014)
[27] Spearman, C.: The Proof and Measurement of Association between Two Things.

The American Journal of Psychology 15(1), 72–101 (1904)
[28] Stump, A., Sutcliffe, G., Tinelli, C.: Automated Reasoning: 7th International Joint

Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 19-22, 2014. Proceedings, chap. StarExec: A Cross-
Community Infrastructure for Logic Solving, pp. 367–373. Springer International
Publishing, Cham (2014)

