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Abstract
This paper is concerned with preprocessing techniques for
propositional model counting. We have implemented a
preprocessor which includes many elementary preprocess-
ing techniques, including occurrence reduction, vivification,
backbone identification, as well as equivalence, AND and
XOR gate identification and replacement. We performed in-
tensive experiments, using a huge number of benchmarks
coming from a large number of families. Two approaches to
model counting have been considered downstream: ”direct”
model counting using Cachet and compilation-based model
counting, based on the C2D compiler. The experimental re-
sults we have obtained show that our preprocessor is both ef-
ficient and robust.

Introduction
Preprocessing a propositional formula basically consists in
turning it into another propositional formula, while pre-
serving some property, for instance its satisfiability. It
proves useful when the problem under consideration (e.g.,
the satisfiability issue) can be solved more efficiently when
the input formula has been first preprocessed (of course,
the preprocessing time is taken into account in the global
solving time). Some preprocessing techniques are nowa-
days acknowledged as valuable for SAT solving (see (Bac-
chus and Winter 2004; Subbarayan and Pradhan 2004;
Lynce and Marques-Silva 2003; Een and Biere 2005; Piette,
Hamadi, and Saı̈s 2008; Han and Somenzi 2007; Heule,
Järvisalo, and Biere 2010; Järvisalo, Biere, and Heule 2012;
Heule, Järvisalo, and Biere 2011)), leading to computational
improvements. As such, they are now embodied in many
state-of-the-art SAT solvers, like Glucose (Audemard and
Simon 2009) which takes advantage of the Satellite
preprocessor (Een and Biere 2005).

In this paper, we focus on preprocessing techniques p
for propositional model counting, i.e., the problem which
consists in determining the number of truth assignments
satisfying a given propositional formula Σ. Model count-
ing and its direct generalization, weighted model count-
ing,1 are central to many AI problems including proba-
bilistic inference (see e.g., (Sang, Beame, and Kautz 2005;
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1In weighted model counting (WMC), each literal is associated
with a real number, the weight of an interpretation is the product

Chavira and Darwiche 2008; Apsel and Brafman 2012))
and forms of planning (see e.g., (Palacios et al. 2005;
Domshlak and Hoffmann 2006)). However, model count-
ing is a computationally demanding task (it is #P-complete
(Valiant 1979) even for monotone 2-CNF formulae and Horn
2-CNF formulae), and hard to approximate (it is NP-hard to
approximate the number of models of a formula with n vari-
ables within 2n

1−ε
for ε > 0 (Roth 1996)). Especially, it is

harder (both in theory and in practice) than SAT.
Focussing on model counting instead of satisfiability has

some important impacts on the preprocessings which ought
to be considered. On the one hand, preserving satisfiabil-
ity is not enough for ensuring that the number of models
does not change. Thus, some efficient preprocessing tech-
niques p considered for SAT must be let aside; this includes
the pure literal rule (removing every clause from the in-
put CNF formula which contains a pure literal, i.e., a lit-
eral appearing with the same polarity in the whole formula),
and more importantly the variable elimination rule (replac-
ing in the input CNF formula all the clauses containing a
given variable x by the set of all their resolvents over x) or
the blocked clause elimination rule (removing every clause
containing a literal such that every resolvent obtained by re-
solving on it is a valid clause). Indeed, these preprocess-
ings preserve only the satisfiability of the input formula but
not its number of models. On the other hand, the high
complexity of model counting allows for considering more
aggressive, time-consuming, preprocessing techniques than
the ones considered when dealing with the satisfiability is-
sue. For instance, it can prove useful to compute the back-
bone of the given instance Σ before counting its models;
contrastingly, while deciding whether Σ |= ` for every lit-
eral ` over the variables of Σ is enough to determine the
satisfiability of Σ, it is also more computationally demand-
ing. Thus it would not make sense to consider backbone
detection as a preprocessing for SAT.

Another important aspect for the choice of candidate pre-
processing techniques p is the nature of the model counter
to be used downstream. If a ”direct” model counter is ex-
ploited, then preserving the number of models is enough.
Contrastingly, if a compilation-based approach is used (i.e.,

of the weights of the literals it sets to true, and the weight of a for-
mula is the sum of the weights of its models. Accordingly, WMC
amounts to model counting when each literal has weight 1.
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the input formula is first turned into an equivalent compiled
form during an off-line phase, and this compiled form sup-
ports efficient conditioning and model counting), preserving
equivalence (which is more demanding than preserving the
number of models) is mandatory. Furthermore, when using
a compilation-based approach, the time used to compile is
not as significant as the size of the compiled form (as soon
as it can be balanced by sufficiently many on-line queries).
Hence it is natural to focus on the impact of p on the size
of the compiled form (and not only on the time needed to
compute it) when considering a compilation-based model
counter.

In this paper, we have studied the adequacy and the per-
formance of several elementary preprocessings for model
counting: vivification, occurrence reduction, backbone iden-
tification, as well as equivalence, AND and XOR gate iden-
tification and replacement. The three former techniques pre-
serve equivalence, and as such they can be used whatever
the downstream approach to model counting (or to weighted
model counting); contrastingly, the three latter ones preserve
the number of models of the input, but not equivalence. We
have implemented a preprocessor pmc for model counting
which implements all those techniques. Starting with a CNF
formula Σ, it returns a CNF formula pmc(Σ) which is equiv-
alent or has the same number of models as Σ (depending on
the chosen elementary preprocessings which are used).

In order to evaluate the gain which could be offered by ex-
ploiting those preprocessing techniques for model counting,
we performed quite intensive experiments on a huge number
of benchmarks, coming from a large number of families. We
focussed on two combinations of elementary preprocessing
techniques (one of them preserves equivalence, and the other
one preserves the number of models only). We considered
two model counters, the ”direct” model counter Cachet
(Sang et al. 2004), as well as a compilation-based model
counter, based on the C2D compiler targeting the d-DNNF
language, consisting of DAG-based representations in de-
terministic, decomposable negation normal form (Darwiche
2001). The experimental results we have obtained show that
the two combinations of preprocessing techniques for model
counting we have focussed on are useful for model counting.
Significant time (or space savings) can be obtained, when
taking advantage of them. Unsurprinsingly, the level of im-
provements which can be achieved typically depends on the
family of the instance Σ and on the preprocessings used.
Nevertheless, each of the two combinations of elementary
preprocessing techniques we have considered appears as ro-
bust from the experimental standpoint.

The rest of the paper is organized as follows. The next
section gives some formal preliminaries. Then the elemen-
tary preprocessings we have considered are successively
presented. Afterwards, some empirical results are presented,
showing the usefulness of the preprocessing techniques we
took advantage of for the model counting issue. Finally, the
last section concludes the paper and presents some perspec-
tives for further research.

Formal Preliminaries
We consider a propositional language PROPPS defined in
the usual way from a finite set PS of propositional sym-

bols and a set of connectives including negation, conjunc-
tion, disjunction, equivalence and XOR. Formulae from
PROPPS are denoted using Greek letters and latin letters
are used for denoting variables and literals. For every literal
`, var(`) denotes the variable x of ` (i.e., var(x) = x and
var(¬x) = x), and ∼` denotes the complementary literal of
` (i.e., for every variable x, ∼x = ¬x and ∼¬x = x).

Var(Σ) is the set of propositional variables occurring in
Σ. |Σ| denotes the size of Σ. A CNF formula Σ is a conjunc-
tion of clauses, where a clause is a disjunction of literals.
Every CNF is viewed as a set of clauses, and every clause is
viewed as a set of literals. For any clause α,∼ α denotes the
term (also viewed as a set of literals) whose literals are the
complementary literals of the literals of α. Lit(Σ) denotes
the set of all literals occurring in a CNF formula Σ.

PROPPS is interpreted in a classical way. Every in-
terpretation I (i.e., a mapping from PS to {0, 1}) is also
viewed as a (conjunctively interpreted) set of literals. ‖Σ‖
denotes the number of models of Σ over Var(Σ). The model
counting problem consists in computing ‖Σ‖ given Σ.

We also make use of the following notations in the rest
of the paper: solve(Σ) returns ∅ if the CNF formula Σ is
unsatisfiable, and solve(Σ) returns a model of Σ other-
wise. BCP denotes a Boolean Constraint Propagator (Zhang
and Stickel 1996), which is a key component of many pre-
processors. BCP(Σ) returns {∅} if there exists a unit refu-
tation from the clauses of the CNF formula Σ, and it re-
turns the set of literals (unit clauses) which are derived
from Σ using unit propagation in the remaining case. Its
worst-case time complexity is linear in the input size but
quadratic when the set of clauses under consideration is im-
plemented using watched literals (Zhang and Stickel 1996;
Moskewicz et al. 2001). Finally, Σ[`← Φ] denotes the CNF
formula obtained by first replacing in the CNF formula Σ ev-
ery occurrence of ` (resp. ∼`) by Φ (resp. ¬Φ), then turning
the resulting formula into an equivalent CNF one by remov-
ing every connective different from ¬, ∧, ∨, using distribu-
tion laws, and removing the valid clauses which could be
generated.

Preprocessing for Model Counting
Generally speaking, a propositional preprocessing is an al-
gorithm p mapping any formula Σ from PROPPS to a for-
mula p(Σ) from PROPPS . In the following we focus on
preprocessings mapping CNF formulae to CNF formulae.

For many preprocessing techniques, it can be guaran-
teed that the size of p(Σ) is smaller than (or equal to) the
size of Σ. A rationale for it is that the complexity of the
algorithm achieving the task to be improved via prepro-
cessing depends on the size of its input, hence the smaller
the better. However, the nature of the instance also has
a tremendous impact on the complexity of the algorithm:
small instances can prove much more difficult to solve than
much bigger ones. Stated otherwise, preprocessing does
not mean compressing. Clearly, it would be inadequate to
restrict the family of admissible preprocessing techniques
to those for which no space increase is guaranteed. In-
deed, adding some redundant information can be a way to
enhance the instance solving since the pieces of informa-
tion which are added can lead to an improved propagation
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power of the solver (see e.g. (Boufkhad and Roussel 2000;
Liberatore 2005)). Especially, some approaches to knowl-
edge compilation consists in adding redundant clauses to
the input CNF formula in order to make it unit-refutation
complete (del Val 1994; Bordeaux and Marques-Silva 2012;
Bordeaux et al. 2012).

We have studied and evaluated the following elementary
preprocessing techniques for model counting: vivification,
occurrence reduction, backbone detection, as well as equiv-
alence, AND, and XOR gate identification and replacement.

Vivification. Vivification (cf. Algorithm 1) (Piette,
Hamadi, and Saı̈s 2008) is a preprocessing technique which
aims at reducing the given CNF formula Σ, i.e., to remove
some clauses and some literals in Σ while preserving equiv-
alence. Its time complexity is in the worst case cubic in the
input size and the output size is always upper bounded by
the input size. Basically, given a clause α = `1 ∨ . . . ∨ `k
of Σ two rules are used in order to determine whether α
can be removed from Σ or simply shortened. On the one
hand, if for any j ∈ 1, . . . , k, one can prove using BCP that
Σ\{α} |= `1∨. . .∨`j , then for sure α is entailed by Σ\{α}
so that α can be removed from Σ. On the other hand, if one
can prove using BCP that Σ \ {α} |= `1 ∨ . . . ∨ `j ∨ ∼`j+1,
then `j+1 can be removed fromαwithout questioning equiv-
alence. Vivification is not a confluent preprocessing, i.e.,
both the clause ordering and the literal ordering in clauses
may have an impact on the result. In our implementation,
the largest clauses are handled first, and the literals are han-
dled (line 5) based on their VSIDS (Variable State Indepen-
dent, Decaying Sum) (Moskewicz et al. 2001) activities (the
most active ones first).

Algorithm 1: vivificationSimpl
input : a CNF formula Σ
output: a CNF formula equivalent to Σ
foreach α ∈ Σ do1

Σ←Σ \ {α};2
α′←⊥;3
I←BCP(Σ);4
while ∃` ∈ α s.t. ∼` /∈ I and α′ 6≡ > do5

α′←α′ ∨ `;6
I←BCP(Σ∧ ∼ α′);7
if ∅ ∈ I then α′←>;8

Σ←Σ ∪ {α′};9

return Σ10

Occurrence reduction. Occurrence reduction (cf. Algo-
rithm 2) is a simple procedure we have developed for re-
moving some literals in the input CNF formula Σ via the
replacement of some clauses by some subsuming ones. In
order to determine whether a literal ` can be removed from a
clause α of Σ, the approach consists in determining whether
the clause which coincides with α except that ` has been re-
placed by ∼` is a logical consequence of Σ. When this is the
case, ` can be removed from α without questioning logical
equivalence. Again, BCP is used as an incomplete yet effi-
cient method to solve the entailment problem. Occurrence

reduction can be viewed as a light form of vivification (since
the objective is just to remove literals and not clauses). Es-
pecially, it preserves equivalence, leads to a CNF formula
whose size is upper bounded by the input size and has a
worst-case time complexity cubic in the input size. Com-
pared to vivification, the rationale for keeping some redun-
dant clauses is that this may lead to an increased inferential
power w.r.t unit propagation.

Algorithm 2: occurrenceSimpl
input : a CNF formula Σ
output: a CNF formula equivalent to Σ
L← Lit(Σ);1
while L 6= ∅ do2

Let ` ∈ L be a most frequent literal of Σ;3
L←L \ {`};4
foreach α ∈ Σ s.t. ` ∈ α do5

if ∅ ∈ BCP(Σ ∧ `∧ ∼ (α \ {`})) then6
Σ←(Σ \ {α}) ∪ {α \ {`}};7

return Σ8

Backbone identification. The backbone (Monasson et al.
1999) of a CNF formula Σ is the set of all literals which
are implied by Σ when Σ is satisfiable, and is the empty
set otherwise. The purpose of backbone identification (cf.
Algorithm 3) is to make the backbone of the input CNF for-
mula Σ explicit and to conjoin it to Σ. Backbone identifi-
cation preserves equivalence, is space efficient (the size of
the output cannot exceed the size of the input plus the num-
ber of variables of the input), but may require exponential
time (since we use a complete SAT solver solve for achiev-
ing the satisfiability tests). In our implementation, solve
exploits assumptions; especially clauses which are learnt at
each call to solve are kept for the subsequent calls; this
has a significant impact on the efficiency of the whole pro-
cess (Audemard, Lagniez, and Simon 2013).

Algorithm 3: backboneSimpl
input : a CNF formula Σ
output: the CNF Σ ∪B, where B is the backbone of Σ
B←∅;1
I←solve(Σ);2
while ∃` ∈ I s.t. ` /∈ B do3
I ′←solve(Σ∧ ∼ `);4
if I ′ = ∅ then B←B ∪ {`}else I←I ∩ I ′;5

return Σ ∪ B6

Equivalence and gates detection and replacement.
Equivalence and gates detection and replacement are prepro-
cessing techniques which do not preserve equivalence but
only the number of models of the input formula. Equiva-
lence detection was used for preprocessing in (Bacchus and
Winter 2004), while AND gates and XOR gates detection
and replacement have been exploited in (Ostrowski et al.
2002).

The correctness of those preprocessing techniques relies
on the following principle: given two propositional formulae
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Σ and Φ and a literal `, if Σ |= `↔ Φ holds, then Σ[`← Φ]
has the same number of models of Σ. Implementing it re-
quires first to detect a logical consequence `↔ Φ of Σ, then
to perform the replacement Σ[`← Φ] (and in our case, turn-
ing the resulting formula into an equivalent CNF). In our ap-
proach, replacement is performed only if it is not too space
inefficient (this is reminiscent to NIVER (Subbarayan and
Pradhan 2004), which allows for applying the variable elim-
ination rule on a formula if this does not lead to increase its
size). This is guaranteed in the equivalence case, i.e., when
Φ is a literal but not in the remaining cases in general – AND
gate when Φ is a term (or dually a clause) and XOR gate
when Φ is a XOR clause (or dually a chain of equivalences).

Equivalence detection and replacement is presented at Al-
gorithm 4. BCP is used for detecting equivalences between
literals. In the worst case, the time complexity of this pre-
processing is cubic in the input size, and the output size is
upper bounded by the input size.2

Algorithm 4: equivSimpl
input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
Unmark all variables of Φ;2
while ∃` ∈ Lit(Φ) s.t. var(`) is not marked do3

mark var(`);4
P`←BCP (Φ ∧ `);5
N`←BCP (Φ∧ ∼ `);6
Γ←{`↔ `′|`′ 6= ` and `′ ∈ P` and ∼ `′ ∈ N`};7
foreach `↔ `′ do replace `′ by ` in Φ;8

return Φ9

AND gate detection and replacement is presented at Al-
gorithm 5. In the worst case, its time complexity is cubic in
the input size. At line 4, literals ` of Lit(Σ) are considered
w.r.t. any total ordering such that ∼` comes just after `. The
test at line 7 allows for deciding whether an AND gate β
with output ` exists in Σ. In our implementation, one tries
to minimize the number of variables in this gate by taking
advantage of the implication graph. The replacement of a
literal ` by the corresponding definition β is performed (line
10) only if the number of conjuncts in the AND gate β re-
mains ”small enough” (i.e., ≤ maxA – in our experiments
maxA = 10), provided that the replacement does not lead to
increase the input size. This last condition ensures that the
output size of the preprocessing remains upper bounded by
the input size.

XOR gate detection and replacement is presented at Al-
gorithm 5. At line 2 some XOR gates `i ↔ χi are first
detected ”syntactically” from Σ (i.e., one looks in Σ for the
clauses obtained by turning `i ↔ χi into an equivalent CNF;
only XOR clauses χi of size ≤ maxX are targeted; in our
experiments maxX = 5). Then the resulting set of gates,
which can be viewed as a set of XOR clauses since `i ↔ χi

is equivalent to ∼`i⊕χi, is turned into reduced row echelon
2Literals are degenerate AND gates and degenerate XOR gates;

however equivSimpl may detect equivalences that would not be
detected by ANDgateSimpl or by XORgateSimpl; this explains
why equivSimpl is used.

Algorithm 5: ANDgateSimpl
input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
// detection
Γ←∅;2
unmark all literals of Φ;3
while ∃` ∈ lit(Φ) s.t. ` is not marked do4

mark `;5
P`←(BCP (Φ ∧ `) \ (BCP (Φ) ∪ {`})) ∪ {∼ `};6
if ∅ ∈ BCP(Φ ∧ P`) then7

let C` ⊆ P` s.t. ∅ ∈ BCP(Φ ∧ C`) and ∼ ` ∈ C`;8
Γ←Γ ∪ {`↔

∧
`′∈C`\{∼`} `

′};9

// replacement
while ∃`↔ β ∈ Γ st. |β|<maxA and |Φ[`←β]| ≤ |Φ|10
do

Φ←Φ[`←β];11
Γ←Γ[`←β];12
Γ←Γ \ {`′ ↔ ζ ∈ Γ|`′ ∈ ζ}13

return Φ14

form using Gauss algorithm (once this is done one does not
need to replace `i by its definition in Γ during the replace-
ment step). The last phase is the replacement one: every
`i is replaced by its definition χi in Σ, provided that the
normalization it involves does not generate ”large” clauses
(i.e., with size > maxX ). The maxX condition ensures that
the output size remains linear in the input size. Due to this
condition, the time complexity of XORgateSimpl is in the
worst case quadratic in the input size (we determine for each
clause α of Σ whether it participates to a XOR gate by look-
ing for other clauses of Σ such that, together with α, form a
CNF representation of a XOR gate).

Algorithm 6: XORgateSimpl
input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
// detection
Γ←Gauss({`1 ↔ χ1, `2 ↔ χ2, . . . , `k ↔ χk})2
// replacement
for i←1 to k do3

if @α ∈ Φ[`i←χi] \ Φ s.t. |α| > maxX then4
Φ←Φ[`i←χi];

return Φ5

The pmc preprocessor. Our preprocessor pmc (cf. Al-
gorithm 7) is based on the elementary preprocessing tech-
niques presented before. Each elementary technique is in-
voked or not, depending on the value of a Boolean pa-
rameter: optV (vivification), optB (backbone identifi-
cation), optO (occurrence reduction), optG (gate detec-
tion and replacement). gatesSimpl(Φ) is a short for
XORgateSimpl(ANDgateSimpl(equivSimpl(Φ))).
pmc is an iterative algorithm. Indeed, it can prove use-

ful to apply more than once some elementary techniques
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since each application may change the resulting CNF for-
mula. This is not the case for backbone identification, and
this explains why it is performed at start, only. Observe that
each of the remaining techniques generates a CNF formula
which is a logical consequence of its input. As a conse-
quence, if a literal belongs to the backbone of a CNF for-
mula which results from the composition of such elemen-
tary preprocessings, then it belongs as well to the backbone
of the CNF formula considered initially. Any further call to
backboneSimpl would just be a waste of time. Within pmc
the other elementary preprocessings can be performed sev-
eral times. Iteration stops when a fixpoint is reached (i.e., the
output of the preprocessing is equal to its input) or when a
preset (maximal) number numTries of iterations is reached.
In our experiments numTries was set to 10.

Algorithm 7: pmc
input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
if optB then Φ←backboneSimpl(Φ);2
i←0;3
while i < numTries do4

i←i+ 1;5
if optO then Φ← occurrenceSimpl(Φ);6
if optG then Φ←gatesSimpl(Φ);7
if optV then Φ←vivificationSimpl(Φ);8
if fixpoint then i←numTries;9

return Φ10

Empirical Evaluation
Setup. In our experiments, we have considered two com-
binations of the elementary preprocessings described in the
previous section:
• eq corresponds to the parameter assignment of pmcwhere
optV = optB = optO = 1 and optG = 0. It is
equivalence-preserving and can thus be used for weighted
model counting.

• #eq corresponds to the parameter assignment of pmc
where optV = optB = optO = 1 and optG = 1. This
combination is guaranteed only to preserve the number of
models of the input.
As to model counting, we have considered both a ”di-

rect” approach, based on the state-of-the-art model counter
Cachet (www.cs.rochester.edu/∼kautz/Cachet/index.htm)
(Sang et al. 2004), as well as a compilation-based approach,
based on the C2D compiler (reasoning.cs.ucla.edu/c2d/)
which generates (smooth) d-DNNF compilations (Darwiche
2001). As explained previously, it does not make sense to
use the #eq preprocessing upstream to C2D.

We made quite intensive experiments on a number
of CNF instances Σ from different domains, available
in the SAT LIBrary (www.cs.ubc.ca/∼hoos/SATLIB/index-
ubc.html). 1342 instances Σ from 19 families have been
used. The aim was to count the number of models of each
Σ using pmc for the two combinations of preprocessings
listed above, and to determine whether the combination(s)
under consideration prove(s) or not useful for solving it.

Our experiments have been conducted on a Quad-core Intel
XEON X5550 with 32GB of memory. A time-out of 3600
seconds per instance Σ has been considered for Cachet
and the same time-out has been given to C2D for achiev-
ing the compilation of Σ and computing the number of
models of the resulting d-DNNF formula. Our preproces-
sor pmc and some detailed empirical results, including the
benchmarks considered in our experiments, are available at
www.cril.fr/PMC/pmc.html.

Impact on Cachet and on C2D Figure 1 (a)(b)(c) il-
lustrates the comparative performances of Cachet, being
equipped (or not) with some preprocessings. No specific
optimization of the preprocessing achieved depending on
the family of the instance under consideration has been per-
formed: we have considered the eq preprocessing and the
#eq preprocessing for every instance. Each dot represents
an instance and the time needed to solve it using the ap-
proach corresponding to the x-axis (resp. y-axis) is given by
its x-coordinate (resp. y-coordinate). In part (a) of the figure,
the x-axis corresponds to Cachet (without any preprocess-
ing) while the y-axis corresponds to #eq+Cachet. In part
(b), the x-axis corresponds to Cachet (without any prepro-
cessing) and the y-axis corresponds to #eq+Cachet. In
part (c), the x-axis corresponds to eq+Cachet and the y-
axis corresponds to #eq+Cachet.

In Figure 1 (d)(e)(f), the performance of C2D is compared
with the one offered by eq+C2D. As on the previous figure,
each dot represents an instance. Part (d) of the figure is about
compilation time (plus the time needed to count the models
of the compiled form), while part (e) is about the size of the
resulting d-DNNF formula. Part (f) of the figure reports the
number of cache hits.

Synthesis. Table 1 synthesizes some of the results. Each
line compares the performances of two approaches to model
counting (say, A and B), based on Cachet or C2D, and
using or not some preprocessing techniques. For instance,
the first line compares Cachet without any preprocess-
ing (A) with eq+Cachet (B). #s(A or B) indicates how
many instances (over 1342) have been solved by A or by
B (or by both of them) within the time limit. #s(A) - #s(B)
(resp. #s(B) - #s(A)) indicates how many instances have
been solved by A but not by B (resp. by B but not by A)
within the time limit. #s(A and B) indicates how many in-
stances have been solved by both A and B, and TA (resp.
TB) is the cumulated time (in seconds) used by A (resp. B)
to solve them. The preprocessing time Tpmc spent by pmc
is included in the times reported in Figure 1 and in Table 1.
Tpmc is less than 1s (resp. 10s, 50s) for 80% (resp. 90%,
99%) of the instances.

The empirical results clearly show both the efficiency and
the robustness of our preprocessing techniques. As to effi-
ciency, the number of instances which can be solved within
the time limit when a preprocessing is used is always higher,
and sometimes significantly higher, than the the correspond-
ing number without preprocessing. Similarly, the cumu-
lated time needed to solve the commonly solved instances
is always smaller (and sometimes significantly smaller) than
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Figure 1: Comparing Cachet with (eq or #eq)+Cachet (above) and C2D with eq+C2D (below) on a large panel of instances
from the SAT LIBrary.

A B #s(A or B) #s(A) - #s(B) #s(B) - #s(A) #s(A and B) TA TB

Cachet eq+Cachet 1047 0 28 1019 98882.6 83887.7
Cachet #eq+Cachet 1151 1 132 1018 97483.9 16710.2

eq+Cachet #eq+Cachet 1151 1 104 1046 111028.0 18355.4
C2D eq+C2D 1274 7 77 1190 123923.0 53653.2

Table 1: A synthesis of the empirical results about the impact of preprocessing on Cachet and C2D

the corresponding time without any preprocessing. Interest-
ingly, eq+C2D also leads to substantial space savings com-
pared to C2D (our experiments showed that the size of the
resulting d-DNNF formulae can be more than one order of
magnitude larger without preprocessing, and that the cumu-
lated size is more than 1.5 larger). This is a strong piece of
evidence that the practical impact of pmc is not limited to the
model counting issue, and that the eq preprocessing can also
prove useful for equivalence-preserving knowledge compi-
lation. As to robustness, the number of instances solved
within the time limit when no preprocessing has been used
and not solved within it when a preprocessing technique
is considered remains very low, whatever the approach to
model counting under consideration. Finally, one can also
observe that the impact of the equivalence/gates detection
and replacement is huge (#eq+Cachet is a much better
performer than eq+Cachet).

Conclusion
We have implemented a preprocessor pmc for model count-
ing which includes several preprocessing techniques, espe-
cially vivification, occurrence reduction, backbone identifi-

cation, as well as equivalence, AND and XOR gate identi-
fication and replacement. The experimental results we have
obtained show that pmc is useful.

This work opens several perspectives for further research.
Beyond size reduction, it would be interesting to deter-
mine some explanations to the improvements achieved by
taking advantage of pmc (for instance, whether they can
lead to a significant decrease of the treewidth of the in-
put CNF formula). It would be useful to determine the
”best” combinations of elementary preprocessings, depend-
ing on the benchmark families. It would be nice to evaluate
the impact of pmc when other approaches to model count-
ing are considered, especially approximate model counters
(Wei and Selman 2005; Gomes and Sellmann 2004) and
other compilation-based approaches (Koriche et al. 2013;
Bryant 1986; Darwiche 2011). Assessing whether pmc
prove useful upstream to other knowledge compilation tech-
niques (for instance (Boufkhad et al. 1997; Subbarayan,
Bordeaux, and Hamadi 2007; Fargier and Marquis 2008;
Bordeaux and Marques-Silva 2012)) would also be valuable.
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