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Abstract

We study the runtime profiles of complete backtrack-
style search methods applied to hard scheduling prob-
lems. Such search methods often exhibit a large vari-
ability in performance due to the non-standard nature
of their underlying cost distributions. The distribu-
tions generally exhibit very long tails or "heavy tails"
and are best characterized by a general class of distri-
butions that have no moments (i.e., an infinite mean,
variance, etc.). We show how one can exploit the spe-
cial nature of such distributions to significantly im-
prove upon deterministic complete search procedures.

Introduction

Combinatorial search methods often exhibit a remark-
able variability in performance. For example, we see
significant differences on runs of different heuristics,
runs on different problem instances, and, for stochas-
tic methods, runs with different random initial seeds.
The inherent exponential nature of the search process
appears to magnify the unpredictability of search pro-
cedures. It is not uncommon to observe a combinatorial
method "hang" on a given instance, whereas a different
heuristic, or even just another stochastic run, solves the
instance quickly.

In this paper, we will show how one can take ad-
vantage of this extreme variability of complete com-
binatorial search methods. In particular, we will show
bow one can improve the performance of a deterministic
complete backtrack-style search method by introducing
a stochastic element, while maintaining completeness.
We demonstrate the effectiveness of our strategy on a
class of known hard scheduling problems, derived from
real-world timetabling problems. These problems have
been studied extensively in the Operations Research
community using integer programming (IP) methods.

First we introduce a Constraint-Programming (CSP)
formulation of our problem domain. This formulation
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scales better than the best IP formulations. We then
show how one can yet further improve upon our CSP
approach by adding a stochastic element to the deter-
ministic search strategy. We should stress that our
method remains complete, unlike, for example, stochas-
tic: local search strategies. The effectiveness of our ap-
proach can be explained in terms of the heavy-tailed
nature of the underlying cost distributions of complete
backtrack-style search procedures. That is, the distri-
butions are characterized by extreme outliers relative
to the median cost value. This phenomenon manifests
itself in terms of the long-tails of the cost distributions
and the highly erratic behavior of the mean search cost
over multiple runs. Given its simplicity and generality,
our approach can be easily adapted to improve the per-
formance of other backtrack-style search methods used
in planning and scheduling.

Problem Domain

We consider problems derived from sports scheduling
applications. The literature in this area is growing,
and one can begin to get a sense of the range and
mathematical difficulty of the problems encountered (de
Werra 1988; Nemhauser and Trick 1997; and Schreuder
1980; 1992). In sports scheduling problems one of the
issues is timetabling, where by timetabling we mean
determining the existence of a feasible schedule that
takes into consideration constraints on how the com-
peting teams can be paired, as well as how each team’s
games are distributed in the entire schedule. In partic-
ular, we consider the timetabling problem for a "round
robin" schedule: every team must play every other team
exactly once. The global nature of the pairing con-
straints makes this a particularly hard combinatorial
search problem.

Typically, a game will be scheduled on a certain field
or court, at a certain time, etc. This kind of combina-
tion will be called a slot. These slots can vary in de-
sirability due to such factors as lateness in the day, the
location and the condition of the field, etc. The problem
is to schedule the games such that the different periods
are assigned to the teams in an equitable manner over
the course of the season. The round robin scheduling
problem considered here is something of a "classic" in
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the operations research community, because it presents
a very tough challenge for integer programming meth-
ods.

The problem is formally defined as follows:

1. There are N teams (N even) and every two teams
play each other exactly once.

2. The season lasts N - 1 weeks.

3. Every team plays one game in each week of the sea-
son.

4. There are N/2 periods and, each week, every period
is scheduled for one game.

5. No team plays more than twice in the same period
over the course of the season.

The meeting between two teams is called a matchup
and takes place in a slot, i.e., in a particular period in
a particular week. For example, a valid schedule for 8
teams named 0,1,2,3,4,5,6,7 would be given by filling in
the slots with matchups as in Table 1.

The 8 team problem instance is relatively simple and
can be done by brute force if necessary. However, the
combinatorics of this scheduling problem are explosive.
For an N team league, there are N/2. (N- 1) matchups
(i,j) with 0 _< i < j < N to be played. A schedule can
be thought of as a permutation of these matchups. So,
for N teams the search space size is (N/2. (N 1))!,
i.e., the search space size grows as the factorial of the
square of N/2. This means that algorithms cannot be
expected to scale nicely; and, as we shall see, they do
not.

IP And CSP Formulations
When formulating the timetabling problem, one can
adopt two complementary ways of representing the
problem. We will refer to these two representational
approaches as the primal model and the dual model.
In the primal model, the goal is to fill in the different
periods of the schedule with matchups. The dual model
takes the complementary perspective, i.e., it starts with
the matchups, and looks for the periods to place them
in.

IP Formulation

Integer Programming (l’P) is an important tool for the
timetabling phase of sports scheduling problems. The
0-1 integer programming model for the primal approach
can be summarized as follows. For each pair of teams
(i~j) with 0 <__ i < j < N, for each row/c and each col-
umn m, there is a binary variable zi,j,h,m which will be
1 if i plays j in the slot in row k and column m and 0
otherwise. (We’re considering a row/column represen-
tation as used in Table 1.) The constraints are:

¯ for all i and j: ~’~,m zi,j,h,~ = 1

(each team plays each other team exactly once)

¯ for all i and m: ~"~j,k (z~j,k,,~ + zj,~,h,m) = 

(team i plays once in column m)

¯ for all i and k: ~-~-j,m (zij,k,m + zj,~,k,m) ~ 

(each team plays at most twice in a period)

¯ for all k and m: ~i,j zi,j,~,m --- 1

(each slot has one game)

This 0-1 integer program is elegant in its simplicity.
However, it suffers from the fact that as N increases the
number of 0-1 variables and the number of constraints
grows quite rapidly: we have O(N4) 0-1 variables and
O(N2) linear constraints each of size O(N~).

CSP Formulation

Our Constraint Satisfaction Formulation (CSP) of the
sports scheduling problem starts with the primal model.
Here, we assign a pair of teams to each valid slot of
the sports season. Given N teams, the season lasts
(N- 1) weeks and there are N/2 periods per week. Our
representation uses 2, (N - 1) ¯ N/2 variables that have
to be assigned a team (a value from {0, 1, 2, .... N 
1)). The number of variables corresponds to twice the
number of slots in the season, since two teams play in
each slot.

To solve the CSP problem we use a complete
backtrack-style algorithm with the first-fail heuristic
for variable assignment. In the first-fail heuristic one
selects the variables with the smallest domain first.
It’s one of the most effective, general heuristics. We
encoded this problem in C++ using ILOG SOLVER,
a C++ constraint programming library (Puget and
Leconte 1995). ILOG enables us to express constraints
declaratively, and provides a backtracking mechanism
that supports constraint propagation.

In order to facilitate the representation of the con-
straints, we use several auxiliary variables, linked to the
main variables. For example, we represent the schedule
both as row vectors and as column vectors, mimicking
the table format. Each row corresponds to 2 ¯ (N - 1)
variables, since it corresponds to the number of weeks
required for the whole season, (N - 1) times two, ac-
counting for two teams per slot. With this explicit rep-
resentation of the row, it is straightforward, for exam-
ple, to associate with each row the constraints that a
team cannot play the same period more than twice dur-
ing the whole season. Similarly, with the column view
of the schedule we can easily represent the constraint
that the same team can only play one match a week.
In order to enforce that all the matchups have to be
distinct, we define a function that associates a single
number with each pair of teams, and we introduce a
constraint that asserts that each pair number can only
occur once in the entire schedule.

In order to increase propagation, we alsG represent
explicitly the dual view of the schedule, namely the as-
sigument of different slots to the different matchups:
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Week1 Week2 Week3 Week4 Week5 Week6 Week7
Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4
Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6
Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7
Period4 6vs7 4vs6 2vs5 lvs2 Ovs5 3vs4 lvs3

Table h An 8 Team Round Robin Timetable

whenever an assignment and propagation is performed
in one of the representations, the corresponding propa-
gation is also triggered for the other representation. We
use an antisymmetry strategy that fixes the matchups
in some of the slots in order to reduce the number of
solutions that are the result of simple permutations of
an answer.

As we will discuss in the next section, the results ob-
tained with our CSP formulation are superior to the re-
sults that we obtained with the IP formulation. This su-
periority is due to the use of CSP methods for this type
of problem. First of all, as has already been pointed
out, the number of variables that axe needed is sub-
stantially smaller than in an IP. The strength of the
CSP formulation is that it can deal directly with con-
straints that "punch holes" in the domains of variables;
this makes for highly "non-convex" domains. Our CSP
formulation also has the advantage of not being lim-
ited to 0-1 variables, and it allows us to easily model
both the primal and dual approaches. The combina-
tion of both representations proved very efficient since
it results in increased level of propagation of constraints
with fast pruning of the search space.

Experiments and Randomization

Using the IP formulation, we can find a solution for
N = 12 in about 14 hours; we were unable to find a so-
lution for N = 14.1 Our CSP formulation dramatically
improves upon these numbers. It gives us a solution for
N = 12 in about 13 seconds and for N = 14 in about
411 secondsfl We could not find a solution for N = 16.
(It ran for over 48 hours.)

As is clear from these benchmarks, the problem
quickly becomes very difficult, even for moderate val-
ues of N. Apparently, the subtle interaction between
global and local constraints makes the search for a glob-
ally consistent solution surprisingly hard.

Our next goal is to further enhance the perfor-
mance of our CSP based approach. To do so, we con-
sider adding a stochastic element to our backtrack-style
search. In previous work, in the context of a highly
structured search domain based on algebraic structures
(Gomes et al. 1997), we found that randomized versions

1 Experiments ran on a Sun UltraSparc using CPLEX, a

leading commercial integer programming package.
2Experiments ran on a 200MHz SGI Challenge using

ILOG SOLVER, a prominent constraint programming pack-
age. The speed of the SGI is comparable to that of a Sun
UltraSparc.

of complete search methods exhibit a surprising vari-
ability between runs on the same instance with different
random initial seeds. In fact, the number of backtracks
required to find a solution can vary over many orders of
inaptitude. The key issue is whether we can effectively
take advantage of such large ~riations between runs to
solve previously unsolved instances of the timetabling
problem.

To introduce a stochastic element in our search
procedure, we break ties randomly in our first-fall
heuristic (as opposed to the standard, deterministic
"lexicographically-first" approach). It is not difficult
to devise more elaborate schemes, but -- somewhat
to our surprise -- we found this simple randomization
scheme to be quite effective. We also introduce a pa-
rameter (the "cutoff" parameter), which specifies after
how many backtracks we restart our backtrack search
from the root of the tree with a new random seed. This
simple modification of the deterministic strategy leads
to a rather dramatic change in overall behavior. Note
that we maintain completeness since we gradually in-
crease the cutoff. In the limit, as the cutoff tends to in-
finity, we reach the original complete randomized back-
tracking procedure. This argument is akin to that used
for iterative deepening search.

We ran our randomized backtrack search method
with a cutoff of 105 on our scheduling problem with
N = 16. In 100 runs, our procedure found a solution
in 6 of them. The average number of backtracks on the
successful runs was 34,546, with the shortest run taking
only 914 backtracks, and the longest run 48,534. Taking
into account the time spent on unsuccessful runs, the
randomized procedure finds a solution in 2 hours, on
average. (Note again that our deterministic procedure
did not find a solution in 48 hours.) For the N - 18
case, we ran with a cutoff of 5.105, and found a solution
after approximately 22 hours.

These results show that introducing a stochastic ele-
ment in a backtrack-style search procedure can directly
enhance its performance. In fact, as we see here, it al-
lows us to solve previously unsolved problem instances.
It should be noted that recently there has been a lot of
interest in this sports timetabling problem (McAloon
et al. 1997). Since the submission of this paper, a lot
of progress has been made in terms of solving larger
instances ( McAloon et M. 1998). By using multiple
threads on a 14 processor Sun system, 26 and 28 teams
schedules were generated, which is the record as of this
writing (Wetzel and Zabatta, in preparation). We be-
lieve these numbers can be improved upon with our
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randomization technique.
In the next section, we will explain the success of our

approach in terms of the special nature of the under-
lying cost distribution of backtrack-style search proce-
dures. We believe this is the first such explanation, even
though, the "power of randomization" in combinatorial
search has been informally recognized by others (for re-
cent work in scheduling domains, see e.g., Bresina 1996
and Oddi and Smith 1997).

Heavy-Tailed Distributions

In order to obtain a better understanding of the behav-
ior of our randomized strategy, we now consider some
detailed statistics as gathered on smaller problems. Fig-
ure 1 shows the cumulative cost distribution (F(x)) 
N -- 12. The cost is given in terms of number of back-
tracks to find the first solution. The figure gives ag-
gregate data over 10,000 runs. A striking feature of
the cost distribution is its surprisingly long tail: even
though the median cost is less than 2000 backtracks,
about 5% of the runs take over 20,000 backtracks, and
about 1% of the runs are not solved after 200,000 back-
tracks. Clearly, the long tail suggests a form of "thrash-
ing" behavior that should be avoided. We can use the
"cutoff" parameter to do so. The data also shows that
the shortest 5% of the runs only take about 200 back-
tracks.

01;-
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Figure 1: Heavy-tailed behavior.

In order to model the long tail behavior of our distri-
bution, we consider distributions which asymptotically
have tails of the Pareto-L6vy form, viz.

Pr {X > z} ,,, C.z-~’, z > 0 (1)

where a > 0 is a constant (Mandelbrot 1960; and
Samorodnitsky 1994). These are "heavy-tailed" distri-
butions, i.e., distributions whose tails have a power |aw
decay. The constant a is called the indez of stabilitlt of
the distribution. For a < 2, moments of X of order less
than a are finite while all higher order moments are in-
finite, i.e., c~ = sup{a > 0 : E[X[° <: co}. For example,

when c~ = 1.5, the distribution has a finite mean but
no finite variance. With ~ = 0.6, the distribution has
neither a finite mean nor a finite variance.

In order to check for the existence of heavy tails in
our distributions, we proceed in two steps. First, we
graphically analyze the tail behavior of the sample dis-
tributions. Second, we formally estimate the index of
stability.

If a Pareto-L~vy tail is observed, then the rate of de-
crease of the estimated density is a power law. (Stan-
dard distributions exhibit exponential decay.) From
(1), we have 1-F(z) = Pr{X>z) ~, C.z -°, so
the complement-to-one of the cumulative distribution,
F(z), also decays according to a power law.

Given the power law decay of the complement-to-one
of the cumulative distribution of a heavy-tailed random
variable, its log-log plot should show an approximately
linear decrease in the tall. Moreover, the slope of the
observed linear decrease provides an estimate of the in-
dex c~. In contrast, for a distribution with an expo-
nentially decreasing tail, the log-log plot should show a
faster-than-linear decrease in the tail.

Figure 2 shows the log-log plot of the complement-
to-one of the cumulative distribution, 1-F(x), for our
timetabling problem (N = 12). Plot 2a gives the full
range of distribution, while plot 2b shows the tail of the
distribution (X > 10,000). The linear nature of the tall
in plot 2b directly reveals tails of the Pareto-Ldvy type.

For contrast, in Figure 3, we show the log-log plot
of a gamma and a normal distributed variable. It is
clear from the plots that these distributions do not ex-
hibit heavy-tailed behavior, given the faster-than-linear
decrease in the tails.
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Figure 3: No heavy-tails.
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To complement our visual check of heavy-tailed be-
havior of Figure 2, we calculate the maximum likeli-
hood estimate of the index of stability (the value of c~):
For our timetabling problem, for N = 12, we obtain
r~ = 0.7, which is consistent with the hypothesis of in-
finite mean and infinite variance, since a < 1.
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Figure 2: Log-log plot of heavy-tailed behavior.
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cutoff succ. exp. cost
rate ( x 10o)

200 0.0001 2.2
5,000 0.003 1.5
I0,000 0.009 I.I
50,000 0.07 0.7
100,000 0.06 1.6
250,000 0.21 1.2

1,000,000 0.39 2.5

Table 2: Solving N = 16 for a range of cutoff values.

For problems for which we can empirically determine
the overall cost profile, we can calculate an optimal cut-
off value to minimize the expected cost of finding a so-
lution. However, our interest is in solving previously
unsolved instances, such as the N = 16 and N = 18
case. These problems are too hard to obtain a cost
distribution. For example, for N - 16, running with
a cutoff of 1,000,000 gives a success rate of less than
40%, so we do not even reach the median point of the
distribution. Each run takes about 2 hours to com-
plete. (We estimate that the median value is around
2,000,000. Our deterministic procedure apparently re-
suits in a run that still lies to the right of the expected
median cost.) In order to find a good cutoff value for
very hard problem instances, the best available strategy
is a trial-and-error process, where one experiments with
various cutoff values, starting at relatively low values.
The optimal cutoff for these problems does lie below
the "median cutoff". This can be seen from Table 2,
which gives the expected cost (backtracks) for finding
a solution for N = 16 for a range of cutoff values. The
optimal cutoff is around 5.104, resulting in an expected
cost per solution of 7.105 backtracks.

So far, we have identified heavy-tailed behavior of
the cost distribution to the right of the median. The

heavy tail nature shows that there is a computationally
significant fraction of very long runs, decaying only at
a polynomial rate. The strategy of running the search
procedure with a cutoff less than the median value of
the distribution clearly avoids these long runs in the
tail.

Our experiments also suggest a heavy tall phe-
nomenon on the left-hand side of the median value of
the cost distribution, which means that the success rate
for a solution only increases polynomially with the num-
ber of backtracks. This explains how a relatively low
cutoff value still gives a sufficiently high success rate to
allow us to solve the problem instance. For example,
for N = 16, we observed several runs that took less
than 200 backtracks, compared to a median value of
around 2,000,000. For N = 18, we ran with a cutoff of
500,000 and solved the instance after 20 tries. Each try
took about 1 hour, and the successful run took 350,632
backtracks. Figure 4 displays the log-log plot of the left-
hand side of the cumulative distribution for N = 14. Its
linear nature is an indication of heavy-tailed behavior
of the left-hand side of the distribution.

In general, we conjecture that a for the tall on the left
is less than 1.0 on hard combinatorial search problems.
This conjecture has strong implications in terms of al-
gorithm design: It means that in order to obtain the
minimal expected run time, a preferred strategy con-
sists of relatively short runs of a randomized backtrack-
style procedure. More extensive experiments on other
domains are needed to confirm this conjecture.

Conclusion
We have shown that one can exploit the heavy-tailed
nature of a randomized backtrack-style algorithm to
solve hard timetabling problems. The heavy-tailed na-
ture of the underlying cost distribution implies a rela-
tively high frequency of "outliers" on both sides of the
median of the distribution. These outliers suggest a
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Figure 4: Log-log plot of heavy-tailed behavior on the
left-hand side.

strategy with a low cutoff value: this avoids extremely
long runs on the right-hand side of the distribution, and,
moreover, exploits the occurrence of very short runs on
the left. Using such a randomization strategy, we were
able to solve hard round-robin timetabling instances of
up to size 18, when the corresponding deterministic ver-
sion could only handle instances up to size 14. We be-
lieve that the generality of our approach will lead to
further applications in other planning and scheduling
domains.
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