
Journal on Satisfiability, Boolean Modeling, and Computation 11 (2019) 53-64

RC2: an Efficient MaxSAT Solver

Alexey Ignatiev aignatiev@ciencias.ulisboa.pt

Antonio Morgado ajmorgado@ciencias.ulisboa.pt

Joao Marques-Silva jpms@ciencias.ulisboa.pt

Faculty of Sciences

University of Lisbon

Lisbon, Portugal

Abstract

Recent work proposed a toolkit PySAT aiming at fast and easy prototyping with propo-
sitional satisfiability (SAT) oracles in Python, which enabled one to exploit the power of
the original implementations of the state-of-the-art SAT solvers in Python. Maximum sat-
isfiability (MaxSAT) is a well-known optimization version of SAT, which can be solved
with a series of calls to a SAT oracle. Based on this fact and motivated by the ideas un-
derlying the PySAT toolkit, this paper describes and evaluates RC2 (stands for relaxable
cardinality constraints), a new core-guided MaxSAT solver written in Python, which won
both unweighted and weighted categories of the main track of MaxSAT Evaluation 2018.

Keywords: Maximum Satisfiability, Relaxable/Soft Cardinality Constraints, Python

Submitted November 2018; revised March 2019; published September 2019

1. Introduction

Maximum Satisfiability (MaxSAT) represents the optimization problem for propositional
formulas in conjunctive normal form (CNF). The MaxSAT problem can be formulated in
a general setting as follows. Clauses can have associated weights, and clauses can be hard
(corresponding to an infinite positive weight). The goal is to find the assignments that
maximize the cost of the satisfied clauses. (The hard clauses are assumed to be satisfiable;
otherwise the cost would be infinite.) MaxSAT finds a growing range of applications that
include program analysis, fault localization, and model-based diagnosis in general.

This paper describes RC21., an open-source MaxSAT solver, written in Python and
based on the PySAT framework2. [11]. Despite being prototyped in Python, RC2 was
ranked first in the two complete categories of the MaxSAT Evaluation 2018. This paper
describes not only the design decisions supporting RC2, including the algorithm originally
proposed in [19], but it also outlines the implementation details that enable a top-performing
MaxSAT solver to be implemented on top of the PySAT framework.

The paper is organized as follows. Section 2 introduces the necessary definitions and the
notation used throughout the paper. Section 3 describes the organization and the imple-
mentation of the RC2 solver and the heuristics used. Section 4 presents the experimental

1. RC2 is the acronym for Relaxable Cardinality Constraints and extends a MaxSAT algorithm based on
relaxable cardinality constraints first proposed in [19].

2. http://pysathq.github.io

c©2019 IOS Press, SAT Association and the authors.

http://pysathq.github.io

A. Ignatiev et al.

results assessing the performance of various configurations of RC2. Availability of RC2 is
discussed in Section 5, which is followed by the conclusions made in Section 6.

2. Preliminaries

This section introduces the notation and definitions used in this paper. Standard propo-
sitional logic definitions apply (e.g. [7]). Propositional formulas are defined over a set of
Boolean variables. A propositional formula F is said to be in conjunctive normal form
(CNF) if it is represented as a conjunction of clauses, also interpreted as a set of clauses. A
clause is a disjunction of literals, also interpreted as a set of literals. A literal is a propo-
sitional variable or its complement. Hereinafter, CNF formulas are dealt with using SAT
oracles. Given a CNF formula F , a SAT oracle decides whether F is satisfiable, in which
case it returns a satisfying assignment. Given an unsatisfiable CNF formula F , a SAT oracle
can also return an unsatisfiable core U ⊆ F , which is a subset of the clauses of F that is
unsatisfiable on its own. A SAT oracle is assumed to be a conflict-driven clause learning
(CDCL) SAT solver. CDCL SAT solvers are summarized in [7].

In the context of the maximum satisfiability (MaxSAT) problem, (weighted) partial CNF
formulas are typically considered. Clauses in a partial CNF formula are characterized as
hard, meaning that these must be satisfied, or soft, meaning that these are to be satisfied,
if at all possible. An integer weight can be associated with each soft clause, and the goal
of maximum satisfiability (MaxSAT) is to find an assignment to the propositional variables
such that the hard clauses are satisfied, and the sum of the weights of the satisfied soft
clauses is maximized. Whenever convenient, soft clauses will be represented as pairs (c, w),
with c being a disjunction of literals and w its weight. Also, hard clauses in the same context
will be marked by weight >, i.e. (c,>). A number of algorithms for MaxSAT solving exist,
including iterative and core-guided algorithms [22, 4, 20], as well as the algorithms based
on implicit hitting set enumeration [6].

3. Solver Description

This section describes the organization of the solver, the MaxSAT algorithm used, as well
as the heuristics integrated. Additionally, the section identifies a number of differences
between the two configurations submitted to the MaxSAT Evaluation 2018, namely RC2-a
and RC2-b.

In contrast to our previous MaxSAT solver MSCG [21] implementing a large set of
numerous MaxSAT algorithms [20], e.g. including progression-based [10] and OLL [19]
algorithms, RC2 focuses exclusively on a variant of the latter algorithm following the im-
plementation of [21]. The algorithm is detailed in the following section. RC2 supports a
variety of SAT solvers provided by PySAT, through an assumption-based Minisat-like [8]
incremental interface. By default, RC2 uses Glucose 3.0 [5] as the underlying SAT oracle.

3.1 RC2 MaxSAT Algorithm

RC2 stands for Relaxable Cardinality Constraints. This section describes the MaxSAT
algorithm implemented in RC2. Originally, the OLL algorithm was created for solving
ASP optimization problems [1]. Then in 2014, the algorithm was adapted for solving the

54

RC2: an Efficient MaxSAT Solver

MaxSAT problem [19] but reusing cardinality constraints as they are discovered. RC2
improves the OLL algorithm adapted to MaxSAT [19] with additional features explained in
following sections. Before describing the algorithm, we will present an illustrative example.

In the example we will abuse the notation and refer to constraints as literals or clauses.
Consider F = S ∪ H a partial MaxSAT formula, where the set of soft clauses is S =
{(x1, 1),(x2, 1), (x3, 1), (x4, 1), (x5, 1)}, and the set of hard clauses is H = {(¬x1 ∨ ¬x2 ∨
¬x3 ∨¬x4), (¬x1 ∨¬x2), (¬x3 ∨¬x4), (¬x1 ∨¬x5), (¬x2 ∨¬x5), (¬x3 ∨¬x5), (¬x4 ∨¬x5)}.

Initially, F is sent to the SAT solver, which reports that F is unsatisfiable. Let us assume
that the unsatisfiable core returned is made of the soft clauses (x1, 1), (x2, 1), (x3, 1), (x4, 1)
together with the hard clause (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4). At least one of the soft clauses
of the core will have to be disregarded in order to fix the core. Similar to other MaxSAT
algorithms, the algorithm proceeds by relaxing each soft clause in the core (i.e. augmenting
the clause with a fresh variable called relaxation variable) and constrains the sum of the
relaxation variables to be at most one (by adding a cardinality constraint). New relaxation
variables r1, r2, r3, r4 are created, and the soft clauses in the core are replaced in F by
the hard clauses (x1 ∨ r1), (x2 ∨ r2), (x3 ∨ r3), (x4 ∨ r4). The algorithm differs from other
known MaxSAT algorithms in that instead of turning the relaxation variables into new soft
clauses, it makes the new cardinality constraint a soft constraint. The new soft constraint
((r1 + r2 + r3 + r4 ≤ 1), 1) is added to F , thus F is updated to:

S ← {(x5, 1), (r1 + r2 + r3 + r4 ≤ 1, 1)}
H ← H ∪ {(x1 ∨ r1), (x2 ∨ r2), (x3 ∨ r3), (x4 ∨ r4)}

The total MaxSAT cost so far is set to 1.
At this point, a new iteration is started with the updated formula being sent to the SAT

solver. The solver reports the formula to be unsatisfiable, with a new unsatisfiable core
containing (besides the hard clauses) the soft constraint ((r1 + r2 + r3 + r4 ≤ 1), 1). Since
there are no original soft clauses in the core (only this soft constraint), no clause is relaxed.
The soft constraint increases its right-hand side (RHS) to 2, i.e. S is updated to:

S ← {(x5, 1), (r1 + r2 + r3 + r4 ≤ 2, 1)}

The MaxSAT cost is updated to 2.
A third iteration sends the updated formula to the SAT solver, which concludes again

that the formula is unsatisfiable. This time the unsatisfiable core contains the soft clause
(x5, 1) and the soft constraint (r1 + r2 + r3 + r4 ≤ 2, 1), together with some of the hard
clauses. Since (x5, 1) is an original soft clause of the formula, the clause is relaxed with a new
variable r5. At this point, the algorithm removes both the soft clause and the soft constraint
involved in the core, and adds two new soft constraints (r5 +¬(r1+ r2 + r3 + r4 ≤ 2) ≤ 1, 1)
and (r1 + r2 + r3 + r4 ≤ 3, 1). The first soft constraint added relates the relaxation variable
with the previous soft constraint. The constraint is violated if r5 is set to true and the
previous soft constraint is violated (that is r1+r2 +r3 +r4 ≥ 3). The second soft constraint
increases the bound of the previous soft constraint. Together, both added constraints allow
either r5 to be set to true (satisfying the previous soft constraint), or to have one more of
the previous relaxation variables set to true. The updated formula is:

S ← {(r5 + ¬(r1 + r2 + r3 + r4 ≤ 2) ≤ 1, 1), (r1 + r2 + r3 + r4 ≤ 3, 1)}
H ← H ∪ {(x5 ∨ r5)}

55

A. Ignatiev et al.

Algorithm 1: RC2 MaxSAT Algorithm

Input: A partial MaxSAT formula F
1 Function RelaxAndHarden(L, F , (l1 ∨ . . . ∨ lm, 1))
2 F ← F \ {(l1 ∨ . . . ∨ lm, 1)}
3 L← L ∪ {r} # r is a fresh boolean (relaxation) variable

4 F ← F ∪ {(l1 ∨ . . . ∨ lm ∨ r)}

5 map← {} # map[lit] = (sumOutputs, rhs)
6 cost ← 0

7 while True :
8 (st, C,A)← SATSolver(F)
9 if st == True:

10 return (cost,A)
11 else:
12 cost← cost + 1
13 L← ∅
14 for c ∈ Soft(C) :
15 if c is not a soft cardinality constraint:
16 RelaxAndHarden(L,F , c)
17 else: # c is a soft cardinality constraint

18 F ← F \ {c}
19 (¬s, 1)← c # c was enforced by the unit clause (¬s, 1)
20 L← L ∪ {s}
21 (so, rhs)← map[¬s]
22 if rhs + 1 < |so| :
23 F ← F ∪ {(¬so[rhs + 1], 1)}
24 map[¬so[rhs + 1]]← (so, rhs + 1)

25 (so, sc)← EncodeSum(L) # EncodeSum(L) = (sumOutputs, sumCls)

26 F ← F ∪ {(¬so[1], 1)} ∪ sc
27 map[¬so[1]]← (so, 1)

The MaxSAT cost is set to 3.

Finally, in the last iteration of the algorithm, the new formula is sent to the SAT solver,
which reports it to be satisfiable, and so the final MaxSAT cost is concluded to be 3.

As the previous example illustrates, the idea of the algorithm is to go through unsatis-
fiable iterations until a satisfiable formula is obtained. Whenever a new unsatisfiable core
is identified, the formula is updated such that either all the previous soft constraints in the
core are satisfied and at most one of the new relaxation variables is allowed to be set to
true, or one of the soft constraints is allowed to increase its bound by 1.

The example also illustrates that cardinality constraints are used as soft constraints.
In RC2, the soft cardinality constraint (

∑m
i xi ≤ k, 1) is divided into the left-hand side

(LHS) sum (
∑m

i xi), and the right-hand side (RHS) (≤ k). The LHS sum is encoded as
a set of hard clauses (with the Iterative Totalizer encoding [17]) using auxiliary variables
o1, . . . , om, representing the unary number om . . . o1. The RHS is enforced by adding the
soft unit clause (¬ok+1, 1).

56

RC2: an Efficient MaxSAT Solver

The pseudo-code of the RC2 MaxSAT algorithm is presented in Algorithm 1. The
algorithm takes as input a partial MaxSAT formula F . Initially (line 5), a dictionary map
is created which associates literals with soft cardinality constraints. For a given literal l,
map[l] returns a pair (sumOutputs, rhs), where sumOutputs is a vector of auxiliary variables
encoding the LHS sum of the soft cardinality constraint (as a unary number), and rhs is the
current RHS of the soft cardinality constraint. Then in line 6 the initial cost is set to 0.

The main iterations of the algorithm occur in lines 7 to 27. The SAT solver is called
on the current formula F (line 8). If the formula is satisfiable, then st is set to true and
the algorithm terminates returning a pair with the optimum value cost and the satisfying
assignment A (reported by the SAT solver) in line 10.

If the formula is unsatisfiable, then a core C is obtained, the cost is increased by 1
(line 12), and a new set L is created to hold the input variables of the LHS sum of a new
soft cardinality constraint to be created (line 13). The algorithm proceeds by checking each
soft constraint in the core (line 14). If the soft constraint is an original soft clause of F , then
a new relaxation variable is added to the clause, the clause is made hard in F , and the relax-
ation variable is added to L. This process is done through function RelaxAndHarden(L,F , c)
(defined in lines 1-4) called in line 16. Otherwise, the constraint is a soft cardinality con-
straint, and it is removed from F (line 18). The corresponding unit literal (s) enforcing
the cardinality constraint is added to L (line 20). If it is possible to increase the RHS3. of
the cardinality constraint (line 22), then a new soft cardinality constraint is enforced in F
using the same LHS sum with increased RHS (lines 23 and 24).

When all soft constraints of the core have been processed, the LHS sum of the new
soft cardinality constraint is encoded using function EncodeSum(L), which returns a pair
containing the output variables so4. representing the sum and the set of hard clauses sc
encoding the sum (line 25). The hard clauses, and a soft unit clause enforcing the RHS
(≤ 1) of the new soft cardinality constraint are added to F (line 26). The information
regarding the new soft cardinality constraint is added to map (line 27).

The algorithm described above deals with unweighted partial MaxSAT formulas. In
the weighted case, RC2 splits the soft constraints according to the minimum weight of the
soft constraints in the core (similar to other MaxSAT algorithms). Every time a new core
is found, the minimum weight min of the soft constraints in the core is computed. Then
each soft constraint (ci, wi) with a weight greater than the minimum is replaced by two soft
constraints: (ci,min) and (ci, wi −min). Here, RC2 proceeds as in the partial case with
the core containing the soft constraints of weight min, and also updates the cost by min.

3.2 Heuristics

The RC2 MaxSAT algorithm implemented in the solver is augmented with a number of
additional heuristics aiming at improving its performance. All the heuristics integrated can
be enabled or disabled with the use of the corresponding command-line options.

3.
∑m

i xi ≤ m is trivially satisfied, thus it is not encoded.
4. Note that so is a 0-indexed array where so[0] = o1, . . . , so[m− 1] = om.

57

A. Ignatiev et al.

3.2.1 SAT Solver Interface

RC2 makes use of the standard MiniSat-like incremental interface [8] to a SAT oracle,
i.e. multiple calls to the oracle are done by specifying a list of assumption literals, which
may change from one oracle call to another. This is done in the following way. Given an
unsatisfiable partial formula H∧S, the solver augments every soft clause c ∈ S with a fresh
selector literal ¬s, i.e. a modified set of soft clauses is considered: S ′ = {c ∨ ¬s | c ∈ S}.
Now, by setting selector literals to true (resp. false), one can activate (resp. deactivate)
the corresponding clauses, and these preferences can be specified as a list of assumptions
given to the oracle. (Moreover, one may consider making the clauses of S ′ hard and use
the corresponding selectors as unit size soft clauses.) The rationale behind this is that the
incremental use of a SAT oracle makes it possible to reuse the oracle, once it is created.
This enables the solver to keep all the learnt clauses from prior SAT calls.

3.2.2 Dealing With Weighted Formulas

One may opt to apply Boolean lexicographic optimization (BLO) [14] and stratification [2].
Both techniques prove helpful when dealing with weighted formulas. BLO and stratification
are known to be crucial for MaxSAT algorithms that split soft clauses of the formula involved
in an unsatisfiable core, e.g. in FM [9] and its improvements [16, 15, 3, 12], as well as OLL
and RC2 [19] (also detailed above). Both heuristics aim at imposing a preference on the soft
clauses based on their weights and feeding the MaxSAT algorithm with more soft clauses
as soon as the problem gets solved for the clauses of higher weights.

3.2.3 Core Exhaustion

An important heuristic used in RC2 is unsatisfiable core exhaustion (originally referred to as
cover optimization) [2]. The heuristic does the following. Recall that each newly identified
unsatisfiable core gets relaxed and a new bound on the number of falsified clauses in the
cores is set to 1. Assume every clause of unsatisfiable core C is relaxed, i.e. transformed
into a set of relaxed clauses Cr and the corresponding set of relaxations variables is R. Note
that H∧Cr ∧ (

∑
r∈R r ≤ 1) may still be unsatisfiable. The idea behind the core exhaustion

heuristic is to quickly increase the bound from 1 to some value k ≤ |R| s.t.H∧Cr∧(
∑

r∈R r ≤
k) is still unsatisfiable while increasing k further makes the formula satisfiable. The rationale
here is that calling an oracle incrementally on a a series of slightly modified formulas focusing
only on the recently computed unsatisfiable core and disregarding the rest of the formula
may be practically effective.

3.2.4 Intrinsic AtMost1 constraints

The solver can be instructed to detect intrinsic AtMost1 constraints on some of the soft
clauses of the formula and deal with them before executing the main MaxSAT algorithm.
This heuristic works as follows. For the sake of simplicity, consider a set S of unweighted
soft clauses (the technique can be easily extended to the case of weighted soft clauses).
Assume there is a subset S ′ ⊆ S s.t.

∑
c∈S′ c ≤ 1 holds, i.e. at most one of these clauses

can be satisfied in the presence of the formula’s hard clauses. In this situation, one can
immediately conclude that the formula has cost at least |S ′| − 1. Furthermore, one can

58

RC2: an Efficient MaxSAT Solver

replace the original soft clauses of S ′ with a single unit-weight soft clause
∨

c∈S′ c. If a
MaxSAT solution for the formula falsifies this new clause, all the original soft clauses of S ′
are falsified as well. Recall that each soft clause of the formula in RC2 is augmented with
a fresh selector literal, i.e. the solver deals with clauses c′ = c ∨ ¬s for each original soft
clause c ∈ S. Here, c′ is made hard and its selector s is treated as a unit size soft clause.
As a result, the implementation of intrinsic AtMost1 constraint heuristic in RC2 replaces
the clauses of S ′ with a single disjunction of their selectors.

Note that a number of pairwise disjoint subsets of S can be detected, each being pro-
cessed the way described above. Each such subset S ′ contributes to the total MaxSAT cost
of the formula. Observe that no SAT oracle calls are involved in this process. The fact that
at most one of the two soft clauses (c1∨¬s1) and (c2∨¬s2) can be satisfied, can be checked
by setting one of their selectors, e.g. s1, to true and applying unit propagation followed by
a check whether or not the other selector, e.g. s2, is implied to be false.5. As shown in the
experimental results below (see Section 4), intrinsic AtMost1 constraints play a crucial role,
tremendously improving the performance of RC2.

3.3 MSE18 Versions

Two variants of the solver were submitted to the MaxSAT Evaluation 2018 including RC2-
a and RC2-b. Both versions use Glucose 3.0 [5] as an underlying SAT engine, apply BLO,
stratification, core exhaustion, and detect intrinsic AtMost1 constraints. The only difference
between the solver variants is the policy for unsatisfiable core reduction.

3.3.1 Core Reduction

In contrast to RC2-a, RC2-b applies heuristic unsatisfiable core minimization done with a
simple deletion-based minimal unsatisfiable subset (MUS) extraction algorithm [13]. The
implementation follows Algorithm 2. The idea is to try to deactivate soft clauses of the
unsatisfiable core one by one while checking if the remaining soft clauses together with the
hard part of the formula are unsatisfiable. Clauses that are necessary for preserving unsat-
isfiability comprise an MUS of the input formula (it is contained in the given unsatisfiable
core) and are reported as a result of the procedure. During the core minimization phase
in RC2-b, all SAT calls are dropped after obtaining 1000 conflicts. Note that core mini-
mization in RC2-b is disabled for large plain MaxSAT formulas, i.e. those having no hard
clauses but more than 100000 soft clauses. The reason is that having this many soft clauses
(and, thus, as many assumption literals) and no hard clauses is deemed to make SAT calls
too expensive.

Although core minimization is disabled in RC2-a, reducing the size of unsatisfiable
cores can be still helpful for weighted instances due to the nature of the RC2 algorithm,
i.e. because of the clause splitting technique applied to the clauses of an unsatisfiable core
depending on their weight. Therefore, when dealing with weighted instances, RC2-a trims
unsatisfiable cores at most 5 times (e.g. see [21] for details on unsatisfiable core trimming)
aiming at getting rid of unnecessary clauses. Note that unsatisfiable core trimming is
disabled in RC2-a for unweighted MaxSAT instances and it is not used in RC2-b at all.

5. Note that in general unit propagation does not suffice to check whether or not H ∧ s1 �¬s2.

59

A. Ignatiev et al.

Algorithm 2: Deletion-based MUS extraction.

input : hard clauses H and a core C ⊆ S s.t. H ∪ C �⊥
output: MUS M

1 M← C
2 for c ∈M:
3 if not SATLimited(H ∪M \ {c}): # do until 1000 conflicts are obtained

4 M←M\ {c}

5 returnM

3.4 Incremental MaxSAT Solving

Besides the features described above, RC2 also supports incremental MaxSAT solving. This
means that one can apply RC2 not only to compute a satisfying assignment corresponding
to a MaxSAT solution, i.e. corresponding to the optimum MaxSAT cost, but also to iter-
atively enumerate either a given number of assignments, or all of them exhaustively, with
no need to restart the solver. Note that the enumeration mode can be used to compute
top-k MaxSAT solutions in a sorted fashion, i.e. best cost solutions are computed first.
Incremental MaxSAT solving in RC2 is associated with RC2’s ability to add hard and soft
clauses to the working formula on demand, i.e. whenever necessary (for details, see method
add clause() in the source code of RC2).

4. Experimental Results

This section is devoted to the evaluation of the basic version of RC2 and its competition
versions, i.e. RC2-a and RC2-b. Besides that, it also assesses the contribution of the two
heuristics described above, namely core exhaustion (see Section 3.2.3) and intrinsic AtMost1
constraints (as described in Section 3.2.4), in the overall performance of the solver. As a
result, in the following, RC2 denotes the basic version of the solver (including the use of
BLO and stratification for weighted formulas) while RC2? augments the basic version with
unsatisfiable core exhaustion and RC2?? additionally performs intrinsic AtMost1 constraints
detection and adaptation.

For the comparison, we chose all (i.e. unweighted and weighted) benchmarks from the
MaxSAT Evaluation 2018 (MSE18) [18]. The benchmarks suite contains 600 unweighted
and 600 weighted MaxSAT instances. The experiments were performed in Ubuntu Linux
on an Intel Xeon E5-2630 2.60GHz processor with 64GByte of memory. The time limit was
set to 1800s and the memory limit to 10GByte for each individual process to run. For the
purpose of comparison, two solvers best performing in MSE18 (besides RC2-a and RC2-b)
were chosen for each of the categories of benchmarks. These include Maxino and MaxHS
for the unweighted instances6. and also MaxHS and Pacose for the weighted instances7..

Figure 1 and Figure 2 show cactus plots depicting the performance of all the chosen
competitors. The following conclusions can be made with respect to the experimental data.

6. https://maxsat-evaluations.github.io/2018/results/complete/unweighted/summary.html

7. https://maxsat-evaluations.github.io/2018/results/complete/weighted/summary.html

60

https://maxsat-evaluations.github.io/2018/results/complete/unweighted/summary.html
https://maxsat-evaluations.github.io/2018/results/complete/weighted/summary.html

RC2: an Efficient MaxSAT Solver

300 320 340 360 380 400 420 440 460
instances

0

200

400

600

800

1000

1200

1400

1600

1800
C

PU
tim

e
(s

)
VBSALL

VBSRC2

RC2-B

RC2-A

RC2??

MAXINO

MAXHS
RC2?

RC2

Figure 1. Unweighted instances of MSE18.

First, as one can observe, RC2-a and RC2-b are confirmed to be best performing MaxSAT
solvers. They solve 406 and 414 unweighted instances and 394 and 403 weighted bench-
marks, respectively. (Observe that the numbers of solved instances differ from those in the
evaluation, which can be explained by different time and memory limits used, as well as
different machine configurations.) Also, the basic version of RC2 comes the last in both
cases with 350 unweighted and 314 weighted instances solved. The use of unsatisfiable core
exhaustion, i.e. see RC2? in the plots, adds up 15 and 22 more instances solved in the
unweighted and weighted categories, thus, resulting in 365 unweighted and 336 weighted
formulas solved. The additional application of intrinsic AtMost1 constraints adds up more
41 unweighted and 50 weighted instances solved, i.e. RC2?? solves 406 unweighted and 386
weighted instances in total. (Note that RC2-a and RC2?? behave the same way in the un-
weighted category because they represent the same configuration of the solver for unweighted
formulas, which is not the case in the presence of weighted clauses.) Also, as one can ob-
serve, unsatisfiable core reduction seems important when dealing with weighted MaxSAT
formulas (see in Figure 2 how the competition versions of RC2 outperform RC2??).

Figure 1 and Figure 2 additionally depict the performance of the two configurations of
a virtual best solver (VBS): VBSall and VBSrc2. While the latter VBS includes all the
configurations of RC2, the former one integrates all the solvers tested. Note that VBSrc2

solves 422 unweighted and 418 weighted benchmarks. This is 8 unweighted and 15 weighted
benchmarks more than the number of instances solved solely by the winning configuration
RC2-b. Hence, tweaking the heuristics and the parameters used in RC2 may result in a

61

A. Ignatiev et al.

275 300 325 350 375 400 425 450 475
instances

0

200

400

600

800

1000

1200

1400

1600

1800
C

PU
tim

e
(s

)
VBSALL

VBSRC2

RC2-B

RC2-A

RC2??

MAXHS
PACOSE

RC2?

RC2

Figure 2. Weighted instances of MSE18.

better overall performance of the solver. Also note that VBSall solves 460 unweighted and
482 weighted benchmarks. This result comprises an impressive performance gap between
VBSall and the best performing standalone solver, which suggests that using a portfolio of
top MaxSAT solvers in practical problem solving with MaxSAT could be strategic.

To conclude, the experimental results shown not only confirm the advantage of RC2-a
and RC2-b over the state the art in unweighted and weighted MaxSAT solving (represented
by Maxino, MaxHS, and Pacose) but also suggests that the proposed heuristics are
crucial for the overall performance of RC2. This especially holds for the detection of
intrinsic AtMost1 constraints. Note that this heuristic can be applied to any MaxSAT
solver, which may lead to significant performance improvements. Moreover, one of the lines
of our future work on RC2 is to investigate whether or not the technique can be efficiently
generalized to the case of AtMostk constraints.

5. Availability

RC2 is distributed as a part of the PySAT framework, which is available under an MIT
license at https://pysathq.github.io. It can also be installed as a Python package from
PyPI:

pip install python-sat

62

https://pysathq.github.io

RC2: an Efficient MaxSAT Solver

The RC2 solver can be used as a standalone executable rc2.py and can also integrated into
a complex Python-based problem solving tool, e.g. using the standard import interface of
Python:

from pysat.examples import rc2

6. Conclusions

This paper describes the organization of the RC2 propotype MaxSAT solver, which ranked
first in the two complete categories of the MaxSAT evaluation 2018 [18]. RC2 is based on
the PySAT framework, and it is publicly available (see Section 5). Future work will seek to
extend RC2 with additional MaxSAT algorithms, with the purpose of providing reference
implementations.

Acknowledgments

This work was supported by FCT grants ABSOLV (PTDC/CCI-COM/28986/2017), Fault-
Locker (PTDC/CCICOM/29300/2017), SAFETY (SFRH/BPD/120315/2016), and SAM-
PLE (CEECIND/04549/2017).

References

[1] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub.
Unsatisfiability-based optimization in clasp. In ICLP, pages 211–221, 2012.

[2] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving WPM2
for (weighted) partial MaxSAT. In CP, pages 117–132, 2013.

[3] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial
MaxSAT through satisfiability testing. In SAT, pages 427–440, 2009.

[4] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms.
Artificial Intelligence, 196:77–105, 2013.

[5] Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving Glucose for
incremental SAT solving with assumptions: Application to MUS extraction. In SAT,
pages 309–317, 2013.

[6] Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing
in MaxSAT. In CP, pages 641–651, 2017.

[7] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

[8] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving.
Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.

63

A. Ignatiev et al.

[9] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In SAT,
pages 252–265, 2006.

[10] Alexey Ignatiev, Antonio Morgado, Vasco M. Manquinho, Inês Lynce, and Joao
Marques-Silva. Progression in maximum satisfiability. In ECAI, pages 453–458, 2014.

[11] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit
for prototyping with SAT oracles. In SAT, pages 428–437, 2018.

[12] Vasco M. Manquinho, Joao Marques-Silva, and Jordi Planes. Algorithms for weighted
boolean optimization. In SAT, pages 495–508, 2009.

[13] Joao Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications
(invited paper). In ISMVL, pages 9–14, 2010.

[14] Joao Marques-Silva, Josep Argelich, Ana Graca, and Inês Lynce. Boolean lexicographic
optimization: algorithms & applications. Annals of Mathematics and Artificial Intel-
ligence (AMAI), 62(3-4):317–343, 2011.

[15] Joao Marques-Silva and Vasco M. Manquinho. Towards more effective unsatisfiability-
based maximum satisfiability algorithms. In SAT, pages 225–230, 2008.

[16] Joao Marques-Silva and Jordi Planes. On using unsatisfiability for solving maximum
satisfiability. CoRR, abs/0712.1097, 2007.

[17] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce. Incremental
cardinality constraints for MaxSAT. In CP, pages 531–548, 2014.

[18] MaxSAT Evaluation 2018.
https://maxsat-evaluations.github.io/2018/.

[19] Antonio Morgado, Carmine Dodaro, and Joao Marques-Silva. Core-guided MaxSAT
with soft cardinality constraints. In CP, pages 564–573, 2014.

[20] Antonio Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and Joao Marques-
Silva. Iterative and core-guided MaxSAT solving: A survey and assessment. Con-
straints, 18(4):478–534, 2013.

[21] Antonio Morgado, Alexey Ignatiev, and Joao Marques-Silva. MSCG: Robust core-
guided MaxSAT solving. JSAT, 9:129–134, 2015.

[22] Olivier Roussel and Vasco M. Manquinho. Pseudo-boolean and cardinality constraints.
In Handbook of Satisfiability, pages 695–733. 2009.

64

https://maxsat-evaluations.github.io/2018/

	Introduction
	Preliminaries
	Solver Description
	RC2 MaxSAT Algorithm
	Heuristics
	SAT Solver Interface
	Dealing With Weighted Formulas
	Core Exhaustion
	Intrinsic AtMost1 constraints

	MSE18 Versions
	Core Reduction

	Incremental MaxSAT Solving

	Experimental Results
	Availability
	Conclusions

