
MiniMaxSat: A New Weighted Max-SAT Solver

Federico Heras, Javier Larrosa, and Albert Oliveras

Universitat Politecnica de Catalunya,
Jordi Girona 1-3, 08034 Barcelona, Spain

Abstract. In this paper we introduce MINIMAXSAT, a new Max-SAT solver that
incorporates the best SAT and Max-SAT techniques. It can handle hard clauses
(clauses of mandatory satisfaction as in SAT), soft clauses (clauses whose falsifi-
cation is penalized by a cost as in Max-SAT) as well as pseudo-boolean objective
functions and constraints. Its main features are: learning and backjumping on
hard clauses; resolution-based and subtraction-based lower bounding; and lazy
propagation with the two-watched literals scheme. Our empirical evaluation on
a wide set of optimization benchmarks indicates that its performance is usually
close to the best specialized alternative and, in some cases, even better.

1 Introduction

Max-SAT is the optimization version of SAT where the goal is to satisfy the maximum
number of clauses. It is considered one of the fundamental combinatorial optimization
problems and many important problems can be naturally expressed as Max-SAT. They
include academic problems such as max cut or max clique, as well as real problems in
domains like routing, bioinformatics, scheduling, electronic markets, etc...

There is a long tradition of theoretical work about the structural complexity [1] and
approximability [2] of Max-SAT. Most of this work is restricted to the simplest case in
which all clauses are equally important (i.e., unweighted Max-SAT) and have a fixed
size (mainly binary or ternary clauses). From a practical point of view, a significant
progress has been made in the last 3 years [3,4,5,6,7,8]. As a result, there is a handful
of new solvers that can deal, for the first time, with medium-sized instances.

The main motivation of our work comes from the study of Max-SAT instances mod-
elling real-world problems. We usually encounter three features:

– The satisfaction of all clauses does not have the same importance, so each clause
needs to be associated with a weight that represents the cost of its violation. In the
extreme case, which often happens in practice as observed in [9], there are clauses
whose satisfaction is mandatory. They are usually modelled by associating a very
high weight with them.

– Literals do not appear randomly along the clauses. On the contrary, it is easy to
identify patterns, symmetries or other kinds of structures.

– In some problems there are mandatory clauses that reduce dramatically the num-
ber of feasible assignments, so the optimization part of the problem only plays a
secondary role. However, in some other problems mandatory clauses are trivially
satisfiable and the real difficulty lays on the optimization part.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 41–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

42 F. Heras, J. Larrosa, and A. Oliveras

When we look at current Max-SAT solvers, we find that none of them is robust over
these three features. For instance, [7,8] are restricted to formulas in which all clauses
are equally important, [3] is restricted to binary clauses, [5] seems to be efficient on very
overconstrained problems (i.e., only a small fraction of the clauses can be simultane-
ously satisfied), while [10] seems to be efficient on slightly overconstrained problems
(i.e. almost all the clauses can be satisfied). The solver proposed in [11] is the only
one that incorporates some learning, so it will presumably perform well on structured
problems, but its lower bound computation is relatively weak, so it does not seem to be
competitive in pure optimization problems.

In this paper we introduce MINIMAXSAT, a new weighted Max-SAT solver that
incorporates the current best SAT and Max-SAT techniques. It is build on top of Min-
iSAT+ [12], so it borrows its capability to deal with pseudo-boolean problems and all
the MiniSAT [13] features processing mandatory clauses such as learning and back-
jumping. We have extended it allowing it to deal with weighted clauses, while preserv-
ing the two-watched literals lazy propagation method. The main original contribution of
MINIMAXSAT is that it implements a very efficient lower bounding technique. Specif-
ically, it applies unit propagation in order to detect disjoint inconsistent clauses like in
[8] and then it transforms the problem like in [4,14,5] to increment the lower bound.
However, while in [4,14,5] only the clauses that accomplish specific patterns are trans-
formed, in MINIMAXSAT there is no need to define such patterns.

The structure of the paper is as follows: Section 2 provides preliminary definitions,
Section 3 overviews MINIMAXSAT, Sections 4 and 5 focus on its lower bounding and
additional features, respectively. Section 6 reports experimental results and Section 7
presents related work. Finally, Section 8 concludes and points out possible future work.

2 Preliminaries

In the sequel X = {x1,x2, . . . ,xn} is the set of boolean variables. A literal is either a
variable xi or its negation x̄i. The variable to which literal l refers is noted var(l). Given
a literal l, its negation l̄ is x̄i if l is xi and is xi if l is x̄i. A clause C is a disjunction
of literals. In the following, possibly subscripted capital letters A, B, C, D, and E will
always represent clauses. The size of a clause, noted |C|, is the number of literals that
it has. The set of variables that appear in C is noted var(C). An assignment is a set of
literals not containing a variable and its negation. Assignments of maximal size n are
called complete, otherwise they are called partial. An assignment satisfies a literal iff it
belongs to the assignment, it satisfies a clause iff it satisfies one or more of its literals
and it falsifies a clause iff it contains the negation of all its literals. In the latter case we
say that the clause is conflicting as it always happens with the empty clause, noted �.

A weighted clause is a pair (C,w), where C is a clause and w is the cost of its falsifi-
cation, also called its weight. Many real problems contain clauses that must be satisfied.
We call such clauses mandatory or hard and associate with them a special weight �.
Non-mandatory clauses are also called soft. A weighted formula in conjunctive normal
form (WCNF) is a multiset of weighted clauses. A model is a complete assignment that
satisfies all mandatory clauses. The cost of an assignment is the sum of weights of the
clauses that it falsifies. Given a WCNF formula, Weighted Max-SAT is the problem

MiniMaxSat: A New Weighted Max-SAT Solver 43

of finding a model of minimum cost. Note that if a formula contains only mandatory
clauses, weighted Max-SAT is equivalent to classical SAT. If all the clauses have weight
1, we have the so-called (unweighted) Max-SAT problem. In the following, we will as-
sume weighted Max-SAT.

We say that formula F ′ is a relaxation of formula F (noted F ′ � F) if they are
defined over the same set of variables and the cost of any complete assignment in F ′ is
less than or equal to the cost in F (non-models are considered to have cost infinity). We
say that two formulas F ′ and F are equivalent (noted F ′ ≡ F) if F ′ � F and F � F ′.

If a formula contains clauses (C,u) and (C,v), they can be replaced by (C,u+v) and
if it contains a clause (C,0), this may be removed. Both these transformation preserve
equivalence. The empty clause may appear in a formula. If its weight is �, it is clear
that the formula does not have any model. If its weight is w, the cost of any assignment
will include that weight, so w is an obvious lower bound of the formula optimal cost.
Weighted empty clauses and their interpretation in terms of lower bounds will become
relevant in Section 4.

Mandatory clauses of size 1 (namely, (l,�)) are called facts. When a formula con-
tains a fact (l,�), it can be simplified by removing all clauses containing l and removing
l̄ from all the clauses where it appears. The application of this rule until quiescence is
called unit propagation (UP) and it is well recognized as a fundamental propagation
technique in all current SAT solvers. Note that most of them use a lazy implementation
of UP based on the two-watched literals scheme [15].

3 Overview of MINIMAXSAT

MINIMAXSAT performs a depth-first branch-and-bound search on the tree of possible
assignments, where internal nodes represent partial assignments and leaf nodes rep-
resent complete assignments. Each internal node has two children: the two possible
extensions of its associated assignment with respect to one of the unassigned variables.
At an arbitrary search point, the algorithm tries to detect a conflict, which means that the
current partial assignment cannot be successfully extended. We distinguish two types
of conflicts: hard conflicts indicate that there is no model extending the current partial
assignment (namely, all the mandatory clauses cannot be satisfied), and soft conflicts
indicate that the current partial assignment cannot be extended to an optimal assign-
ment. Hard conflicts are detected when unit propagation leads to the empty mandatory
clause (�,�). The detection of soft conflicts requires that the algorithm maintains two
values during search:

– The cost of the best model found so far, which is an upper bound ub of the optimal
solution.

– An underestimation of the best cost that can be achieved extending the current par-
tial assignment into a model, which is a lower bound lb of the current subproblem.

A soft conflict is detected when lb ≥ ub, because it means that the current assignment
cannot lead to an optimal model. Note that any soft clause (C,w) with w ≥ ub must be
satisfied in an optimal assignment. Therefore, in the following we assume that such soft
clauses are automatically transformed into hard clauses.

44 F. Heras, J. Larrosa, and A. Oliveras

An algorithmic description of MINIMAXSAT is presented in Algorithm 1. The algo-
rithm uses a propagation queue Q which contains all facts pending propagation. Once
propagated, literals are not removed from Q, but rather marked as such. The algorithm
also uses an arrayV (l) which accumulates the weight of all soft clauses that have become
unit over l (namely, clauses (A∨ l,w) such that the current assignment falsifies A).

Before starting the search, a good initial upper bound is obtained with a local search
method (line 1) which may yield the identification of some new hard clauses. In our cur-
rent implementation we use UBCSAT [16] with default parameters. The selected local
search algorithm is IROTS (Iterated Robust Tabu Search). Next, the queue Q is initial-
ized with all the facts in the resulting formula (line 2). The main loop starts in line 3 and
each iteration is in charge of propagating all pending facts (line 4) and, if no conflict is
detected, attempting the extension of the current partial assignment (line 10). Pending
facts in Q are propagated in function Propagate (line 4), which may return a hard or
soft conflict (see next Section for details). If a hard conflict is encountered (line 5) the
conflict is analyzed, a new hard clause is learnt and backjumping is performed. This is
done as it is customary in classical SAT solvers such as CHAFF [15]. If a soft conflict
is encountered (line 6) chronological backtracking is performed. Note that this does not
affect the overall completeness of the procedure, but some subtle implementation de-
tails are necessary. If no conflict is found (line 10), a literal is heuristically selected and
added to Q for propagation in the next iteration. However, if the current assignment is
complete (line 7), the upper bound is updated. Search stops if a zero-cost solution is
found because it cannot be further improved (line 8). Else, chronological backtracking
is performed (line 9). Note that backjumping leads to termination if a top level hard con-
flict is found, while chronological backtracking leads to termination if the two values
for the first assigned variable have been tried.

Algorithm 2 describes function Propagate that performs unit propagation (UP)
which propagates facts (line 18). It iterates over the non-propagated literals l in Q (line
11). Firstly, the cost of falsifying l̄ (which is recorded in V (l̄)) is added to the lower
bound (line 12). Secondly, if a hard clause becomes a fact (line 13), the corresponding
literal is added to Q for future propagation (line 14). Finally, if a soft clause becomes
unit (q,u) (line 16), its weight u is added to V (q) (line 17). If during this process a
hard conflict is detected, the function returns it (line 15). Else, the algorithm attempts
to detect a soft conflict with a call to procedure improveLB (line 20, see Section 4 for
details), and it returns the soft conflict if it is found (line 21). Finally, if no conflict is
detected, the function returns None (line 22).

Note that Propagate only needs to identify when original (soft or hard) clauses
have all their literals but one falsified. Thus, we use the two-watched literals scheme
[15] in both hard and soft clauses. Note that any changes to lb or V (l) must be restored
upon backtracking.

4 Lower Bounding in MINIMAXSAT

In the following, we consider an arbitrary search state of MINIMAXSAT before the
call to improveLB. Such a search state is uniquely characterized by the current as-
signment. The current assignment determines the current subformula which is the

MiniMaxSat: A New Weighted Max-SAT Solver 45

Algorithm 1. MINIMAXSAT basic structure
Function Search() : integer

1 ub := LocalSearch() ;
2 InitQueue(Q) ;
3 Loop
4 Propagate() ;
5 if Hard Conflict then

Analyze() ;
if Top Level Hard Conflict then return ub ;
else

LearnClause() ;
Backjumping() ;

else
6 if Soft Conflict then

ChronologicalBactracking() ;
if End of Search then return ub ;

else
7 if all variables assigned then

ub := lb ;
8 if ub = 0 then return ub ;
9 ChronologicalBactracking() ;

if End of Search then return ub ;

10 else
l := SelectLiteral() ;
Enqueue(Q, l) ;

original formula conditioned by the current assignment. The current subformula has
the lower bound as the weight of the empty clause (�, lb). Similarly, value V (l) de-
fines unit clause (l,V (l)). Recall that such a unit clause is the aggregation of all the
original clauses that have become unit over l due to the current partial
assignment.

MINIMAXSAT improves its lower bound in procedure improveLB (called in line
20 of Algorithm 2). It does so by deriving new soft empty clauses (�,w) through a
weighted resolution process. Such clauses are added to the original (�, lb) clause pro-
ducing an increment of the lower bound. Weighted resolution (also called Max-RES)
[4], is a rule that replaces two clashing clauses (x∨A,u) and (x̄∨B,w) by the following
set of clauses {(A∨B,m),(x∨A,u−m),(x̄∨B,w−m),(x∨A∨ B̄,m),(x̄∨ Ā∨B,m)}, 1

where m = min{u,w} and hard clauses are treated as if their cost was infinity (i.e.
�−u =�). The first clause is called the resolvent and the other clauses are called com-
pensation clauses. The transformation preserves equivalence as defined in Section 2.

1 When A is the empty clause, A represents a tautology.

46 F. Heras, J. Larrosa, and A. Oliveras

Algorithm 2. Functions related with the search algorithm
Function UP() : conflict

while (Q contains non-propagated literals) do
11 l := PickNonPropagatedLiteral(Q); MarkAsPropagated(l) ;
12 lb := lb+V (l̄)) ;
13 foreach Hard clause that has become unit over literal q do
14 Enqueue(Q,q) ;
15 if {q̄} ∈ Q then return Hard Conflict ;

16 foreach Soft clause with weight u that has become unit over literal q do
17 V (q) = V (q)+u ;

return None ;

Function Propagate() : conflict
18 c := UP() ;
19 if c = Hard Conflict then return c ;
20 improveLB() ;
21 if lb ≥ ub then return Soft Conflict ;
22 return None ;

The last two compensation clauses may lose the clausal form, so the following rule [5]
may be needed to recover it:

CNF(A∨ l∨B,u) =
{

A∨ l̄ : |B| = 0
{(A∨ l̄∨B,u)}∪CNF(A∨ B̄,u) : |B| > 0

Example 1. If we apply weighted resolution to the following clauses {(x∨y,3),(x̄∨y∨
z,4)} we obtain {(y∨y∨ z,3),(x∨y,3−3),(x̄∨y∨ z,4−3),(x∨y∨ (y∨ z),3),(x̄∨ ȳ∨
y∨z,3)}. The first and fourth clauses can be simplified. The second clause can be omitted
because it weight is zero. The fifth clause can be omitted because it is a tautology. We
apply CNF rule to the fourth clause to obtain two new clauses CNF(x∨y∨(y∨ z),3) =
{(x∨y∨ ȳ∨z),3),(x∨y∨ z̄,3)}. Note that the first new clause is a tautology. Therefore,
we obtain the equivalent formula {(y∨ z,3),(x̄∨ y∨ z,1),(x∨ y∨ z̄,3)}.

As a first step, improveLB performs unit neighborhood resolution (UNR) [17,4],
which only resolves on pairs of clashing unit clauses. It produces an immediate in-
crement of the lower bound (i.e., the weight of the empty clause) as it is illustrated in
the following example,

Example 2. Consider a search state with two unassigned variables x and y in which the
lower bound is lb = 3, V (x) = V (y) = 1, V (x̄) = V (ȳ) = 2 and a clause (x∨ y,3). This
is equivalent to the formula {(�,3),(x,1),(y,1),(x̄,2),(ȳ,2),(x∨y,3)}. UNR would re-
solve on clauses (x,1) and (x̄,2) replacing them by (x̄,1) and (�,1) (all other compen-
sation clauses are removed because their weight is zero or they are tautologies). The two
empty clauses can be grouped into (�,3 + 1 = 4). UNR would also resolve on clauses
(y,1) and (ȳ,2) replacing them by (ȳ,1) and (�,1). The two empty clauses can be
grouped into (�,4+1 = 5). So, the new equivalent formula is {(�,5),(x̄,1),(ȳ,1),(x∨
y,3)} with a higher lower bound of 5.

MiniMaxSat: A New Weighted Max-SAT Solver 47

As a second step we execute a simulation of unit propagation (SUP) in which soft clauses
are treated as if they were hard. As seen in the previous section, unit propagation uses a
propagation queue Q. In the following, we assume that together with each literal l, the
queue Q also contains its reason: the clause (A∨ l,w) that cause its unit propagation. If
SUP yields a conflict, it means that there is a subset of (soft or hard) clauses that cannot be
simultaneously satisfied. Let m be the minimum weight among these clauses. It is easy
to see that the extension of the current partial assignment to the unassigned variables
will have a cost of at least m. Besides, such a cost can be made explicit by a sequence of
resolution steps. A resolution tree is built from the propagation queue Q as follows: let
C0 be the conflicting clause. Traverse Q from tail to head until a clashing clause D0 is
found. Then resolution is applied between C0 and D0, obtaining resolvent C1. Next, the
traversal of Q continues until a clause D1 that clashes with C1 is found, giving resolvent
C2 and we iterate the process until the resolvent we obtain is the empty clause �. Once the
resolution tree is computed, weighted resolution can actually be done with the actual soft
clauses and, as a result, the empty clause (�,m) will be derived. Finally, all clauses used
in the process will be replaced by (�,m) and the corresponding compensation clauses,
thus obtaining an equivalent formula with a lower bound increment of m. It is important
to remark that this transformation preserves equivalence since all clauses are used at most
once in the resolution process but we have to undo the transformation upon backtracking.
We call this procedure resolution-based lower bounding.

Example 3. Consider formula F = {(x̄,2)A,(x ∨ w,1)B,(x ∨ y,�)C,(x ∨ z,2)D,
(ȳ∨ z̄,3)E}, where each clause is identified by a subindex for future reference.

Step 1. Apply SUP. Initially, the unit clause A is enqueued producing Q = [x̄(A)]
(within parenthesis, we indicate the reason of a literal). Then x̄ is propagated. The re-
sulting formula is {(w,1)B,(y,�)C,(z,2)D,(ȳ ∨ z̄,3)E} and Q becomes
[x̄(A),w(B),y(C),z(D)]. Literal w is propagated. The resulting formula is {(y,�)C,
(z,2)D,(ȳ ∨ z̄,3)E} and no new unit clauses are generated. Literal y is propagated.
The resulting formula is {(z,2)D,(z̄,3)E} and a new unit clause is enqueued producing
Q = [x̄(A),w(B),y(C),z(D), z̄(E)]. Since z and z̄ are inside Q, a conflict is detected and
SUP stops. Note that E is the conflicting clause. Figure 1.a shows the state of Q after
the propagation.

Step 2. Build the resolution tree. Starting from the tail of Q the first clause clashing
with the conflicting clause E is D. Resolution between E and D generates the resolvent
x∨ ȳ. The first clause clashing with it is C, producing resolvent x. The next clause clash-
ing with it is A and resolution generates �. Figure 1.b shows the resulting resolution
tree. The minimum weight among the involved clauses is 2.

Step 3. Transform the problem. We apply weighted resolution as indicated by the tree
computed in Step 2. Figure 1.c graphically shows the result of the process. Leaf clauses
are the original clauses involved in the resolution. Each internal node indicates a res-
olution step. The resolvents appear in the junction of the edges. Beside each resolvent,
inside a box, there are the compensation clauses that must be added to the formula
to preserve equivalence. Since clauses that are used in resolution must be removed,
the resulting formula F ′ consists of the root of the tree ((�,2)) and all compensation
clauses. That is, the resulting formula is F ′ = {(x∨w,1),(x∨y,�),(ȳ∨ z̄,1),(�,2),(x∨
y∨ z,2),(x̄∨ ȳ∨ z̄,2)}. Note that F ≡ F ′.

48 F. Heras, J. Larrosa, and A. Oliveras

z̄(E)

x̄(A)

z(D)

y(C)

w(B)

E D

C

A

�

F ′ = {(x∨w,1),(x∨ y,�),(ȳ∨ z̄,1),(�,2),(x∨ y∨ z,2),(x̄∨ ȳ∨ z̄,2)}
F ′′ = {(x∨w,1),(x∨ y,�),(ȳ∨ z̄,1),(�,2)}

a) b) c)

(�,2)

(x∨ y∨ z,2)

(ȳ∨ z̄,1)
(x̄∨ ȳ∨ z̄,2)

(x∨ y,�)

(x∨ ȳ,2) (x∨ y,�)C

(x,2) (x̄,2)A

(ȳ∨ z̄,3)E (x∨ z,2)D

F = {(x̄,2)A,(x∨w,1)B,(x∨ y,�)C,(x∨ z,2)D,(ȳ∨ z̄,3)E}

Fig. 1. Graphical representation of MINIMAXSAT lower bounding. On the top, the original for-
mula F . On the left, the propagation Q after step 1. In the middle, the structure of the resolution
tree computed in step 2. On the right, the effect of actually executing the resolution (step 3). The
resulting formula F ′ appears bellow. If subtraction-based lower bounding is performed, step 3 is
replaced by a subtraction of weights, producing formula F ′′.

An alternative to problem transformation through resolution is to identify the lower
bound increment m and then subtract it from all the clauses that would have participated
in the resolution tree. This procedure is reminiscent of the lower bound computed in [7]
and we call it subtraction-based lower bounding.

Example 4. Consider formula F from the previous example. Steps 1 and 2 are identi-
cal. However, subtraction-based lower bounding would replace Step 3 by Step 3’ that
subtracts weight 2 from the clauses that appear in the resolution tree and then adds
(�,2) to the formula. The result is F ′′ = {(x∨w,1),(x∨ y,�),(ȳ∨ z̄,1),(�,2)}. Note
that F ′′ �F , so its lower bound is also a lower bound of F , but they are not equivalent.
Hence, F ′′ cannot be used in the subsequent search and if no soft conflict is immediately
detected, this transformation has to be undone before continuing the search.

After the increment of the lower bound with either technique, procedure SUP can be
executed again, which may yield new lower bound increments. The process is repeated
until SUP does not detect any conflict.

When comparing the two previous approaches, we find that resolution-based lower
bounding has a larger overhead, because resolution steps need to be actually computed

MiniMaxSat: A New Weighted Max-SAT Solver 49

and their consequences must be added to the current formula and removed upon back-
tracking. However, the effort invested in the transformation is usually amortized be-
cause the increment obtained in the lower bound becomes part of the current formula,
so it does not have to be discovered again and again by all the descendent nodes of
the search as it would happen with the subtraction-based approach. In our experiments,
we found that no scheme was systematically better than the other. We also found that
resolution-based lower bounding seems to be more effective if resolution is only ap-
plied to low arity clauses. As a consequence, after the identification of the resolution
tree, MINIMAXSAT only applies resolution-based lower bounding if the largest resol-
vent in the resolution tree has arity less than 4. Observe that compensation clauses will
contain at most 4 literals. Otherwise, it applies subtraction-based lower bounding.

5 Additional Features of MINIMAXSAT

5.1 Probing

Probing is a well-known SAT technique that allows the formulation of hypothetical
scenarios [18]. The idea is to temporarily assume that l is a fact and then execute unit
propagation. If UP yields a conflict, we know that l̄ is indeed a fact. The process is
iterated over all the literals until quiescence. Exhaustive experiments in the SAT context
indicate that it is too expensive to probe during search, so it is normally done as a pre-
process in order to reduce the initial number of branching points.

We can easily extend this idea to Max-SAT. In that context, besides the discovery
of facts, it may be used to make explicit weighted unit clauses. As in SAT, the idea is
to temporarily assume that l is a fact and then simulate unit propagation (i.e., execute
SUP()). Then, we build the resolution tree T from the propagation queue Q. If all the
clauses in T are hard, we know that l̄ is indeed a fact. Else, we can reproduce T applying
Max-RES with the actual clauses and derive a unit clause (l̄,m) where m is the mini-
mum weight among the clauses in T . Having unit soft clauses upfront makes the future
executions of improveLB much more effective in the subsequent search. Besides, if
we derive both (l,u) and (l̄,w), we can generate via unit neighborhood resolution (see
Example 2) an initial non-trivial lower bound of min{u,w}. We tested probing during
search and as a preprocessing in several benchmarks. We observed empirically that
probing as a preprocessing was the best option as it is in SAT.

Example 5. Consider formula F = {(x∨y,1)A,(x∨ z,1)B,(ȳ∨ z̄,1)C}. If we assume x̄
by adding it to Q and then execute SUP a conflict is reached. We obtain Q = [x̄(∅),y(A),
z(B), z̄(C)] and we detect that C is a conflicting clause. The clauses involved in the refu-
tation are C, B, and A. Resolving clauses C and B results in {(x∨ y,1)A,(x∨ ȳ,1),(x∨
y ∨ z,1),(x̄ ∨ ȳ ∨ z̄,1)}. The resolution of the previous resolvent and A produces the
(equivalent) formula F ′ = {(x,1),(x∨ y∨ z,1),(x̄∨ ȳ∨ z̄,1)}.

5.2 Branching Heuristic

For problems where all literals appear in hard clauses in only one polarity, a weighted
version of the Two-sided Jeroslow Wang heuristic [14] is computed in the root node

50 F. Heras, J. Larrosa, and A. Oliveras

and used in the subsequent search (the importance of each clause is multiplied by its
weight). For problems where literals appear in hard clauses with both polarities it ap-
plies the native VSIDS-like heuristic [15] of MiniSat. In both cases, if some literal l
accomplishes V (l) + lb ≥ ub at some node of the search tree, then l̄ is the selected
literal to assign and l is never assigned.

5.3 Pseudo-boolean Optimization

MINIMAXSAT can solve pseudo-boolean optimization problem [19,12] of the form:
(1) minimize ∑n

j=1 c j · x j

(2) subject to ∑n
j=1 ai jl j ≥ bi, i = 1 . . .m

where x j ∈ {0,1}, l j is either x j or 1−x j, and c j, ai j and bi are non-negative integers. (1)
is the objective function and (2) is the set of pseudo-boolean constraints. MINIMAXSAT

uses MINISAT+ to transform pseudo-boolean constraints into hard clauses. That is, it
determines heuristically the most appropriate encoding to hard clauses through adders,
sorters or BDDs. Regarding the objective function, for each pair c j · x j, a new soft unit
clause (x̄ j,c j) is added.

6 Experimental Results

We compare MINIMAXSAT with several optimizers from different communities:

– MAXSATZ [8,20]. Specialized unweighted Max-SAT solver. It applies a powerful
subtraction lower bounding [8] plus limited transformation rules [20].

– MAX-DPLL [14,5] is a Weighted Max-SAT solver that performs a restricted form
of resolution lower-bounding. MAX-DPLL is part of the TOOLBAR package.

– TOOLBAR [17,21,22,23]. It is a state-of-the-art Weighted CSP solver.
– PUEBLO 1.5 [19] is a pure pseudo-boolean solver.
– MINISAT+ [12] is a pseudo-boolean solver that translates pseudo-boolean problems

into SAT and solves them with MiniSAT.

When reporting results, we will omit a solver if it cannot deal with the corresponding
instances or it performs extremely bad. Results are presented in plots and tables. The
first column of each table contains the name of the set of problems and the second shows
the number of instances. The rest of columns report the performance of the solvers.
Each cell contains the average CPU time that the solver required to solve all instances.
If not all the instances were solved within the time limit (600 seconds), a number inside
brackets indicates the number of solved instances and the average CPU time only takes
into account solved instances. Note that in the plots the order of the legend goes in
accordance with the performance of the solvers. All experiments were conducted on a
3.2 Ghz Pentium 4 computer with Linux.

The following benchmarks were considered:

– Random Max-2-SAT instances with 100 variables and clauses ranging from 200 to
900. Max-3-SAT instances with 80 variables and clauses ranging from 300 to 700.
See [14].

MiniMaxSat: A New Weighted Max-SAT Solver 51

– Random Max-CUT instances [14] with 60 nodes and the number of edges ranging
from 300 to 500.

– Random and structured Max-Clique instances [5]. The random instances have 150
nodes and the edge density is ranged from 0 to 100 per cent. The structured in-
stances correspond to the 66 instances of Dimacs Challenge.

– Combinatorial Auctions [5]. The instances were generated with CATS [24]. Three
distributions were considered: paths, scheduling and regions. The number of goods
is fixed to 60 and the number of bids is varied differently for each distribution.

– Max-One instances [5]. We have selected some SAT instances for which we have
solved the Max-One problem. We considered structured instances coming from the
2002 SAT Competition [11] and random 3-SAT instances with 120 variables and
ranging the number of clauses from 150 to 550.

– WCSP instances. Structured Planing instances [25] containing both boolean and
non-boolean variables and hard and soft constraints. Random binary Max-CSP in-
stances have three or four values per variable and only soft constraints. Depending
on the number of constraints and the number of forbidden tuples, 4 distributions
were generated: Dense Loose (DL), Dense Tight (DT), Sparse Loose (SL) and
Sparse Tight (ST) [21]. WCSP instances were translated to Weighted Max-SAT
using the direct encoding [26].

– Small integer optimization pseudo-boolean instances coming from the 2006
Pseudo-Boolean Evaluation. We considered some industrial instances correspond-
ing to logic synthesis , and some handmade instances including Misc (garden), min
prime and MPS (miplib).

Figure 2 contains plots with the results on different benchmarks. Plots a and b reports
results on random unweighted Max-SAT instances. PUEBLO and MINISAT+ are orders
of magnitude slower, so they are not included in the graphics. On Max-2-SAT (plot a),
MINIMAXSAT lays between MAX-DPLL and MAXSATZ, which is the best option. On
Max-3-SAT (plot b) MINIMAXSAT clearly outperforms MAX-DPLL and is very close
to MAXSATZ, which is again the best. In both Max-2-SAT and Max-3-SAT MAXSATZ

is no more than 3 times faster than MINIMAXSAT. Plot c reports results on Max-CUT
instances. In these problems, MINIMAXSAT performs slightly better than MAXSATZ,
which is the second alternative.

Plot e reports the results on Random Max-Clique instances. MINIMAXSAT is the
best solver, up to an order of magnitude faster than MAX-DPLL, the second option.
PUEBLO and MINISAT+ perform poorly again. Regarding the structured Dimacs in-
stances, MINIMAXSAT is again the best option. It solves 34 instances within the time
limit, while TOOLBAR,MINISAT+ and PUEBLO solve 29, 19 and 14 respectively.

Plots f , g and h present the results on Combinatorial Auctions following different
distributions. On the paths distribution, MINIMAXSAT is the best solver, twice faster
than MAX-DPLL, which ranks second. On the regions distribution, MAX-DPLL is
the best solver while MINIMAXSAT is the second best solver requiring double time.
On the paths and regions distributions, PUEBLO and MINISAT+ perform very poorly.
On the scheduling distribution, MINISAT+ is the best solver while MAX-DPLL and
MINIMAXSAT are about one order of magnitude slower.

52 F. Heras, J. Larrosa, and A. Oliveras

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 200 300 400 500 600 700 800 900

cp
u

tim
e

number of clauses

(a) Max-2-SAT, 100 variables

Max-DPLL
MiniMaxSat

Maxsatz

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 300 350 400 450 500 550 600 650 700

cp
u

tim
e

number of clauses

(b) Max-3-SAT, 80 variables

Max-DPLL
MiniMaxSat

Maxsatz

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 300 350 400 450 500

cp
u

tim
e

number of edges

(c) Max-CUT, 60 nodes

Max-DPLL
Maxsatz

MiniMaxSat

 0

 10

 20

 30

 40

 50

 150 200 250 300 350 400 450 500 550

cp
u

tim
e

number of hard clauses

(d) Max-ONE, random 3-SAT, 120 variables

Minisat+
Pueblo

Max-DPLL
MiniMaxSat

 0

 20

 40

 60

 80

 100

0 25 50 75 100

cp
u

tim
e

connectivity (%)

(e) Max-Clique, 150 nodes

Minisat+
Pueblo

Max-DPLL
MiniMaxSat

 0

 20

 40

 60

 80

 100

 70 80 90 100 110 120 130 140 150

cp
u

tim
e

number of bids

(f) C. Auctions PATHS, 60 Goods

Pueblo
Minisat+

Max-DPLL
MiniMaxSat

 0

 20

 40

 60

 80

 100

 70 80 90 100 110 120 130 140 150

cp
u

tim
e

number of bids

(g) C. Auctions SCHEDULING, 60 Goods

Pueblo
Max-DPLL

MiniMaxSat
Minisat+

 0

 20

 40

 60

 80

 100

 100 120 140 160 180 200

cp
u

tim
e

number of bids

(h) C. Auctions REGIONS, 60 Goods

Minisat+
Pueblo

MiniMaxSat
Max-DPLL

Fig. 2. Plots of different benchmarks. Note that the order in the legend goes in accordance with
the performance of the solvers.

On random Max-One (plot d) MINIMAXSAT is the best solver by far. Almost all in-
stances are solved instantly while PUEBLO and MAX-DPLL require up to 20 seconds
in the most difficult instances. MINISAT+ performs very poorly. The results on struc-
tured Max-One instances are reported in Figure 3. MINISAT+ seems to be the fastest in
general. MINIMAXSAT is close in performance to PUEBLO. Note, however, that in the
d p instances, MINIMAXSAT is the system solving more instances.

On structured Planning WCSP instances (Fig. 4) PUEBLO is the best solver. MIN-
IMAXSAT is the second best solver, TOOLBAR is the third and the last one is MIN-
ISAT+. This is not surprising since TOOLBAR does not perform learning over the hard
constraints. However, on pure optimization Max-CSP problems (Fig. 4) TOOLBAR

solves all the instances instantly while PUEBLO performs very poorly. MINIMAXSAT

is clearly the second best solver on DL instances, while MINISAT+ is the second best
option on DT and ST tight instances.

Results regarding pseudo-boolean instances can be found in Figure 5. Note that this
is the first time that a Max-SAT solver is tested on pseudo-boolean instances. Results
indicate that no solver consistently outperforms the other and that MINIMAXSAT is
fairly competitive with PUEBLO and MINISAT+.

We can conclude that MINIMAXSAT is the most robust Weighted Max-SAT solver.
It is very competitive for pure optimization problems and for problems with lots of hard
clauses and, sometimes, it is the best option.

MiniMaxSat: A New Weighted Max-SAT Solver 53

Problem n. inst. MINIMAXSAT Pueblo Minisat+
3col80 10 0.25 0.15 0.05
3col100 10 2.90 2.55 0.26
3col120 10 28.77 21.23 1.50
3col140 10 56.57 122.59 3.86

cnt 3 9.30 0.25 0.25
dp 6 11.75(5) 1.82(3) 2.40(4)

ezfact32 10 1.49 0.69 0.65

Fig. 3. Structured Max-one instances

Problem n. inst. Toolbar MINIMAXSAT Pueblo Minisat+
Planning 71 8.22 2.19 0.28 13.64

DL 20 0.14 2.20 302.85(8) 27.17
DT 20 0.00 7.48 0(0) 5.33
SL 20 0.01 33.08 83.30(18) 1.30
ST 20 0.00 18.04 0(0) 4.29

Fig. 4. Results for WCSP instances

Problem n. inst. MINIMAXSAT Pueblo Minisat+
Garden 7 2.87(5) 13.60(5) 0.28(5)

Logic synthesis 17 26.33(2) 57.60(5) 4.21(2)
Min prime 156 20.94(111) 13.20(106) 7.58(112)

Miplib 17 34.50(5) 51.84(9) 21.48(9)

Fig. 5. Results for pseudo-boolean instances

7 Related Work

Some previous work has been done about incorporating SAT-techniques inside a Max-
SAT solver. In [10] a lazy data structure to detect when clauses become unit is pre-
sented but it requires a static branching heuristic, so it is not as general as our exten-
sion of the two-watched literals. As far as we know, the rest of Max-SAT solvers are
based on adjacency lists that are inefficient for unit propagation [27]. In [11] a Max-
SAT branch and bound is powered with learning over hard constraints, but it is used
in combination of simple lower bounding techniques. To the best of our knowledge,
no Max-SAT solver incorporates backjumping. Note that MINIMAXSAT restricts back-
jumping to the ocurrence of hard conflicts. Related frameworks that backjump after
soft conflicts include [28] for WCSP, [29] for pseudo-boolean optimization and [30] for
SMT.

Most Max-SAT solvers use what we call subtraction-based lower bounding. In most
cases, they search for special patterns of mutually inconsistent subsets of clauses
[3,6,10]. For efficiency reasons, these patterns are always restricted to small sets of
small arity clauses (2 or 3 clauses or arity less than 3). MINIMAXSAT uses a natural
weighted extension of the approach proposed in [7]. It was the first one able to detect
inconsistencies in arbitrarily large sets of arbitrarily large clauses.

The idea of what we call resolution-based lower bounding was inspired from the
WCSP domain [17,21,22,23] and it was first proposed in the Max-SAT context in [4]
and further developed in [20,14,5]. In these works, only special patterns of fixed-size
resolution trees were executed. The use of simulated unit propagation allows MINI-
MAXSAT to identify arbitrarily large resolution trees.

Our probing method to derive weighted unit clauses is related to the 2−RES and
cycle rule of [14,5] and to failed literals in [8]. Again, the use of simulated unit propa-
gation allows MINIMAXSAT to identify arbitrarily large resolution trees.

54 F. Heras, J. Larrosa, and A. Oliveras

8 Conclusions and Future Work

MINIMAXSAT is an efficient and very robust Max-SAT solver that can deal with hard
and soft clauses as well as pseudo-boolean functions. It incorporates the best techniques
for each type of problems, so its performance is similar to the best specialized solver.
Besides the development of MINIMAXSAT combining, for the first time, known tech-
niques from different fields, the main original contribution of this paper is a novel lower
bounding technique based on resolution. MINIMAXSAT lower bounding subsumes in
a very clean an elegant way most of the approaches that have been proposed in the last
years. Future work concerns the development of VSIDS-like heuristics for soft clauses,
backjumping techniques for soft conflicts and the study of domain-specific branching
heuristics.

References

1. Papadimitriou, C.: Computational Complexity. Addison-Wesley, USA (1994)
2. Karloff, H.J., Zwick, U.: A 7/8-Approximation Algorithm for MAX 3SAT. In: FOCS. (1997)
3. Shen, H., Zhang, H.: Study of lower bounds for Max-2-SAT. In: AAAI. (2004)
4. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency for

weighted CSPs. In: IJCAI. (2005)
5. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving. In:

Available at the Computing Research Repository
(http://arxiv.org/PS cache/cs/ps/0611/0611025.ps.gz). (2006)

6. Xing, Z., Zhang, W.: MaxSolver: An efficient exact algorithm for (weighted) maximum
satisfiability. Artificial Intelligence 164 (2005) 47–80

7. Chu Min Li, F.M., Planes, J.: Exploiting unit propagation to compute lower bounds in branch
and bound max-sat solvers. In: Proc. of the 11th CP, Sitges, Spain (2005)

8. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing
lower bounds for max-sat. In: AAAI. (2006)

9. Cha, B., Iwama, K., Kambayashi, Y., Miyazaki, S.: Local search algorithms for partial
MAXSAT. In: AAAI/IAAI. (1997) 263–268

10. Alsinet, T., Manya, F., Planes, J.: Improved exact solver for weighted max-sat. In SAT’05.
11. Argelich, J., Manyà, F.: Learning hard constraints in max-sat. In: CSCLP-2006. (2006) 1–12
12. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. Journal on Satisfia-

bility, Boolean Modeling and Computation 2 (2006) 1–26
13. Eén, N., Sörensson, N.: An extensible sat-solver. In: Proceedings of SAT03. (2003) 502–518
14. Heras, F., Larrosa, J.: New inference rules for efficient max-sat solving. In: AAAI. (2006)
15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an

efficient sat solver. In: DAC. (2001) 530–535
16. Tompkins, D.A.D., Hoos, H.H.: Ubcsat: An implementation and experimentation environ-

ment for sls algorithms for sat & max-sat. In: SAT. (2004)
17. Larrosa, J.: Node and arc consistency in weighted CSP. In: AAAI. (2002) 48–53
18. Lynce, I., Silva, J.P.M.: Probing-based preprocessing techniques for propositional satisfia-

bility. In: ICTAI. (2003) 105–
19. Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-boolean sat solver. Journal on Satis-

fiability, Boolean Modeling and Computation 2 (2006) 165–189
20. Li, C.M., Manyà, F., Planes, J.: New inference rules for max-sat. In: Submitted. (2006)
21. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for weighted CSP.

In: Proc. of the 18th IJCAI, Acapulco, Mexico (2003)

MiniMaxSat: A New Weighted Max-SAT Solver 55

22. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-SAT as weighted CSP. In:
Proc. of the 9th CP, Kinsale, Ireland, LNCS 2833. Springer Verlag (2003) 363–376

23. de Givry, S., Heras, F., Larrosa, J., Zytnicki, M.: Existential arc consistency: getting closer to
full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI, Edinburgh, U.K. (2005)

24. K. Leyton-Brown, M.P., Shoham, Y.: Towards a universal test suite for combinatorial auction
algorithms. ACM E-Commerce (2000) 66–76

25. Cooper, M., Cussat-Blanc, S., de Roquemaurel, M., Régnier, P.: Soft arc consistency applied
to optimal planning. In: CP. (2006) 680–684

26. Walsh, T.: SAT v CSP. In: CP. (2000) 441–456
27. Lynce, I., Silva, J.P.M.: Efficient data structures for backtrack search sat solvers. Ann. Math.

Artif. Intell. 43 (2005) 137–152
28. Zivan, R., Meisels, A.: Conflict directed backjumping for maxcsps. In: IJCAI. (2007)
29. Manquinho, V.M., Silva, J.P.M.: Satisfiability-based algorithms for boolean optimization.

Ann. Math. Artif. Intell. 40 (2004) 353–372
30. Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In:

SAT. (2006) 156–169

	Introduction
	Preliminaries
	Overview of $MiniMaxSat$
	Lower Bounding in $MiniMaxSat$
	Additional Features of $MiniMaxSat$
	Probing
	Branching Heuristic
	Pseudo-boolean Optimization

	Experimental Results
	Related Work
	Conclusions and Future Work

