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Abstract. Constrained sampling and counting are two fundamental
problems arising in domains ranging from artificial intelligence and secu-
rity, to hardware and software testing. Recent approaches to approximate
solutions for these problems rely on employing SAT solvers and universal
hash functions that are typically encoded as XOR constraints of length
n/2 for an input formula with n variables. As the runtime performance of
SAT solvers heavily depends on the length of XOR constraints, recent re-
search e↵ort has been focused on reduction of length of XOR constraints.
Consequently, a notion of Independent Support was proposed, and it was
shown that constructing XORs over independent support (if known) can
lead to a significant reduction in the length of XOR constraints without
losing the theoretical guarantees of sampling and counting algorithms.
In this paper, we present the first algorithmic procedure (and a corre-
sponding tool, called MIS) to determine minimal independent support
for a given CNF formula by employing a reduction to group minimal un-
satisfiable subsets (GMUS). By utilizing minimal independent supports
computed by MIS, we provide new tighter bounds on the length of XOR
constraints for constrained counting and sampling. Furthermore, the uni-
versal hash functions constructed from independent supports computed
by MIS provide two to three orders of magnitude performance improve-
ment in state-of-the-art constrained sampling and counting tools, while
still retaining theoretical guarantees.

1 Introduction

Constrained sampling and counting are two fundamental problems arising in do-
mains such as artificial intelligence, hardware and software testing and the like. In
constrained sampling, the task is to sample randomly, subject to a given weight
function, from the set of solutions of input constraints. In constrained count-
ing, the task is to count the total weight, subject to a given weight function, of
the set of solutions of input constraints. Both problems have numerous applica-
tions, including probabilistic reasoning, machine learning, planning, statistical
physics, inexact computing, and constrained-random verification[2,11,27,30,33].
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For example, probabilistic inference over graphical models can be reduced to
constrained counting for propositional formulas [2,31]. In addition, approximate
probabilistic reasoning relies heavily on sampling over high-dimensional proba-
bilistic spaces encoded as a set of constraints [18]. The problems of constrained
sampling and counting can be viewed as aspects of one of the most fundamental
problem in artificial intelligence, which is to explore the structure of the solution
space of a given set of constraints [29].

Constrained sampling and counting are known to be computationally hard [32,19].
To address the intractability barriers, approximations of these problems have
been pursued. Of these, Monte Carlo Markov Chain (MCMC) algorithms, such
as those based on simulated annealing and Metropolis-Hastings and variational
methods have been extensively studied in this context, but these algorithms set-
tle for very weak guarantees (such as eventual asymptotic convergence) or do not
provide formal guarantees at all [20]. Interval propagation and random seeding
of underlying constraint solvers have also failed to provide theoretical guarantees
and often generate highly irregular distributions or compute inexact counts [20].

To counter the scalability and approximation challenges for sampling and
counting, new techniques based on universal hashing were proposed in [7,8,9,6,14].
These techniques combine the classical technique of universal hashing with the
recent advancements in combinatorial reasoning techniques such as Boolean sat-
isfiability (SAT). The key idea in these techniques is to employ universal hashing
to partition the solution space into “small” cells with each cell containing a rel-
atively small expected sum of weight of solutions. The counting algorithms then
typically invoke combinatorial search tools such as CryptoMiniSAT to repeatedly
compute the size of su�ciently many random cells (to achieve the desired con-
fidence) and to return the estimate as the number of cells multiplied by the
median of the sizes returned by invocations. Similarly, one can sample almost
uniformly by first choosing a random cell and then sampling uniformly inside
the cell [9]. The use of universal hash functions allows these techniques to pro-
vide theoretical guarantees of (", �)-approximation, which is far stronger than
the previous state-of-the-art approaches.

The recent hashing-based techniques predominately employ 3-universal hash

functions,4 which typically consist of a conjunction of parity constraints, i.e.
XOR, each of average density of 1/2. As a result, a cell is represented as a
conjunction of input constraints and XOR constraints. Since combinatorial rea-
soning tools are invoked to search for solutions of the conjunction of input con-
straints and XOR-based universal hash functions, recent investigations have fo-
cused on determining the relationship between runtime performance of combi-
natorial search and features of XOR-constraints. It has been observed that lower
density XORs are easy to reason in practice and runtime performance of solvers
greatly enhances with the decrease in the density of XOR-constraints [16]. This
has led to recent work focused on designing hash functions with low density
XOR-constraints [12] but such hash functions provide very weak guarantees of
universality that are not adequate for hashing-based techniques for sampling.

4 defined formally in Section 2



Recently, Chakraborty et al. introduced the notion of an independent support

of a Boolean formula [9]: a subset of variables whose values uniquely determine
the values of the remaining variables in any satisfying assignment to the formula,
and showed that XOR-based 3-universal hash functions can be constructed by
picking variables from the independent support alone. The importance of this
observation comes from the fact that for many important classes of problems
the size of an independent support is typically one to two orders of magnitude
smaller than the number of all variables, which in turn leads to XOR constraints
of typical density of 1/200 to 1/20, i.e. one to two orders of magnitude smaller
than that of the traditional hash functions. We emphasize that unlike recent
work of Ermon et al., these hash functions still preserve the strong guarantees
of 3�universality and therefore can be used as replacement for traditional hash
functions in recent hashing-based techniques for sampling and counting such as
UniWit [7], ApproxMC [8], WeightMC, WeightGen [6], PAWS [13]. The authors,
however, left open the question of an e�cient algorithmic procedure for determin-
ing a “small” independent support of a Boolean formula (for example, minimal
or minimum-sized).

The variables that are not part of an independent support can be considered
as redundant, and there is extensive research related to redundancy in proposi-
tional logic in general [21,3]. In our context, a particular problem of importance
is that of computing a concise reason of inconsistency of an over-constrained
Boolean formula. Significant recent research focuses on e�ciently computing a
minimal unsatisfiable subformula (MUS) of a Boolean formula [25] and its exten-
sion on computing a group-oriented (also called high-level) minimal unsatisfiable
subformula (GMUS) of an explicitly partitioned Boolean formula [23,26]. In ad-
dition, there are highly optimized algorithms and o↵-the-shelf implementations
for computing MUSes and GMUSes, such as MUSer2 [4]. Even more recent re-
search focuses on computing a smallest (i.e., minimum-sized) MUS of a Boolean
formula (SMUS) [22,1], which in general is a significantly more computationally-
intensive task. Similarly, one can consider a smallest GMUS of an explicitly parti-
tioned Boolean formula (SGMUS). The tool Forqes described in [1] can compute
SMUSes and SGMUSes.

The primary contribution of this paper is, to the best of our knowledge,
the first algorithm to determine minimal and minimum independent supports.
The key idea of this algorithmic procedure is the reduction of the problem of
minimizing an independent support of a Boolean formula to (S)GMUS. In this
reduction, each independent subset of variables naturally corresponds to an un-
satisfiable subformula of the total formula, and in particular the problems of
finding a minimal independent support, or a minimum-sized independent sup-
port, or all minimal or minimum-sized independent supports, can be naturally
translated to the corresponding problems in the MUS framework. For future ref-
erence, we denote by MIS the tool that computes a minimal independent support
of a Boolean formula by employing the above translation and MUSer2, and we
denote by SMIS the tool that computes a minimum independent support that
uses Forqes instead.



To illustrate practical gains, we used MIS to compute a minimal indepen-
dent support for each of the benchmarks, and we augmented state of the art
sampler, UniGen2, and model counter, ApproxMC, with the new hashing scheme
that uses the computed minimal independent subsets. Experimental comparison
over a wide suite of benchmarks demonstrate that new hashing scheme results
in improvement of runtime performance of UniGen2 and ApproxMC by two to
three orders of magnitude. It is worth noting that runtime improvement for
ApproxMC and UniGen2 comes at no cost; ApproxMC and UniGen still provide
the same strong theoretical guarantees.

An experimental comparison of MIS and SMIS highlights an important trade-
o↵ between the performance and the sizes of computed independent supports.
In particular, while MIS scales to larger formulas, SMIS computes even smaller
independent supports for a subset of benchmarks that are within its reach.

The remainder of the paper is organized as follows. We introduce notation
and preliminaries in Section 2, and discuss related work in Section 3. We present
our main technical contribution – identification of a minimal set of independent
variables – in Section 4. We augment state of art sampling and model counting
tools with the hashing scheme based on independent variables and demonstrate
e↵ectiveness of the new hashing scheme over a wide set of benchmarks in Sec-
tion 5. Finally, we discuss future work and conclude in Section 6.

2 Preliminaries

Let F denote a Boolean formula in conjunctive normal form (CNF), and let X
be the set of variables appearing in F . The set X is called the support of F . We
also use Vars(F ) to denote the support of F . Given a set of variables S ✓ X
and an assignment � of truth values to the variables in X, we write �|

S

for the
projection of � on S. A satisfying assignment or witness of F is an assignment
that makes F evaluate to true. We denote the set of all witnesses of F by R

F

and the projection of R
F

on S by R
F |S . For notational convenience, whenever

the formula F is clear from the context, we omit mentioning it.
Let I ✓ X be a subset of the support such that if two satisfying assignments

�1 and �2 agree on I, then �1 = �2. In other words, in every satisfying assignment,
the truth values of variables in I uniquely determine the truth value of every
variable inX\I. The set I is called an independent support of F , and D = X\I is
referred to as dependent support. Note that there is a one-to-one correspondence
between R

F

and R
F |I . There may be more than one independent support: (a _

¬b)^(¬a_b) has three, namely {a}, {b} and {a, b}. Clearly, if I is an independent
support of F , so is every superset of I.

A special class of hash functions, called r-universal hash functions, play a
crucial role in our work. Let n,m and r be positive integers, and let H(n,m, r)
denote a family of r-universal hash functions mapping {0, 1}n to {0, 1}m. We

use h
R � H(n,m, r) to denote the probability space obtained by choosing a hash

function h uniformly at random from H(n,m, r). The property of r-universality
guarantees that for all ↵1, . . . ,↵r

2 {0, 1}m and for all distinct y1, . . . , yr 2



{0, 1}n, Pr [
V

r

i=1 h(yi) = ↵
i

: h
R � H(n,m, r)

i
= 2�mr. We use a particular

class of such hash functions, denoted by H
xor

(n,m), which is defined as follows.
Let h(y)[i] denote the ith component of the vector h(y). This family of hash
functions is then defined as {h | h(y)[i] = a

i,0�(
L

n

k=1 ai,k·y[k]), ai,k 2 {0, 1}, 1 
i  m, 0  k  n}, where � denotes the XOR operation. By choosing values
of a

i,k

randomly and independently, we can e↵ectively choose a random hash
function from H

xor

(n,m). It was shown in [28] that this family is 3-universal.

2.1 Group-oriented Unsatisfiable Subformulas and Subsets

In the problem of group-oriented minimization of unsatisfiable subsets [23,26], we
are given an unsatisfiable formula  of the form  = H1 ^ · · ·^Hm

^⌦, and the
task is to find a subset {H

i1 , . . . , Hik} of {H1, . . . , Hm

} so that H
i1^· · ·^Hik^⌦

remains unsatisfiable. The subformulas H1, . . . , Hm

are called groups (or high-

level constraints) and ⌦ is called the remainder. The remainder plays a special
role – it consists of non-interesting constraints that do not need to be minimized
and are always part of the formula.

If H
i1 ^ · · ·^Hik ^⌦ is unsatisfiable, we say that {H

i1 , . . . , Hik} is a (group-
oriented) unsatisfiable subset, or equivalently that H

i1 ^ · · · ^ H
ik ^ ⌦ is an

unsatisfiable subformula of  . In addition, when {H
i1 , . . . , Hik} is minimal (re-

moval of any H
ij renders the formula satisfiable), we say that {H

i1 , . . . , Hik}
is a group-oriented minimal unsatisfiable subset (GMUS), or equivalently that
H

i1 ^ · · ·^Hik ^⌦ is a minimal unsatisfiable subformula of  . (If {H
i1 , . . . , Hik}

is of minimum size, that is there is no smaller unsatisfiable subset, then we call it
a minimum unsatisfiable subset (SGMUS).) A variety of highly optimized tools
for computing GMUSes is available; in this paper we use MUSer2 [4]. To compute
SGMUSes, we use Forqes [1].

3 Related Work

Since the notion of independent support was introduced by Chakraborty et al. in
the context of designing e�cient universal hash functions [9], we briefly review
universal hash functions for constrained sampling and counting. The concept of
universal hash functions was first proposed by Carter and Wegman in [5]. This
led to seminal work by Bellare, Goldreich and Petrank, who proposed a BPPNP

algorithm (referred to by BGP after the authors’ initials), based on n�universal
hashing to sample SAT witnesses uniformly. The requirement of n–universality,
however, prohibited practical usage of the BGP algorithm. Building on the BGP
algorithm, Chakraborty et al. proposed the UniWit [7], and subsequently UniGen
[9] algorithms that sample SAT witnesses almost uniformly and require only 3-
universal hashing [9]. The hashing-based techniques proposed in UniGen have
also been extended to model counting, resulting in approximate model counters
such as ApproxMC [8], WeightMC [6], WISH [14].

These hashing-based techniques crucially rely on the ability of combinato-
rial solvers to solve propositional formulas represented as conjunction of input



formulas and 3-universal hash functions (typically H
xor

), thus translating to hy-

brid formulas, which are conjunctions of CNF and XOR clauses. Therefore, a key
challenge is to further speed up search for the solutions of such hybrid formulas.
The XOR clauses invoked here are high-density clauses, consisting typically of
n/2 variables, where n is the total number of atomic propositions. Experience
has shown that the high density of the XOR clauses plays a major role in making
solving hybrid formulas a hard problem.

Recently, Ermon et al. introduced a technique based on low-density XOR con-
straints, which provides weaker guarantee than 2–universality, but was shown to
be su�cient for approximate counting [12]. Constrained sampling, however, re-
quires the stronger guarantee of 3–universality [9], and therefore the low-density
approach fails to address the problem of high-density XOR constraints, which
motivated Chakraborty et al. to propose the notion of independent support I and
show that H

xor

constructed over I does provide 3–universality. While it is pos-
sible in many cases to obtain over-approximation of I by examining the source
domain from which the problem is derived, the work in [9] does not provide
an algorithmic approach for determining I, and experience has shown that the
manual approach is error prone.

The notion of independent support is closely related to the concept of func-
tional dependency in the context of relational databases; it is essentially equiv-
alent to the concept of a key in a relation [24]. The di↵erence is that in the
context of relational databases, relations are represented explicitly, while here
the relation R

F

is represented implicitly by means of the formula F . Thus, al-
gorithmic techniques from relational-database theory do not scale to the setting
considered here. In the context of combinational logic circuits, there has been
some work that constructs a logic circuit whose Tseitin-encoding corresponds to
the given Boolean formula [15]. The primary inputs of this constructed circuit
form the independent support of the given Boolean formula. This construction
is based on pattern matching the formula to find sub-formulas corresponding
to commonly used gates. This technique is not guaranteed to be complete and
unlikely to succeed if the formulas did not originate from combinational circuits.

4 Computing Minimal/Minimum Independent Supports

In this section, we first discuss how computation of minimal/minimum indepen-
dent supports can be reduced to computation of minimal/minimum unsatisfiable
subsets. Building on our reduction, we propose the first algorithmic procedure,
MIS, to compute a minimal independent support for a given formula. We then
discuss how MIS can make e�cient usage of information from users. We also
discuss a variant SMIS that computes a minimum independent support. Finally,
we discuss how minimal and minimum independent supports computed by MIS
and SMIS can be applied to hashing-based approximate techniques for counting
and sampling.



4.1 Reduction to Group-oriented Minimal Unsatisfiable Subsets

For a given Boolean formula F and S ✓ X, we know that S is an independent
support of F whenever every two satisfying assignments �1,�2 to F that agree
on S, must be identical. We formalize this as follows. We introduce additional
variables Y = {y1, . . . , yn}, and let F (y1, . . . , yn) be obtained from F (x1, . . . , xn

)
by replacing every occurrence of a variable in X by the corresponding variable
in Y . The definition of independence is captured by the following formula:

F (x1, . . . , xn

) ^ F (y1, . . . , yn) ^
^

i2Ind(S)

(x
i

= y
i

) =)
^

j2Ind(X\S)

(x
j

= y
j

),

where Ind(S) and Ind(X \S), respectively, denote the index sets of S and X \S.
Since it obviously holds that

V
i2Ind(S)(xi

= y
i

) )
V

i2Ind(S)(xi

= y
i

), we can
replace the right-hand side of the above formula by

V
j2Ind(X)(xj

= y
j

). Finally,
define the Boolean function Q

F,S

(x1, . . . , xn

, y1, . . . , yn) by

Q
F,S

= F (x1, . . . , xn

)^F (y1, . . . , yn)^
^

i2Ind(S)

(x
i

= y
i

)^¬

0

@
^

j2Ind(X)

(x
j

= y
j

)

1

A .

Proposition 1. S in an independent support for F if and only if Q
F,S

is un-

satisfiable.

From Proposition 1 we obtain the following upper bound.

Theorem 1. The problem of deciding whether S is a minimal independent sup-

port of F is in DP

, where DP = {A�B|A,B 2 NP}.

Proof. Checking that S is independent support of F is reducible to unsatisfiabil-
ity of Q

F,S

, which is in co-NP. To check minimality, we can select each variable
x 2 S and check that Q

F,S�{x} is satisfiable.

We o↵er the following lower bound conjecture:

Conjecture 1. The problem of deciding whether S is a minimal independent
support of F is DP-complete.

Proposition 1 leads to algorithms for computing a minimal independent sup-
port of F . One possible approach is to start with S = X and the obviously
unsatisfiable formula Q

F,X

, and then remove variables x
i

from S (corresponding
to conjuncts x

i

= y
i

in Q
F,S

) as long as Q
F,S

remains unsatisfiable. Instead,
we observe that the problem of minimizing independent support can be restated
as the problem of minimizing unsatisfiable subsets, and hence we can benefit
from the full variety of di↵erent algorithms and various important optimizations
developed in the latter context. We now pursue this direction.

Using notation from Section 2.1, define H1, . . . , Hn

and ⌦ as follows:

H1 = {x1 = y1}, . . . , H
n

= {x
n

= y
n

},



⌦ = F (x1, . . . , xn

) ^ F (y1, . . . , yn) ^
_

i2Ind(X)

(x
i

6= y
i

).

To obtain a CNF representation, suppose that the original formula F is given
in CNF. Then we let H

i

= {(¬x
i

_ y
i

) ^ (x
i

_ ¬y
i

)} for i = 1, . . . , n. For ⌦, the
terms F (x1, . . . , xn

) and F (y1, . . . , yn) are already in CNF. To encode
W

n

i=1(xi

6=
y
i

), we introduce additional variables b1, . . . , bn, add clauses (¬x
i

_ ¬y
i

_ b
i

),
(x

i

_ y
i

_ b
i

) for i = 1, . . . , n, and add the clause (¬b1 _ · · · _ ¬b
n

).
The following proposition follows immediately from the construction and

Proposition 1:

Proposition 2. The formula H1^ · · ·^Hn

^⌦ is unsatisfiable. Moreover, for a

subset S ✓ X: S is an independent support of F if and only if {H
i

|i 2 Ind(S)}
is a group-oriented unsatisfiable subset of {H1, . . . , Hn

}.
It immediately follows that problems of computing independent support can
be reduced to analogous problems of finding group oriented unsatisfiable sub-
sets. Specifically, computing a minimal independent support can be reduced to
computing a minimal unsatisfiable subset; computing a minimum independent
support can be reduced to computing a minimum unsatisfiable subset; comput-
ing all minimal independent supports can be reduced to computing all minimal
unsatisfiable subsets; and so on.

4.2 Handling Under- and Over- Approximations

In Section 4.3 we describe a light-weight technique for detecting a set of variables
that is dependent on the remaining variables in the formula, thus allowing us to
restrict the search for a minimal independent support by excluding the dependent
variables. Furthermore, in some of our applications (see Section 4.6), the user
has the additional freedom to specify which variables should or should not be in
the independent support. In both cases, we can think of the set of variables that
should to be included as specifying an under-approximation of the independent
support, and we can think of complement of the set of variables that should be
excluded as specifying an over-approximation of the independent support.

Due to these considerations, we introduce the following extension of the
independent-support problem. Let U ✓ V ✓ X and suppose that V is an in-
dependent support of F . Let us say that an independent support of F relative
to an under-approximation U and an over-approximation V is a set S such that
U ✓ S ✓ V and S is an independent support of F . Further, let us say that a
minimal independent support of F relative to U and V is a minimal S with these
properties. Note that S does not need to be a minimal independent support of F
(as U itself might have dependent variables). Also note the explicit requirement
that V is an independent support (if V is not an independent support, then no
subset of V is an independent support).

The reduction to group-oriented unsatisfiable subset described in Section 4.1
can be easily extended to handle this more general problem. Given F , U and V
as above, let H

i

= {x
i

= y
i

} for i 2 Ind(V \ U), and let ⌦ = F (x1, . . . , xn

) ^
F (y1, . . . , yn) ^

V
i2Ind(U)(xi

= y
i

) ^
W

i2Ind(X)(xi

6= y
i

).



Proposition 3. The following statements are true:

1. The formula ⌦ ^
V

i2Ind(V \U) Hi

is unsatisfiable.

2. For a subset W ✓ V \U : {H
i

| i 2 Ind(W )} is a group-oriented unsatisfiable

subset of {H
i

| i 2 Ind(V \U)} if and only if U[W is an independent support

of F relative to U and V .

3. {H
i

| i 2 Ind(W )} is a minimal group-oriented unsatisfiable subset of {H
i

| i 2
Ind(V \ U)} if and only if U [W is a minimal independent support of F
relative to U and V .

We, henceforth, denote this reduction as TranslateToGMUS(F,U, V ). Note that
when U = ; and V = X the definition of an independent support relative to
U and V corresponds to the standard definition of independent support, and
TranslateToGMUS(F,U, V ) coincides with the reduction given in Section 4.1. In
what follows, we omit “relative to an under-approximation U” when U = ;, and
we omit “relative to an over-approximation V ” when V = X.

4.3 Exploiting Local Dependencies

In various important contexts, a variable x 2 X can be shown to be dependent on
other variables, either purely syntactically or by analyzing only a small subset
of all clauses. An especially important case is when the formula F encodes a
circuit, in which case many variables can be detected to be dependent simply
from their defining clauses.

Example 1. Suppose that F contains the following clauses (among others): (¬x_
y_b), (x_¬y), (x_¬b). It can be readily seen that in every satisfying assignment
to F we have that x = y _ b, and so x is dependent on {y, b}.

Intuitively, the variables that are locally dependent on other variables do not
need be considered for independent support. We need, however, to avoid cyclic

reasoning, such as when F := (¬x _ y) ^ (x _ ¬y), x depends on y and that y
also depends on x.

Algorithm 1 FindLocalDependencies(F, V)
Input: CNF formula F ; set V ✓ X
Output: A subset Z ✓ V of dependent variables.

1: Z = ;
2: for x 2 V do
3: G = SelectLocalClauses(F, x)
4: W = Vars(G) /*Vars(G) denotes the support of G */
5: if Q

G,W\{x} is UNSAT then
6: Z = Z [ {x}
7: F = F \G
8: return Z



We propose Algorithm 1 to detect a set of non-cyclic locally dependent vari-
ables. The algorithm accepts a formula F in CNF and a set V of candidate vari-
ables to consider, and returns a set Z ✓ V of variables that are (non-cyclically)
dependent on the remaining variables. Initially, Z is empty. In the algorithm
we iteratively select a variable x 2 V and call SelectLocalClauses to select a set
of clauses of F “around” x. These should include at least all the clauses of F
involving x, but more generally can correspond to a larger neighborhood of x
in the primal graph (the graph with vertexes Vars(F ), and an edge between x1

and x2 whenever F contains a clause involving both x1 and x2). Next we check
whether x can be shown to be dependent on the remaining variables in G: this
could be either a purely syntactic check or involve a SAT invokation. When x is
indeed dependent, then x is added to Z, and moreover all the clauses involved
into showing this dependency are removed from F (for simplicity in the algo-
rithm we remove all clauses of G, but a more refined analysis is also possible).
This step is important to avoid cyclic dependencies.

Proposition 4. Let Z be an outcome of Algorithm 1. Then X \ Z is an inde-

pendent support for F . Moreover, let S be a minimal independent support of F
relative to the over-approximation X \Z. Then S is also a minimal independent

support of F .

The first part of Proposition 4 summarizes the correctness of Algorithm 1.
The second part shows that the output of the algorithm can be used to obtain
an over-approximation of a minimal independent support – and thus it can be
viewed as a preprocessing step for computing minimal independent support.

4.4 Combined Algorithm

Algorithm MIS (Algorithm 2) presents our combined approach to compute a
minimal independent support. The algorithm accepts a formula F in CNF, and
both an under-approximation U and an over-approximation V . We require that
U ✓ V and that V is an independent support for F . As the first step, we
call FindLocalDependencies described in Section 4.3 to compute a set of (lo-
cally) dependent variables, which is essentially used to further refine the over-
approximation V . Next, following the description in Section 4.2, we translate the
problem into a GMUS computation. The call to ComputeGMUS refers to a state-
of-the-art algorithm to compute GMUSes (in our experiments, we use MUSer2).
The independent support returned by the algorithm consists of the variables in
the under-approximation U and the variables that correspond to the groups in
the minimal group-unsatisfiable subset. The correctness of this algorithm follows
from Proposition 3.

Given the computationally expensive nature of GMUS computation, it may
happen that ComputeGMUS exceeds a specified time-limit. However, it is impor-
tant to note that MUSer2 still returns a sound over-approximation of a minimal
group-unsatisfiable subset in case of a time-out (as it employs a variant of the
deletion-based approach described in [25]). In this case the support consisting



Algorithm 2 MIS(F, U, V)

Input: CNF formula F ; sets U ,V such that U ✓ V ✓ Vars(F ) and V is independent
support for F
Output: Minimal S with the property that U ✓ S ✓ V and S is an independent
support for F

1: Z = FindLocalDependencies(F, V )
2: {⌦, H1, . . . , Hn

} = TranslateToGMUS(F,U, V \ Z)
3: {H

i1 , . . . , Hin} = ComputeGMUS({⌦, H1, . . . , Hn

})
4: S = U [ {x

i1 , . . . , xin}
5: return S

of the variables in U and the variables in the computed over-approximation re-
turned by ComputeGMUS is still an independent support. Therefore,MIS behaves
as an anytime algorithm; that is, it always returns a sound independent support
for a given time budget. Our experiments indicate that this anytime behavior
is useful in computing independent supports – even if these are not minimal,
they are significantly smaller than the support of F and improve performance
of sampling and counting tools by 2-3 orders of magnitude.

4.5 Computation of Minimum Independent Support

Since the problem of computing a minimum-sized independent support can be
reduced to that of computing minimum-sized group-unsatisfiable subset, we can
extend MIS to compute a minimum-sized independent support, by following the
two modifications below. First, we remove the call to FindLocalDependencies – as
this is a greedy heuristic that provide guarantees of minimality but not of mimum
size. Second, we replace the call to compute minimal group-unsatisfiable subset
with the call to compute minimum group-unsatisfiable subset. We use SMIS to
denote the resulting algorithm. Our experimental comparison of MIS and SMIS,
discussed in Section 5, shows that MIS scales to larger formulas, while SMIS
computes even smaller sized independent supports for a subset of benchmarks
that are within its reach.

4.6 Handling User Input

In some of our applications the user is allowed to additionally provide a set
of variables W that is believed to form an independent support of F , and the
task is to minimize this set. There are two interesting scenarios associated with
this. If W is indeed an independent support of F , as can be checked by check-
ing satisfiability of Q

F,W

, then W can be used an as over-approximation of an
independent support, that is, one can look for a minimal independent support
relative to the over-approximation prescribed by W . It is possible, however, that
W is not really an over-approximation. In our experience, in these cases the user
input is still “close” to being correct, and so we suggest the following two-step
approach. First, we treat W as an under-approximation and find a minimal set



U such that W [ U forms an independent support. Second, we treat W [ U
as an over-approximation and find a minimal subset of W [ U . In our experi-
ence, not only does this scheme results in a minimal independent support that is
close to the user input, but is also significantly faster than computing a minimal
independent support from scratch

4.7 Applications to Sampling and Counting

Chakraborty et al. [9] showed that H
xor

constructed over an independent sup-
port I, denoted H I

xor

, is 3-universal. Therefore, we can replace the hash func-
tions employed in recent 3-universal hashing-based approaches to sampling such
as UniGen [9], UniGen2 [10], PAWS [13] with H I

xor

with no loss of theoretical
guarantees. Similarly, hashing-based counting techniques can also be augmented
with H I

xor

. In the next section, we compare the performance of UniGen2 vis-a-vis
IUniGen2 and ApproxMC vis-a-vis IApproxMC, where the IUniGen2 and IApproxMC
are UniGen2 and ApproxMC augmented with H I

xor

respectively.
Since counting techniques require weaker guarantees of universality, recent

research e↵orts have focused on obtaining precise bounds on the size of XORs
required. These e↵orts are motivated by investigations into shorter XORs by
Gomes et al. [16]. It was empirically demonstrated that short XORs, surprisingly,
perform quite well for wide variety of benchmarks. The earlier works [16,12]
failed, however, to obtain provable bounds on adequate size of XOR constraints
that are close to empirical observations. In contrast, our results imply that we
can substitute n by |I| in Theorem 3 of [12] to obtain new provable bounds on
the size of XORs required for approximate model counting.

5 Evaluation

To evaluate the performance and impact of MIS, we built a prototype imple-
mentation5 in C++ and conducted an extensive set of experiments on diverse
set of public-domain problem instances. In these experiments, a typical instance
is a formula F , with set of support X, and independent support I computed by
MIS. The main objectives of our experimental set up was to seek answers for the
following questions:

1. How do MIS and SMIS scale to large formulas and how do sizes of I computed
by MIS and SMIS compare to X?

2. How does the performance and size of computed I vary with the user input?
3. How does employingH

xor

on I instead ofX a↵ect the performance of UniGen2
and ApproxMC, the state-of-the-art sampling and counting tools?

4. How do new provable bounds on the size of XORs required for approximate
model counting techniques compare with previously known bounds?

5 The tool along with source code is available at http://www.cs.rice.edu/CS/

Verification/Projects/CUSP/

http://www.cs.rice.edu/CS/Verification/Projects/CUSP/
http://www.cs.rice.edu/CS/Verification/Projects/CUSP/


In summary, we observe that MIS scales to large formulas with tens of thou-
sands of variables, and the minimal independent support computed by MIS are
typically of 1/10 to 1/100 the size of support of the formulas. Furthermore, uti-
lizing user input even when the initial user input is only an under-approximation,
MIS can compute minimal independent supports significantly faster than with-
out user input. Employing 3-universal hash functions H

xor

over I resulted in 2-3
orders of magnitude performance improvement of UniGen2 and ApproxMC. Fi-
nally, by utilizing I computed by MIS and SMIS, we provide the first theoretically
proven bounds on size of XOR constraints that are close to empirically observed
bounds.

5.1 Experimental Setup

We conducted experiments on a heterogeneous suite of benchmarks used in ear-
lier works on sampling and counting [9]. The benchmark suite employed in the
experiments consisted of problems arising from probabilistic inference in grid
networks, synthetic grid-structured random interaction Ising models, plan recog-
nition, DQMR networks, bit-blasted versions of SMTLIB benchmarks, ISCAS89
combinational circuits with weighted inputs, and program synthesis examples.
We employed MUSer2 [4] for group minimal group-unsatisfiable subset compu-
tation and forqes [1] for group minimum-unsatisfiable subset computation. We
used a high-performance cluster to conduct multiple experiments in parallel.
Each node of the cluster had a 12-core 2.83 GHz Intel Xeon processor, with 4GB
of main memory, and each of our experiments was run on a single core. Since dif-
ferent runs of MIS compute di↵erent minimal independent supports depending
on the input from pseudo-random generator, we compute up to five independent
supports for each benchmark and report the median of corresponding statistics.

5.2 Results

Runtime Performance of MIS and SMIS

Table 1 presents the runtime of MIS and SMIS for a subset of the benchmarks.
The names of the benchmarks are specified in column 1, while columns 2 and
3 list the number of variables and clauses for each benchmark. Column 4 and
6 list the median runtime and median size of minimal independent supports (I)
computed by MIS. Column 6 lists the ratio of the number of variables to |I|. Col-
umn 7 and 8 list the runtime and size of a minimum-sized independent support
(I
m

). The ratio of |I
m

| to |I| is presented in column 9. The results demonstrate
that MIS scales to fairly large formulas, and the minimal independent supports
computed by MIS are one to two orders of magnitude compared to the overall
support. The comparison of MIS vis-a-vis SMIS highlights a tradeo↵ in perfor-
mance. In particular, while MIS scales to larger formulas, SMIS computes even
smaller independent supports for a subset of benchmarks that are within its
reach (and in some cases removes up to 40% additional variables).



Benchmark #vars #clas
MIS

time(s) |I| #vars

|I|

SMIS

time(s) |I
m

| |Im|
|I|

squaring4 891 2839 868.71 55 16.05 1174.46 36 0.65
s953a 15 7 602 1657 7.48 48 12.41 11.03 45 0.93
squaring30 1031 3693 192.14 30 34.37 144.82 29 0.97
case 2 b12 1 427 1385 1.42 34 12.56 16.52 30 0.88

scenarios llreverse 1096 4217 59.8 81 13.45 205.0 46 0.56
squaring10 1099 3632 3321.29 56 19.45 1609.63 40 0.71

TR ptb 1 linear 1969 6288 1297.77 122 16.07 768.37 106 0.87
s1488 7 4 872 2499 11.38 24 36.33 – – –

s5378a 15 7 3766 8732 1990.1 227 16.59 – – –
lssBig 12438 149909 536.88 46 270.39 – – –

blockmap 10 02.net 12562 26022 2637.74 78 161.05 – – –
lss 13373 156208 971.24 45 297.18 – – –

blockmap 10 03.net 13786 28826 13442.28 125 110.29 – – –
20 13887 60046 40.29 51 272.29 14.6 50 0.98

scenarios tree insert search 16573 61922 18000 943 17.57 – – –
blockmap 15 01.net 33035 67424 781.94 49 674.18 – – –
blockmap 20 01.net 78650 160055 2513.32 67 1173.88 – – –

Table 1. Runtime performance of MIS and SMIS

Impact of User Input on MIS

To study the impact of user input on MIS, we experimented with the suite of
benchmarks for which independent support was provided by the sources. Table 2
presents the result of our experiments. Column 1 lists the benchmark while
columns 2 and 3 list the number of variables and clauses for each benchmark.
Columns 4 and 5 list the runtime and the median size of computed I by MIS
without user input. Columns 6–9 report statistics when the user input is provided
to MIS. Column 6 lists the size of I provided by the user while column 7 and
8 present the runtime and the size of computed I by MIS. Column 9 lists the
fraction of ratio of intersection of computed I and user-provided I to the computed
I. We use “U” and ”O” to denote that the input provided by user was an under-
approximation and over-approximation of an independent support respectively.

Table 2 shows that user-provided input are not necessarily minimal and are
sometimes under approximation of an independent support. Since several min-
imal independent supports exist, it does not necessarily imply that size of an
under-approximation would be smaller than every minimal independent sup-
port; e.g., for benchmark “Pollard”, while oen of the independent supports is of
size 48, the inpt with size 50 is not an independent support and is, therefore, an
under-approximation of some other independent support. Table 2 clearly demon-
strates that MIS is able to take advantage of user input, even when the initial
user input is only an under approximation, and can compute I significantly faster
than without user input. Since initial user input is only an under approximation
in several cases and therefore, algorithmic techniques such as MIS are required
to compute a sound independent support.



Without
User Input With User Input

Benchmark #vars #clas

MIS

time(s) |I| User |I|
MIS

time(s)

Computed

|I| Type

TR b14 2 linear 1570 4963 243.65 136 204 234.0 103 O
squaring7 1628 5837 12329.2 58 72 4404.22 40 O

55 1874 8384 0.1 38 46 0.24 38 U
TR b12 1 linear 1914 6619 5963.92 73 99 1559.43 60 U
TR b12 2 linear 2426 8373 15505.02 79 107 1779.25 64 O

TR device 1 even linear 2447 7612 612.19 176 281 338.06 158 O
case 1 b12 even1 2681 8492 4507.71 155 150 1534.94 147 O
case 2 b12 even1 2681 8492 4249.56 149 150 2008.88 147 O

scenarios tree insert insert 2797 10427 837.14 101 84 725.08 85 U
Pollard 2800 49543 1211.4 179 50 543.94 48 U

56 2801 9965 2.23 37 38 1.84 37 U
ProcessBean 3130 11689 172.64 305 166 92.44 156 U

scenarios tree delete2 3411 12783 444.61 179 138 389.79 137 U
lss harder 3465 62713 1727.77 116 21 1690.61 22 U
s5378a 15 7 3766 8732 1990.1 227 214 559.06 214 O

listReverseEasy 4092 15867 16715.34 144 121 1959.57 99 U
reverse 9485 535676 25.03 201 262 24.2 195 U

lss 13373 156208 971.24 45 20 665.22 20 U
110 15316 60974 9.2 80 88 9.08 80 U

Table 2. Impact of User Input on MIS. ”U” and ”O” denote that the input provided by
user was an under-approximation and over-approximation of an independent support
respectively.

Impact on Performance of Sampling and Counting Techniques

We compared the performance of UniGen2 with IUniGen2 and of ApproxMC with
IApproxMC. We used an overall timeout of 5 hours, and the tolerance (") for
UniGen2 and IUniGen2 was set to 16, while tolerance (") and confidence (1 �
�) were set to 0.8 and 0.8, respectively, for ApproxMC and IApproxMC. The
parameter values were chosen to match the corresponding values in previously
published works on ApproxMC [8] and UniGen2 [10]. In summary, while either
ApproxMC or UniGen2 timed out on 36 out of 112 benchmarks, either IApproxMC
or IUniGen2 were able to count or sample respectively on all the benchmarks.
Since we computed up to five independent supports for each benchmark, we also
computed range of runtime for IApproxMC and IUniGen2.

Table 3 presents the comparison of runtimes of UniGen2 and IUniGen2 as well
as ApproxMC and IApproxMC for a subset of the benchmarksColumn 1 lists the
benchmarks, while column 2 report the number of variables for each benchmark.
Column 3 lists the runtime of MIS to compute I. Column 4 lists the runtime
of ApproxMC, while the median runtime and range of runtimes for IApproxMC
are listed in columns 5 and 6. while column 7 lists the runtime of UniGen2 and
columns 8 and 9 lists the range of runtimes for IUniGen2. (We generated 100
samples for each benchmark, and sampling time is amortized per sample.) We
use ‘–’ to denote the timeout (5 hours).

Table 3 clearly demonstrates that employing 3-universal hash functions H
xor

over I resulted in 2-3 orders of magnitude performance improvement for both
counting and sampling. It is worth noting that for the case of “squaring14”, MIS
times out, but the over-approximation returned by MIS still allows IUniGen2 and



MIS ApproxMC IApproxMC UniGen2 IUniGen2

Benchmark #vars time(s) time (s)

Median

time (s)

Range

time(s) time (s)

Median

time (s)

Range

time(s)

squaring4 891 868.71 – 1550.04 986.47 – 0.58 0.78
s953a 15 7 602 7.48 – 1221.22 250.72 239.85 0.71 0.33
squaring30 1031 192.14 29974.19 89.82 42.23 11.59 0.24 0.03
case 2 b12 1 427 1.42 1449.15 212.82 82.42 2.56 0.24 0.05
squaring10 1099 3321.29 – 3135.01 3800.54 – 0.83 0.47
s1196a 7 4 708 35.44 – 314.21 167.29 245.21 0.37 0.13
s1238a 7 4 704 47.59 – 404.54 93.32 1036.61 0.4 0.11
case 0 b12 2 827 34.87 – 1528.17 4418.18 – 0.56 0.08
case 1 b12 2 827 23.87 – 1541.06 399.75 – 0.73 0.11

scenarios llreverse 1096 59.8 – 17109.1 10040.38 – 24.77 360.4
case 2 b12 2 827 25.32 – 1228.28 872.1 – 0.59 0.17
lss harder 3465 1727.77 13116.78 120.46 301.58 104.91 2.0 2.65
BN 57 1154 103.22 – 517.27 1118.89 200.07 0.32 0.21
BN 59 1112 104.85 – 484.79 236.62 404.29 0.34 0.09
BN 65 925 29.64 – 1322.17 261.33 4220.31 0.7 174.97

squaring1 891 718.78 – 1480.99 296.37 – 0.73 0.34
squaring8 1101 3453.48 – 2061.31 4970.9 – 0.71 0.36

Table 3. Runtime comparison of UniGen2 vis-a-vis IUniGen2 and ApproxMC vis-a-vis
IApproxMC

IApproxMC to sample and count, while UniGen2 and ApproxMC timed out. Fur-
thermore, the considerably smaller range of runtimes for most of the benchmarks
illustrate the dominating e↵ect of minimal independent supports on the runtime
performance. This observation is, however, not always true and we observe that
there are cases where the range is considerably large – a detailed analysis is
beyond the scope of this work and is left for future work.

Quality of Distribution To measure the impact of H I

xor

on the quality of
distribution generated by UniGen2, we compared the distributions generated by
UniGen2 and IUniGen2. We generated a large number N (� 5.6⇥106) of samples
for each benchmark using both UniGen2 and IUniGen2. Since we chose N much
larger than |R

F

|, all witnesses occurred multiple times in the list of samples. We
then computed the frequency of generation of individual witnesses, and counted
the number if distinct witnesses for each frequency. Plotting the distribution of
frequencies — that is, plotting points (x, y) to indicate that each of x distinct
witnesses were generated y times — gives a convenient way to visualize the dis-
tribution of the samples. Figure 1 depicts this for one representative benchmark
(case110, with 16,384 solutions).

It is clear from Figure 1 that the distribution generated by IUniGen2 is
practically indistinguishable from that of UniGen2. For the example shown in
Fig. 1, the Jensen-Shannon distance between the distributions from IUniGen2
and UniGen2 is 0.0035. These small Jensen-Shannon distances make the dis-
tribution of IUniGen2 statistically indistinguishable from that of UniGen2 (see
Section IV(C) of [17]).
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Fig. 1. Uniformity comparison of IUniGen2 and UniGen2

Impact on XOR Size Bounds for Model Counting Techniques

Since approximation techniques for model counting only requires weaker guar-
antees of universality [8], several techniques have been proposed on employ-
ing shorter XORs for model counting [16,12]. The investigations into shorter
XORs [16,12] empirically demonstrated that short XORs, surprisingly, perform
quite well for wide variety of benchmarks, even without a theoretical guarantee,
but have failed to obtain provable bounds on adequate size of XOR constraints
that are close to empirical observations. By computing the size of XOR con-
straints based on the size of minimal independent support and then applying
Theorem 3 of [12], we provide the first theoretically proven bounds on adequate
size of XOR constraints that are very close to empirically observed bounds.

Table 4 presents the comparison of new theoretical bounds with previously
known best theoretical and empirical bounds for benchmarks reported in previ-
ous works [16,12]. Column 1 lists the benchmarks, while column 2 and 3 report
the number of variables and clauses for each benchmark. Column 4 and 5 present
previously known theoretical and empirical bounds on size of XORs [12]. Finally,
the new theoretical bounds based on computation of independent supports is
presented in column 6. Table 4 clearly shows that new bounds obtained based
on minimal independent supports computed by MIS greatly improve on the pre-
viously reported theoretical bounds. Furthermore, the bounds are very close to
empirically observed bounds. In fact, in one case we obtain theoretical bound
that is better than the best known empirical bounds. (It is worth noting that
previous results [16,12] on shorter XORs do not extend to sampling techniques
as sampling requires stronger guarantees of universality.)



Previous Bounds New Bounds

Benchmark #vars #clas Theoretical Empirical Theoretical

ls7R34med 119 622 46 3 12
ls7R35med 136 745 53 3 16
ls7R36med 149 870 56 3 18
log.c.red 352 1933 112 28 9
2bitmax 6 252 766 26 8 21

blk-50-3-10-20 50 30 10 5 5
blk-50-10-3-20 50 30 8 3 5
Table 4. Comparison of bounds on shorter XORs for model counting

6 Conclusion

The recent surge of interest in hashing-based approximate techniques have high-
lighted the construction of e�cient hash functions as a key challenging problem.
As a result, hash functions constructed over an independent support of a for-
mula hold promise. In this paper, we present the first algorithmic procedure
and corresponding tool, MIS, to determine minimal independent support via re-
duction to Group MUS. The experimental evaluation over an extensive suite
of benchmarks demonstrate that MIS scales to large formulas. Furthermore, the
minimal independent supports computed by MIS lead to 2-3 orders of magnitude
improvement in the performance of the state-of-the-art sampling tool, UniGen2
and the state-of-the-art model counting tool, ApproxMC. Finally, construction
of XORs over independent support allows us to obtain tight theoretical bounds
on the size of XOR constraints for approximate model counting – in some cases,
even better than previously observed empirical bounds.
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