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Abstract

Constrained sampling and counting are two fundamental
problems in artificial intelligence with a diverse range of ap-
plications, spanning probabilistic reasoning and planning to
constrained-random verification. While the theory of these
problems was thoroughly investigated in the 1980s, prior
work either did not scale to industrial size instances or gave
up correctness guarantees to achieve scalability. Recently, we
proposed a novel approach that combines universal hashing
and SAT solving and scales to formulas with hundreds of
thousands of variables without giving up correctness guaran-
tees. This paper provides an overview of the key ingredients
of the approach and discusses challenges that need to be over-
come to handle larger real-world instances.

1 Introduction
Constrained sampling and counting are two fundamental
problems in artificial intelligence. In constrained sampling,
the task is to sample randomly from the set of solutions of
input constraints while the problem of constrained count-
ing is to count the number of solutions. Both problems
have numerous applications, including in probabilistic rea-
soning, machine learning, planning, statistical physics, in-
exact computing, and constrained-random verification (Bac-
chus, Dalmao, and Pitassi 2003; Jerrum and Sinclair 1996;
Naveh et al. 2006; Roth 1996). For example, probabilistic in-
ference over graphical models can be reduced to constrained
counting for propositional formulas (Cooper 1990; Roth
1996). In addition, approximate probabilistic reasoning re-
lies heavily on sampling from high-dimensional probabilis-
tic spaces encoded as sets of constraints (Ermon et al. 2013a;
Jerrum and Sinclair 1996). Both constrained sampling and
counting can be viewed as aspects of one of the most fun-
damental problems in artificial intelligence: exploring the
structure of the solution space of a set of constraints (Russell
and Norvig 2009).

Constrained sampling and counting are known to be com-
putationally hard (Valiant 1979; Jerrum, Valiant, and Vazi-
rani 1986; Toda 1989). To bypass these hardness results, ap-
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proximate versions of the problems have been investigated.
Despite strong theoretical and practical interest in approxi-
mation techniques over the years, there is still an immense
gap between theory and practice in this area. Theoretical al-
gorithms offer guarantees on the quality of approximation,
but do not scale in practice, whereas practical tools achieve
scalability at the cost of offering weaker or no guarantees.

Our recent work in constrained sampling and count-
ing (Chakraborty et al. 2014; Chakraborty, Meel, and Vardi
2013a; 2013b; 2014; Chakraborty et al. 2014; 2015a; 2015b;
Ivrii et al. 2015), has yielded significant progress in this area.
By combining the ideas of using SAT solving as an oracle
and the reduction of the solution space via universal hash-
ing, we have developed highly scalable algorithms that offer
rigorous approximation guarantees. Thus, we were able to
take the first step in bridging the gap between theory and
practice in approximate constrained sampling and counting.
A key enabling factor has been the tremendous progress over
the past two decades in propositional satisfiability (SAT)
solving, which makes SAT solving usable as an algorithmic
building block in practical algorithms.

In this paper, we provide an overview of hashing-based
sampling and counting techniques and put them in the con-
text of related work. We then highlight key insights that have
allowed us to further push the scalability envelope of these
algorithms. Finally, we discuss challenges that still need to
be overcome before hashing-based sampling and counting
algorithms can be applied to large scale real-world instances.

The rest of the paper is organized as follows. We intro-
duce notation and preliminaries in Section 2 and discuss re-
lated work in Section 3. We discuss key enabling algorith-
mic techniques for the hashing-based approach in Section 4,
followed by an overview of the sampling and counting algo-
rithms themselves in Section 5. We describe recent advances
in pushing forward the scalability of these algorithms in Sec-
tion 6, and finally conclude in Section 7.

2 Preliminaries
Let F denote a Boolean formula in conjunctive normal form
(CNF), and let X be the set of variables appearing in F .
The set X is called the support of F . We also use Vars(F )
to denote the support of F . Given a set of variables S ⊆ X
and an assignment σ of truth values to the variables inX , we
write σ|S for the projection of σ onto S. A satisfying assign-
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ment or witness of F is an assignment that makes F evaluate
to true. We denote the set of all witnesses of F by RF and
the projection of RF onto S by RF |S . For notational con-
venience, whenever the formula F is clear from the context,
we omit mentioning it.

Let I ⊆ X be a subset of the support such that if two
satisfying assignments σ1 and σ2 agree on I, then σ1 = σ2.
In other words, in every satisfying assignment, the truth val-
ues of variables in I uniquely determine the truth value of
every variable in X \ I. The set I is called an independent
support of F , and D = X \ I is a dependent support. Note
that there is a one-to-one correspondence between RF and
RF |I . There may be more than one independent support:
(a ∨ ¬b) ∧ (¬a ∨ b) has three, namely {a}, {b} and {a, b}.
Clearly, if I is an independent support of F , so is every su-
perset of I.

The constrained-sampling problem is to sample randomly
fromRF , given F . A probabilistic generator is a probabilis-
tic algorithm that generates from F a random solution in
RF . Let Pr [E] denote the probability of an event E. A uni-
form generator Gu(·) is a probabilistic generator that, given
F , guarantees Pr [Gu(F ) = y] = 1/|RF |, for every y ∈ RF .
An almost-uniform generator Gau(·, ·) guarantees that for
every y ∈ RF , we have 1

(1+ε)|RF | ≤ Pr [Gau(F, ε) = y] ≤
1+ε
|RF | , where ε > 0 is a specified tolerance. Probabilistic gen-
erators are allowed to occasionally “fail” in the sense that no
solution may be returned even if RF is non-empty. The fail-
ure probability for such generators must be bounded by a
constant strictly less than 1.

The constrained-counting problem is to compute the size
of the set RF for a given CNF formula F . An approximate
counter is a probabilistic algorithm ApproxCount(·, ·, ·)
that, given a formula F , a tolerance ε > 0, and a confi-
dence 1 − δ ∈ (0, 1], guarantees that Pr

[
|RF |/(1 + ε) ≤

ApproxCount(F, ε, 1− δ) ≤ (1 + ε)|RF |
]
≥ 1− δ.

The type of hash functions used in the hashing-based ap-
proach to sampling and counting are r-universal hash func-
tions. For positive integers n,m, and r, we writeH(n,m, r)
to denote a family of r-universal hash functions mapping
{0, 1}n to {0, 1}m. We use h R←− H(n,m, r) to denote the
probability space obtained by choosing a hash function h
uniformly at random from H(n,m, r). The property of r-
universality guarantees that for all α1, . . . , αr ∈ {0, 1}m
and all distinct y1, . . . , yr ∈ {0, 1}n, Pr [

∧r
i=1 h(yi) = αi

: h
R←− H(n,m, r)

]
= 2−mr. We use a particular class of

such hash functions, denoted by Hxor(n,m), which is de-
fined as follows. Let h(y)[i] denote the ith component of
the vector h(y). This family of hash functions is then de-
fined as {h | h(y)[i] = ai,0 ⊕ (

⊕n
k=1 ai,k · y[k]), ai,k ∈

{0, 1}, 1 ≤ i ≤ m, 0 ≤ k ≤ n}, where ⊕ denotes the XOR
operation. By choosing values of ai,k randomly and inde-
pendently, we can effectively choose a random hash func-
tion from Hxor(n,m). It was shown in (Gomes, Sabharwal,
and Selman 2007) that this family is 3-universal.

3 Related Work
Constrained counting, the problem of counting the number
of solutions of a propositional formula, is known as #SAT.
It is #P-complete (Valiant 1979), where #P is the set of
counting problems associated with NP decision problems.
Theoretical investigations of #P have led to the discov-
ery of deep connections in complexity theory (Toda 1989;
Valiant 1979), and there is strong evidence for its hard-
ness (Arora and Barak 2009). It is also known that an effi-
cient algorithm for constrained sampling would yield a fully
polynomial randomized approximation scheme (FPRAS)
for #P-complete inference problems (Jerrum and Sinclair
1996) – a possibility that lacks any evidence so far and is
widely disbelieved.

In many applications of constrained counting, such as
in probabilistic reasoning, exact counting may not be criti-
cally important, and approximate counts suffice. Even when
exact counts are important, the inherent complexity of the
problem may force one to work with approximate counters.
Jerrum, Valiant, and Vazirani (Jerrum, Valiant, and Vazi-
rani 1986) showed that approximate counting of solutions
of CNF formulas, to within a given tolerance factor, can be
done with high confidence in randomized polynomial time
using an NP oracle. A key result of (Jerrum, Valiant, and
Vazirani 1986) states that for many problems, generating so-
lutions almost uniformly is inter-reducible with approximate
counting; hence, they have similar complexity. Building on
the Sipser’s and Stockmeyer’s early work (Sipser 1983;
Stockmeyer 1983), Bellare, Goldreich, and Petrank (Bellare,
Goldreich, and Petrank 2000) later showed that in fact, an
NP-oracle suffices for generating solutions of CNF formulas
exactly uniformly in randomized polynomial time. Unfortu-
nately, these deep theoretical results have not been success-
fully reduced to practice. Our experience in implementing
these techniques indicates that they do not scale in practice
even to small problem instances involving few tens of vari-
ables (Meel 2014).

Industrial approaches to constrained sampling in the con-
text of constrained-random verification (Naveh et al. 2006)
either rely on Binary Decision Diagram (BDD)-based tech-
niques (Yuan et al. 2004), which scale rather poorly, or use
heuristics that offer no guarantee of performance or unifor-
mity when applied to large problem instances (Kitchen and
Kuehlmann 2007). In prior academic works (Ermon, Gomes,
and Selman 2012b; Kirkpatrick, Gelatt, and Vecchi 1983;
Gomes, Sabharwal, and Selman 2007; Wei, Erenrich, and
Selman 2004), the focus is on heuristic techniques includ-
ing Markov chain Monte Carlo (MCMC) methods and tech-
niques based on random seeding of SAT solvers. These
methods scale to large problem instances, but either offer
very weak or no guarantees on the uniformity of sampling,
or require the user to provide hard-to-estimate problem-
specific parameters that crucially affect the performance
and uniformity of sampling (Ermon et al. 2013b; 2013c;
Gogate and Dechter 2008; Kitchen and Kuehlmann 2007).

The earliest approaches to #SAT were based on DPLL-
style SAT solvers and computed exact counts. These ap-
proaches, e.g. CDP (Birnbaum and Lozinskii 1999), in-
crementally counted the number of solutions by introduc-
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ing appropriate multiplication factors for each partial so-
lution found, eventually covering the entire solution space.
Subsequent counters such as Relsat (Jr. and Schrag 1997),
Cachet (Sang et al. 2004), and sharpSAT (Thurley 2006)
improved upon this by using several optimizations such as
component caching, clause learning, and the like. Tech-
niques based on BDDs and their variants (Minato 1993), or
d-DNNF formulas (Darwiche 2004), have also been used to
compute exact counts. Although exact counters have been
successfully used in small- to medium-sized problems, scal-
ing to larger problem instances has posed significant chal-
lenges. Consequently, a large class of practical applications
has remained beyond the reach of exact counters (Meel
2014).

To overcome the scalability challenge, more efficient
techniques for approximate counting have been proposed.
The large majority of approximate counters used in prac-
tice are bounding counters, which provide lower or up-
per bounds but do not offer guarantees on the tightness of
these bounds. Examples include SampleCount (Gomes et
al. 2007a), BPCount (Kroc, Sabharwal, and Selman 2008),
MBound and Hybrid-MBound (Gomes, Sabharwal, and Sel-
man 2006), and MiniCount (Kroc, Sabharwal, and Selman
2008). Another category of counters is called guarantee-
less counters. While these counters may be efficient, they
provide no guarantees and the computed estimates may
differ from the exact counts by several orders of mag-
nitude (Gomes et al. 2007b). Examples of guarantee-less
counters include ApproxCount (Wei and Selman 2005),
SearchTreeSampler (Ermon, Gomes, and Selman 2012a),
SE (Rubinstein 2012), and SampleSearch (Gogate and
Dechter 2011).

4 Enabling Algorithmic Techniques
Hashing-based approaches to sampling and counting rely on
three key algorithmic techniques – one classical, and two
more recent: universal hashing, satisfiability (SAT) solving,
and satisfiability modulo theories (SMT) solving.

Universal Hashing Universal hashing is an algorithmic
technique that selects a hash function at random from a fam-
ily of functions with a certain mathematical property (Carter
and Wegman 1977). This technique guarantees a low ex-
pected number of collisions, even for an arbitrary distri-
bution of the data being hashed. We have shown that uni-
versal hashing enables us to partition the set RF of sat-
isfying assignments of a formula F into roughly equally-
sized “small” cells (Chakraborty, Meel, and Vardi 2013a).
By choosing the definition of “small” carefully, we can sam-
ple almost uniformly by first choosing a random cell and
then sampling uniformly inside the cell (Chakraborty, Meel,
and Vardi 2014). Measuring the size of sufficiently many
randomly chosen cells also gives us an approximation of the
size of RF (Chakraborty, Meel, and Vardi 2013b). To get a
good approximation of uniformity and count, we employ a
3-universal family of hash functions.

SAT Solving The paradigmatic NP-complete problem of
boolean satisfiability (SAT) solving (Cook 1971), is a cen-

tral problem in computer science. Efforts to develop practi-
cally successful SAT solvers go back to the 1950s. The past
20 years have witnessed a “SAT revolution” with the devel-
opment of conflict-driven clause-learning (CDCL) solvers
(Biere et al. 2009). Such solvers combine a classical back-
tracking search with a rich set of effective heuristics. While
20 years ago SAT solvers were able to solve instances with
at most a few hundred variables, modern SAT solvers solve
instances with up to millions of variables in a reasonable
time (Malik and Zhang 2009). Furthermore, SAT solving is
continuing to demonstrate impressive progress (Vardi 2014).
Propositional sampling and counting are both extensions of
SAT; thus, practically effective SAT solving is a key enabler
in our work.

SMT Solving The Satisfiability Modulo Theories (SMT)
problem is a decision problem for logical formulas in com-
binations of background theories. Examples of theories typ-
ically used are the theory of real numbers, the theory of inte-
gers, and the theories of various data structures such as lists,
arrays, bit vectors, and others. SMT solvers have shown
dramatic progress over the past couple of decades and are
now routinely used in industrial software development (de
Moura and Bjørner 2011). Even though we focus on sam-
pling and counting for propositional formulas, we have to
be able to combine propositional reasoning with reasoning
about hash values, which requires the power of SMT solvers.
In our approach, we express hashing by means of XOR con-
straints. These constraints can be reduced to CNF, but such
a reduction typically leads to computational inefficiencies
during SAT solving. Instead, we use CryptoMiniSAT, an
SMT solver which combines the power of CDCL SAT solv-
ing with algebraic treatment of XOR constraints, to yield
a highly effective solver for a combination of propositional
CNF and XOR constraints (Soos, Nohl, and Castelluccia
2009).

5 Hashing-Based Sampling and Counting
In recent years, we have shown that the combination of uni-
versal hashing and SAT/SMT solving can yield a dramatic
breakthrough in our ability to perform almost-uniform sam-
pling and approximate counting for industrial-scale formu-
las with hundreds of thousands of variables (Chakraborty et
al. 2014; Chakraborty, Meel, and Vardi 2013a; 2013b; 2014;
Chakraborty et al. 2014; 2015a; 2015b; Ivrii et al. 2015). The
algorithms and tools we developed provide the first scalable
implementation with provable approximation guarantees of
these fundamental algorithmic building blocks.

Approximate Counting In (Chakraborty, Meel, and Vardi
2013b), we introduced an approximate constrained counter,
called ApproxMC. The algorithm employs XOR constraints
to partition the solution space into “small” cells, where find-
ing the right parameters to get the desired sizes of cells re-
quires an iterative search. The algorithm then repeatedly in-
vokes CryptoMiniSAT to exactly measure the size of suf-
ficiently many random cells (to achieve the desired confi-
dence) and returns an estimate given by multiplying the me-
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Figure 1: Performance comparison between ApproxMC and
Cachet.
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Figure 2: Quality of counts computed by ApproxMC. The
benchmarks are arranged in increasing order of model
counts.

dian of the measured cell sizes by the number of cells cov-
ering the solution space.

We compared ApproxMC with Cachet, a well known ex-
act counter (Sang et al. 2004), using a timeout of 20 hours.
While Cachet can solve instances with up to 13K variables,
ApproxMC can solve very large instances with over 400K
variables (see Fig 1 for performance comparison over a sub-
set of benchmarks). On instances where the exact count was
available, the approximate count computed by ApproxMC
was within 4% of the exact count, even when the tolerance
requested was only 75% (See Figure 2).

Almost-uniform Sampling In (Chakraborty, Meel, and
Vardi 2013a; 2014), we described an almost-uniform propo-
sitional sampler called UniGen. The algorithm first calls
ApproxMC to get an approximate count of the size of the so-
lution space. Using this count enables us to fine-tune the pa-
rameters for using XOR constraints to partition the solution
space in such a way that a randomly chosen cell is expected
to be small enough so the solutions in it can be enumerated
and sampled. UniGen was able to handle formulas with ap-
proximately 0.5M variables. Its performance is several or-
ders of magnitude better than that of a competing algorithm
called XORSample’ (Gomes, Sabharwal, and Selman 2007),
which does not offer an approximation guarantee of almost
uniformity (see Fig. 3). To evaluate the uniformity of sam-
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(US).

pling, we compared UniGen with a uniform sampler (called
US, implemented by enumerating all solutions) on a bench-
mark with about 16K solutions. We generated 4M samples,
each from US and UniGen; the resulting distributions were
statistically indistinguishable. (see Fig. 4).

Weighted Counting and Sampling In (Chakraborty et al.
2014), we showed how to extend the above algorithms for
approximate counting and almost-uniform sampling from
the unweighted case, in which all assignments are given
equal weight, to the weighted case, in which a weight func-
tion associates a weight with each assignment, and counting
and sampling must be done with respect to these weights.
Under some mild assumptions on the distribution of weights,
we showed that the unweighted algorithms for approximate
counting and almost-uniform sampling can be adapted to
work in the weighted setting, using only a SAT solver (NP-
oracle) and a black-box weight function w(·). For the algo-
rithm to work well in practice, we require that the tilt of the
weight function, which is the ratio of the maximum weight
of a satisfying assignment to the minimum weight of a satis-
fying assignment, be small. This is a reasonable assumption
for several important classes of problems (Chakraborty et
al. 2014). We were able to handle formulas with over 60K
variables, and our tools significantly outperformed SDD,
a state-of-the-art exact weighted constrained counter (Dar-
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wiche 2011).

Related recent work on hashing-based approaches The
above work generated interest in the research community fo-
cused on sampling and counting problems. We introduced
the approach of combining universal hashing with SAT solv-
ing for almost-uniform sampling and approximate counting
in (Chakraborty, Meel, and Vardi 2013a; 2013b). Recently,
(Belle, Van den Broeck, and Passerini 2015) proposed a
probabilistic inference algorithm that is a “simple rework-
ing” (quoting authors) of WeightMC.

Building on our underlying approach, Ermon et al. sug-
gested further improvements and proposed an algorithm,
called WISH, for constrained weighted counting (Ermon
et al. 2013b; 2013c). The algorithm WISH falls short of
WeightMC in terms of approximation guarantees and per-
formance. Unlike WeightMC, WISH does not provide (ε, δ)
guarantees and only provides constant-factor approximation
guarantees. Furthermore, WISH requires access to a most-
probable-explanation (MPE) oracle, which is an optimiza-
tion oracle and more expensive in practice than the NP or-
acle (i.e. SAT solver) required by our approach (Park and
Darwiche 2006). Recently, Zhu and Erom (Zhu and Er-
mon 2015) proposed an approximate algorithm, named RP-
InfAlg, for approximate probabilistic inference. This algo-
rithm provides very weak approximation guarantees, and re-
quires the use of hard-to-estimate parameters. Furthermore,
their experiments were done with specific values of parame-
ters, which are not easy to guess or compute efficiently. The
computational effort required in identifying the right values
of the parameters is not addressed in their work. On the con-
strained sampling front, Ermon et al (Ermon et al. 2013a)
proposed the PAWS algorithm, which provides weaker guar-
antees than UniGen. Like UniGen, PAWS requires a param-
eter estimation step. However, given a propositional formula
with n variables, UniGen uses O(n) calls to an NP oracle to
estimate the parameters, while PAWS requires O(n. log n)
calls.

6 Towards Scalable Sampling and Counting
Algorithms

We now discuss four recent promising directions towards
further improving the scalability of hashing-based sampling
and counting algorithms.

Parallelism There has been a strong recent revival of in-
terest in parallelizing a wide variety of algorithms to achieve
improved performance (Larus 2009). One of the main goals
in parallel-algorithm design is to achieve a speedup nearly
linear in the number of processors, which requires the avoid-
ance of dependencies among different parts of the algo-
rithm (Eager, Zahorjan, and Lazowska 1989). Most of the
sampling algorithms employed for sampling fail to meet this
criterion, and are hence not easily parallelizable. For exam-
ple, by using constraint solvers with randomized branching
heuristics, samples with sequential dependencies are gener-
ated. Similarly, MCMC samplers often require a long se-
quential walk before converging to the stationary distribu-
tion. The lack of techniques for sampling solutions of con-

straints in parallel while preserving guarantees of effective-
ness in finding bugs has been a major impediment to high-
performance constrained-random verification (CRV).

The algorithm UniGen2 presented in (Chakraborty et al.
2015a) takes a step forward in addressing this problem.
It has an initial preprocessing step that is sequential but
low-overhead, followed by inherently parallelizable sam-
pling steps. It generates samples (stimuli) that are prov-
ably nearly as effective as those generated by an almost-
uniform sampler for purposes of detecting a bug. Further-
more, experimental evaluation over a diverse set of bench-
marks demonstrates that the performance improvement for
UniGen2 scales linearly with the number of processors: low
communication overhead allows UniGen2 to achieve effi-
ciency levels close to those of ideal distributed algorithms.
Given that current practitioners are forced to trade guaran-
tees of effectiveness in bug hunting for scalability, the above
properties of UniGen2 are significant. Specifically, they en-
able a new paradigm for CRV wherein both stimulus gener-
ation and simulation are done in parallel, providing the re-
quired runtime performance without sacrificing theoretical
guarantees.

Independence Another way to boost the performance of
UniGen is by reducing “waste” of hashed solutions. Cur-
rently, after UniGen chooses a random cell of solutions, it
selects a single sample from that cell and throws away all
the other solutions. The reason for this “wasting” of solu-
tions is to ensure that the samples obtained are not only
almost-uniformly distributed, but also independently dis-
tributed. Independence is an important feature of sampling,
which is required to ensure that probabilities are multiplica-
tive. (For example, in a sequence of Bernoulli coin tosses,
independence is required to ensure that an outcome of heads
is almost-certain in the limit.) In MCMC sampling, ensur-
ing independence requires very long random walks between
samples. An important feature of UniGen is that its almost-
uniform samples are independent. Such independence, how-
ever, comes at the cost of throwing away many solutions.

In some applications, such as constrained-random verifi-
cation, full independence between successive samples is not
needed: it is only required that the samples provide good
coverage over the space of all solutions. In (Chakraborty
et al. 2015a), our proposed algorithm, UniGen2, gains ef-
ficiency by relaxing independence, while still maintaining
provable coverage guarantees. Specifically, a cell is “small”
in the sense discussed earlier when the number of solutions
it contains is between parameters loThresh and hiThresh,
both computed from the tolerance ε. Instead of picking only
one solution from a small cell, UniGen2 randomly picks
loThresh distinct solutions. This leads to a theoretical guar-
antee that UniGen2 requires significantly fewer SAT calls
than UniGen to obtain a given level of bug-finding effective-
ness in constrained-random verification.

Independent Support These hashing-based techniques
crucially rely on the ability of combinatorial solvers to solve
propositional formulas represented as a conjunction of the
input formula and 3-universal hash functions. Due to our use
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of Hxor, this translates to hybrid formulas which are con-
junctions of CNF and XOR clauses. Therefore, a key chal-
lenge is to further speed up search for the solutions of such
hybrid formulas. The XOR clauses invoked here are high-
density clauses, consisting typically of n/2 variables, where
n is the number of variables in the input formula. Experi-
ence has shown that the high density of the XOR clauses
plays a major role in runtime performance of solving hybrid
formulas.

Recently, Ermon et al. introduced a technique to re-
duce the density of XOR constraints. Their technique gives
hash functions with properties that are weaker than 2–
universality, but sufficient for approximate counting (Ermon
et al. 2014). In practice, however, this approach does not ap-
pear to achieve significant reduction in the density of XOR
constraints and, therefore, the practical impact on runtime is
not significant. Furthermore, It is not yet clear whether the
constraints resulting from Ermon et al’s techniques (Ermon
et al. 2014) can be used for constrained sampling, while pro-
viding the same theoretical guarantees that our work gives.

Motivated by the problem of high-density XOR con-
straints, we proposed the idea of restricting the hash func-
tions to only the independent support I of a formula, and
showed that even with this restriction, we obtain the required
universality properties of hash functions needed for con-
strained sampling and counting techniques (Chakraborty,
Meel, and Vardi 2014). Since many practical instances ad-
mit independent supports much smaller than the total num-
ber of variables (e.g. we may drop all variables introduced
by Tseitin encoding), this often allows the use of substan-
tially less dense XOR constraints. While it is possible in
many cases to obtain an over-approximation of I by examin-
ing the domain from which the instance is derived, the work
in (Chakraborty, Meel, and Vardi 2014) does not provide an
algorithmic approach for determining I, and experience has
shown that the manual approach is error prone.

In (Ivrii et al. 2015), we proposed the first algorithm,
called MIS, to find minimal independent supports. The key
idea of this algorithmic procedure is the reduction of the
problem of minimizing an independent support of a Boolean
formula to Group Minimal Unsatisfiable Subset (GMUS).
To illustrate the practical value of this approach, we used
MIS to compute a minimal independent support for each of
our UniGen2 and ApproxMC benchmarks, and ran both al-
gorithms using hashing only over the computed supports.
Over a wide suite of benchmarks, experiments demonstrated
that this hashing scheme improves the runtime performance
of UniGen2 and ApproxMC by two to three orders of mag-
nitude. It is worth noting that these runtime improvements
come at no cost of theoretical guarantees: both UniGen2 and
ApproxMC still provide the same strong theoretical guaran-
tees.

From Weighted to Unweighted Model Counting Recent
approaches to weighted model counting (WMC) have fo-
cused on adapting unweighted model counting (UMC) tech-
niques to work in the weighted setting (Sang, Bearne, and
Kautz 2005; Xue, Choi, and Darwiche 2012; Chakraborty
et al. 2014). Such adaptation requires intimate understand-

ing of the implementation details of the UMC techniques,
and on-going maintenance, since some of these techniques
evolve over time. In (Chakraborty et al. 2015b), we flip
this approach and present an efficient reduction of literal-
weighted WMC to UMC. The reduction preserves the nor-
mal form of the input formula, i.e. it provides the UMC
formula in the same normal form as the input WMC for-
mula. Therefore, an important contribution of our reduction
is to provide a WMC-to-UMC module that allows any UMC
solver, viewed as a black box, to be converted to a WMC
solver. This enables the automatic leveraging of progress in
UMC solving to make progress in WMC solving.

We have implemented our WMC-to-UMC module on top
of state-of-the-art exact unweighted model counters to ob-
tain exact weighted model counters for CNF formulas with
literal-weighted representation. Experiments on a suite of
benchmarks indicate that the resulting counters scale to sig-
nificantly larger problem instances than what can be handled
by a state-of-the-art exact weighted model counter (Choi and
Darwiche 2013). Our results suggest that we can leverage
powerful techniques developed for SAT and related domains
in recent years to handle probabilistic inference queries for
graphical models encoded as WMC instances. Furthermore,
we demonstrate that our techniques can be extended to more
general representations where weights are associated with
constraints instead of individual literals.

7 Conclusion
Constrained sampling and counting problems have a wide
range of applications in artificial intelligence, verification,
machine learning and the like. In contrast to prior work that
failed to provide scalable algorithms with strong theoreti-
cal guarantees, hashing-based techniques offer scalable sam-
pling and counting algorithms with rigorous guarantees on
quality of approximation. Yet, many challenges remain in
making this approach more viable for real-world problem
instances. Promising directions of future research include
designing efficient hash functions and developing SAT/SMT
solvers specialized to handle constraints arising from these
techniques.
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