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Abstract. Many heuristics, such as decision, restart, and clause reduc-
tion heuristics, are incorporated in CDCL solvers in order to improve
performance. In this paper, we focus on learnt clause reduction heuris-
tics, which are used to suppress memory consumption and sustain prop-
agation speed. The reduction heuristics consist of evaluation criteria, for
measuring the usefulness of learnt clauses, and a reduction strategy in
order to select clauses to be removed based on the criteria. LBD (literals
blocks distance) is used as the evaluation criteria in many solvers. For the
reduction strategy, we propose a new concise schema based on the cover-
age ratio of used LBDs. The experimental results show that the proposed
strategy can achieve higher coverage than the conventional strategy and
improve the performance for both SAT and UNSAT instances.

1 Introduction

Many heuristics, such as decision, phase selection, restart, and clause reduc-
tion heuristics, are used in CDCL solvers in order to improve performance. For
example, Katebi et al., show that decision and restart heuristics have resulted in
significant performance improvement in their paper evaluating the components
of CDCL solvers [5]. In this paper, we focus on clause reduction heuristics, which
remove useless learnt clauses in order to suppress memory consumption and sus-
tain propagation speed. Clause reduction is practically required since CDCL
solvers learn a large number of clauses while solving. The reduction heuristics
consist of evaluation criteria to measure the usefulness of learnt clauses and the
reduction strategy for selecting clauses to be removed based on the criteria.

As the former evaluation criteria, LBD (literals blocks distance) [1] is imple-
mented in many solvers. LBD is an excellent measure to identify learnt clauses
that are likely to be used frequently. In this paper, we present experimental
evidence of the identification power of LBD in a wide range of instances. More-
over, we show that an appropriate threshold for LBD, which are used to decide
if clauses should be maintained or not, is determined depending on a given
instance. However, a certain fixed threshold of LBD is often used in latter reduc-
tion strategies. In this paper, we propose a new reduction strategy based on
the coverage of used LBDs, which dynamically computes an appropriate LBD
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threshold in order to cover most propagations and conflicts. The experimental
results show that our schema effectively maintains the used clauses and achieves
performance improvement for both SAT and UNSAT instances.

The rest of this paper is organized as follows: Sect. 2 reviews clause reduc-
tion heuristics used in CDCL solvers. In Sects. 3 and 4, we provide experimental
results, in order to clarify the property of LBD, and to point out some issues in
the LBD-based reduction strategy, respectively. Our proposed reduction strat-
egy is described in Sect. 5. Section 6 shows the experimental results and Sect. 7
concludes this paper.

2 Clause Reduction Heuristics

We briefly review the CDCL algorithm [3,6]. We assume that the reader is
familiar with notions of propositional satisfiability (propositional variable, literal,
clause, unit clause, unit propagation, and so on). The CDCL algorithm repeats
the following two operations until a conflict occurs.

1. Unit propagation: the unassigned literal in each unit clause is assigned as true
to satisfy the clause. This operation repeats until there is no unit clause.

2. Decision: when no unit clauses exist, an unassigned literal is selected and a
truth value (true or false) is assigned to it.

For each assigned literal l, the decision level of l is defined as the number of
decision literals on and before assigning l. By dl(l), we denote the decision level
of the literal l. When a conflict (falsified clause) occurs in the first step, the
algorithm analyzes a cause of the conflict and learns a clause from the cause in
order to prevent repeating the same conflict. The learnt clause is added to the
clause database; then, the algorithm backjumps to the appropriate decision level
computed from the clause.

CDCL solvers learn a large number of clauses during the search process of a
given SAT instance. Hence, solvers should reduce the clause database periodically
in order to suppress memory consumption and sustain propagation speed. In
this section, we introduce reduction heuristics based on LBD, which was firstly
introduced in Glucose solver. First, we present the evaluation criteria LBD in
order to sort learnt clauses according to usefulness.

Definition 1 (Literals Blocks Distances (LBD) [1]). The LBD of a clause
C is defined as |{dl(l) | l ∈ C} ∩ N|, where N is the set of all natural numbers
including 0; that is, the number of kinds of decision levels of literals in C.

By lbd(C), we denote the LBD of clause C. When a learnt clause is generated,
the LBD of the clause is computed based on the current assignment. Additionally,
the LBD is updated when the clause is used in unit propagations and the new
LBD is smaller than the old one1. Literals with the same decision level have
1 In Glucose 3.0 or later, the LBD update is executed only for clauses used in unit

propagations on and after the first UIP in conflict analysis.
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a possibility to be assigned at the same time in the future. Hence, small LBD
clauses have a high possibility, which will be used in unit propagations and
conflicts. We show the experimental evidence in the next section.

Next, we review the clause reduction strategy used in Glucose. The clause
database reduction is executed every lfirst + linc × x conflicts2, where x is
the number of reduction calls (initially x = 0). On each reduction, clauses are
reduced according to the following policy that contains two exceptional condi-
tions:

– Half of learnt clauses are removed in descending order of LBD except the
following clauses.

• keeps clauses whose LBDs ≤ 2 (these are called glue clauses).
• keeps clauses used after the last reduction and updated LBD is less than

a certain threshold.

In the following, we refer the above base policy and two exceptional conditions
as BP, E1 and E2, respectively. This Glucose reduction strategy and its deriva-
tives are used in many solvers. For example, Lingeling dynamically selects either
Glucose-based or classical activity-based strategies [4]. If the standard deviation
of the LBDs of learnt clauses is too small or too large, then, the activity-based
strategy is selected. MapleCOMSPS uses the reduction strategy combining both.
This keeps clauses whose LBDs ≤ 6, while others are managed by the activity-
based strategy. In addition, clauses with LBDs of 4 to 6, which have not been
used for a while, are managed by the activity-based strategy [8]. In Sect. 4, we
show some issues in the Glucose reduction strategy.

3 Experimental Evaluation of LBD

LBD is a well-known criterion for identifying learnt clauses that are likely to be
used frequently. In this section, we present the experimental evidence of LBD use-
fulness in a wide variety of instances. From the results, we design our reduction
strategy based on LBD. Throughout the paper, we use 755 instances, exclud-
ing duplicates, from the application instances used in competitions over the last
3 years,3 as benchmark instances. All experiments were conducted on a Core
i5 (1.4 GHz) with 4 GB memory. We set the timeout for solvers to 5,000 CPU
seconds. We used our SAT solver GlueMiniSat 2.2.10. The main difference with
Glucose is that GlueMiniSat uses the lightweight in-processing techniques [7].
Detailed results and the source code of GlueMiniSat can be found at http://
www.kki.yamanashi.ac.jp/∼nabesima/sat2017/.

Figure 1 shows the distributions of LBDs of learnt clauses (left) and used
LBDs (right) for each instance. In this experiment, learnt clause reduction was
disabled; that is, the solver held every learnt clause. The numbers in the legend
represent LBDs. The red line in the left graph will be explained in Sect. 4. Each

2 In Glucose 3.0 or later, lfirst and linc are 2000 and 300 respectively [2].
3 SAT 2014 competition, SAT-Race 2015 and SAT 2016 competition.

http://www.kki.yamanashi.ac.jp/~nabesima/sat2017/
http://www.kki.yamanashi.ac.jp/~nabesima/sat2017/
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Fig. 1. Distribution of LBDs of learnt clauses (left) and used LBDs (right). Instances
are sorted by ascending order of CPU time. (Color figure online)

stacked bar in the left graph represents the ratio distribution of LBDs, for all
learnt clauses, after the solver stopped (e.g., if there are 10% learnt clauses
whose LBDs are 2, the height of LBD 2 bar is 10%). In the right graph, each bar
represents the ratio distribution of clause LBDs, which caused propagations or
conflicts (e.g., if 50% of propagations or conflicts are caused by LBD 2 clauses,
then the height of the LBD 2 bar is 50%).

The left graph shows that learnt clauses have various LBDs. In easy instances
at the left end of the graph, small LBDs are somewhat dominant; however, the
other instances have many different LBDs. On the other hand, from the right
graph, it is clear that most propagations or conflicts are caused by small LBD
clauses. This strongly supports the identification power of the LBD criterion.

4 Issues of Glucose Reduction Strategy

The Glucose reduction schema consists of BP, E1 and E2, described in Sect. 2.
In this section, we discuss the issues of the schema. We consider the base policy
BP. Suppose that Lk is the number of learnt clauses after k-th reductions (k ≥ 1)
and r is the residual ratio (0 ≤ r < 1, 0.5 in Glucose). Lk is defined as follows:

Lk =

{
rlfirst (k = 1)
r(Lk−1 + lfirst + (k − 1)linc) (k > 1)

(1)

We consider the difference dk = Lk − Lk−1, which can be represented as dk =
rdk−1+rlinc. For this equation, when we add − r

1−r linc to both sides, it represents
a geometric progression with initial value rlfirst − r

1−r linc and common ratio r.
Hence, we can get the following relationship:

Lk − Lk−1 = (rlfirst − r

1 − r
linc))rk−1 +

r

1 − r
linc (2)

The difference between Lk and Lk−1 represents the number of clauses that can
be newly held. The limit of Lk − Lk−1 as k approaches ∞ is a constant:

lim
k→∞

(Lk − Lk−1) =
r

1 − r
linc (3)
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On the other hand, the interval between reductions increases exponentially. This
means that the ratio of number of clauses that can be newly held, gradually
approaches 0 as k increases. This is the first issue regarding BP.

The red line in the left graph of Fig. 1 represents the upper bound of the
number of clauses held when following BP. In most instances, the number of
glue clauses exceeds the bound. Glue clauses are never removed by E1. As a
result, the solver can not hold new non-glue clauses at all, as long as it follows
BP and E1. Even with a high residual ratio, the increment becomes a constant
by (3); therefore, the issue essentially remains. Moreover, by keeping only glue
clauses (E1) is sometimes insufficient to cover most propagations and conflicts.
In the right graph of Fig. 1, the purple and green bars at the bottom represent
the ratio of LBD 1 and 2. This indicates that the appropriate upper bound of
LBD depends on a given instance. These are the second issue regarding E1.

In Glucose, clauses used after the last reduction and with LBD less than, or
equal to 30, are not removed (E2). The right graph in Fig. 1 shows that this
threshold can cover most propagations and conflicts; however, it may be overly
retentive. This is the third issue related to E2.

In the next section, we propose a new concise reduction strategy to address
the above mentioned concerns.

5 Coverage-Based Reduction Strategy

Most propagations and conflicts are caused by small LBD clauses. We propose
a reduction strategy to dynamically compute the upper bound of LBD in order
to cover most propagations and conflicts.

Let c be the specified coverage (0 ≤ c ≤ 1) and fk be the number of times
that LBD k clauses are used, where we call that a clause is used when it causes
a unit propagation or a conflict, that is, when the clause becomes a unit or a
falsified clause in a unit propagation process. We define the cumulative frequency
up to k as f cum

k =
∑k

i=1 fi and the total frequency as f tot = f cum
|V | , where V

is the set of variables at a given instance. The LBD threshold lbd − thld(c) is
defined as the minimum LBD l such that f cum

l achieves the cover rate c of f tot

uses, that is,

lbd − thld(c) = l s.t. (f cum
l−1 < cf tot ) ∧ (cf tot ≤ f cum

l ). (4)

This does not guarantee that the rate c of used clauses in the future will be cov-
ered by holding clauses with LBD ≤ lbd − thld(c), because a discarded clause
may be required in order to propagate a clause with LBD ≤ lbd − thld(c). Never-
theless, we will present experimental results that our approach can achieve high
coverage rate.

Next, we consider the trade-off between coverage and number of kept clauses.
A high coverage requires the retention of a large number of clauses. Figure 2
exhibits the holding ratio, which is the number of maintained clauses at the
termination of solver divided by the total number of learnt clauses, when we
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Fig. 2. Holding ratio of coverage of 80% (left) and 99% (right) for unsolved instances.
Instances are sorted by ascending order of holding ratio. (Color figure online)

specify the coverage as 80% (left) and 99% (right). The red line represents the
holding ratio and the white line denotes the ratio of unused and held clauses4.
At the right end of the left graph, the red line is 30% and the white line is
10%. This means that a maximum of 30% of learnt clauses are required to cover
at least 80% of uses of learnt clauses, and that a maximum of 10% of clauses
are unused. The right graph at Fig. 2 shows that it is necessary to keep the
majority of clauses in order to cover almost all uses, in the worst case, and that
approximately half of them are not used.

In order to suppress the number of held clauses while covering propagations
and conflicts as much as possible, we classify learnt clauses into three types: core,
support, and other clauses. We make core clauses cover most uses (e.g. 80%),
and support clauses cover the remains (e.g. 99%). We give support clauses a
short lifetime since their number can be enormous; we give core clauses a longer
lifetime, where the lifetime n of clause C means that C will be removed when
it is unused while n reductions occur. We provide the formal definition of core,
support, and other clauses. Let C be a clause, and ccore and csupp be the specified
coverage of core and support clauses (ccore ≤ csupp), respectively.

– C is a core clause if lbd(C) ≤ lbd − thld(ccore).
– C is a support clause if lbd − thld(ccore) < lbd(C) ≤ lbd − thld(csupp).
– Otherwise, C is an other clause.

The coverage-based clause reduction is executed every lfirst+linc×x conflicts,
same as in the Glucose schema, where x is the number of reduction calls (initially
x = 0). For each reduction, we compute the core LBD threshold lbd − thld(ccore)
and the support LBD threshold lbd − thld(csupp) based on the frequency distri-
bution of used LBDs. The lifetime of a core and support clause is the specified
value lcore and lsupp (lcore ≥ lsupp), respectively. Other clauses are removed
at the next reduction (that is, the lifetime is 0). The computational cost of
the coverage-based reduction strategy is O(n), where n is the number of learnt
4 A clause is unused if it does not produce any propagation or conflict, except for the

UIP propagation immediately after being learn it.



142 H. Nabeshima and K. Inoue

clauses. Because the computation of the LBD threshold (4) is O(m), where m is
the maximum LBD, the removal of clauses exceeding the threshold is O(n), and
usually m � n. The Glucose reduction strategy requires O(n log n) since it needs
to sort learnt clauses by their LBDs. Note that our reduction strategy does not
impose the upper bound to the number of clauses (BP).

6 Experimental Results

We evaluated the coverage-based and Glucose reduction strategies. In the eval-
uation, we use the following parameters: ccore = 0.8, csupp = 0.99, lcore = 10,
lsupp = 1, lfirst = 2000 and linc = 300. The first 4 parameters were determined
by preliminary experiments. lfirst and linc are the same as in Glucose. We also
compared our approach with Glucose 4.0, MapleCOMSPS, and Lingeling. The lat-
ter two solvers use the Glucose-style schema as part of the reduction strategy,
as described in Sect. 2. These solvers took the first and third place in the main
track of the SAT 2016 competition, respectively5.

Table 1. Solved instances, where “X (Y + Z)” denotes the number of solved instances
(X), solved satisfiable instances (Y) and solved unsatisfiable instances (Z), respectively.

Solver Solved instances

GlueMiniSat 2.2.10 (Glucose schema) 510 (255 + 255)

GlueMiniSat 2.2.10 (Coverage schema) 524 (259 + 265)

Glucose 4.0 484 (244 + 240)

MapleCOMSPS 519 (276 + 243)

Lingeling bbc 522 (249 + 273)

Virtual best solver 597 (305 + 292)

Table 1 shows the number of instances solved by each solver and Fig. 3 is the
cactus plot of these results. GlueMiniSat, with the Glucose schema, has better
performance than Glucose. The coverage schema can further improve perfor-
mance for both SAT and UNSAT instances. MapleCOMSPS and Lingeling show
the superior results for SAT and UNSAT instances, respectively. GlueMiniSat,
with the coverage schema, shows that the well-balanced result and total number
of solved instances are comparable with these state of the art solvers.

Table 2 is the comparison of statistics between Glucose and coverage schema.
Each value in the first 5 lines denotes the average for commonly solved 494
instances of both strategies. The first two lines in the table show that the Glu-
cose schema reduces more clauses than the coverage schema; hence, the Glucose
schema shows higher propagation speed. On the other hand, the coverage schema
5 We exclude Riss 6, which ranked 2nd in the competition. Because it uses Linux-

specific APIs, we could not compile it in our computing environment (Mac OS X).
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Fig. 3. Time to solve instances

Table 2. Comparison of two reduction strategies in GlueMiniSat.

Solver Glucose schema Coverage schema

Removed learnt [%] 76.4 72.9

Propagation speed [literals/sec] 1749748 1716494

CPU time [sec] 812.0 757.5

Conflicts 2519806 2325005

Reduction time [sec] 6.9 2.5

Coverage [%] 73.3 85.0

Precision [%] 67.0 74.1

Recall [%] 33.9 44.1

requires shorter CPU time and less conflicts in order to solve instances. It shows
that the coverage schema can hold more useful clauses than the Glucose schema.
In the coverage schema, the reduction of learnt clauses is slightly faster since the
computational cost is O(n) while the Glucose schema is O(n log n).

The last three lines in Table 2 are the results of different experiments, in
which each solver does not actually remove learnt clauses to calculate coverage,
precision, and recall. Each value indicates the average for commonly solved 406
instances. Coverage in Table 2 is the ratio of the number of used clauses that
are caused only by maintained clauses to the total number of used clauses that
are caused by all clauses. Precision is the ratio of used and held clauses to held
clauses; recall is the ratio of used and held clauses to used clauses. In the coverage
schema, these values have improved. This indicates that the coverage schema can
better identify which clauses will be used.
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7 Conclusion

We have shown that LBD can identify which clauses will be used, and proposed
a concise and lightweight coverage-based reduction strategy, which provides an
appropriate LBD threshold in order to cover most propagations and conflicts.
The experimental results show that the coverage schema can effectively hold
clauses to be used. Many solvers use LBD as an evaluation criterion for learnt
clauses. Our approach can be applicable to such solvers.
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