
Speeding Up Assumption-Based SAT

Randy Hickey(B) and Fahiem Bacchus(B)

Department of Computer Science, University of Toronto, Toronto, Canada
{rhickey,fbacchus}@cs.toronto.edu

Abstract. Assumption based SAT solving is an essential tool in many
applications of SAT solving, especially in incremental SAT solving. For
example, assumption based SAT solving is used when solving MaxSat,
when computing minimal unsatisfiable subsets and minimal correction
sets, and in various inductive verification applications. The MiniSat SAT
solver introduced a simple technique for extending a SAT solver to allow
it to handle assumptions by forcing the SAT solver to make the assumed
literals its initial decisions. This approach persists in almost all current
SAT solvers making it the most commonly used technique for handling
assumptions. In this paper we explain some deficiencies in this approach
that can hinder its efficiency, and provide a very simple modification
that fixes these deficiencies. We show that our modification makes a
non-trivial difference in practice, e.g., allowing two tested state of the art
MaxSat solvers to solve 50+ new instances. This improvement is particu-
larly useful since our modification is extremely simple to implement. We
also examine the issue of repeated work when the solver backtracks over
the assumptions, e.g., on restarts or when a new unit clause is learnt,
and develop a new method for avoiding this repeated work that addresses
some deficiencies of prior approaches.

1 Introduction

A wide range of applications of SAT solving rely on assumption-based incre-
mental SAT solving. This includes algorithms for bounded model checking, e.g.,
[10,11,14,16]; minimum unsatisfiable set (MUSes) extraction, e.g., [6–8,20], com-
puting minimal correction sets (MCSes), e.g., [5,6,22,27]; and solving maximum
satisfiability (MaxSat), e.g., [2,3,13,21,23,26,28].

Assumption-based SAT involves requesting the SAT solver to find a solu-
tion that also satisfies a specified set of assumptions, encoded as a conjunction
of literals. Assumptions are particularly useful in incremental SAT solving. In
incremental SAT solving the SAT solver is called on a sequence of formulas that
are closely related to each other. Each formula could be solved by invoking a new
instance of the SAT solver; but then information computed during one solving
episode (e.g., learnt clauses) cannot easily be exploited in subsequent solving
episodes. The idea of incremental SAT solving is to use only one instance of
the SAT solver for all of the formulas so that all information computed when
solving the previous formulas can be retained to make solving the next formula
c© Springer Nature Switzerland AG 2019
M. Janota and I. Lynce (Eds.): SAT 2019, LNCS 11628, pp. 164–182, 2019.
https://doi.org/10.1007/978-3-030-24258-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24258-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-24258-9_11

Speeding Up Assumption-Based SAT 165

more efficient. In this case, we can monotonically add clauses to the SAT solver
or use different sets of assumptions to specify each new formula to be solved.
With assumptions, e.g., we can add or remove certain clauses by adding to those
clauses a new literal �. When we assume ¬� these clauses become active (added
to the formula), and when we assume � these clauses become inactive (removed
from the formula).

The most common technique for supporting assumptions in SAT solvers was
originally proposed in [16] and implemented in the MiniSat solver [15]. This
technique involves forcing the SAT solver to make as its initial decisions the
assumed literals. This approach is still used in the most commonly available
SAT solvers handling assumptions, including MiniSat [15], Glucose [4], Lingeling
[9], and CryptoMiniSat [30]. However, as we will explain below, this approach
can suffer from unnecessary overhead when enforcing the assumptions. One of
the main contributions of this paper is an extremely simple and light-weight
technique for eliminating this overhead.

There has been previous work on improving assumption-based SAT solving
[4,19,24,25]. However, in contrast to the techniques presented in [19,24,25] the
techniques we present in this paper are much more light-weight. By this we mean
two things: (1) our techniques are much easier to implement, e.g., no major new
data-structures or algorithms are needed; and (2) our techniques yield good per-
formance improvements on relatively easy instances that the SAT solver can
solve in two hundred seconds or less. In contrast the heavy-weight techniques
presented in [19,24,25] are more complex to implement and the empirical evi-
dence presented in these papers indicate that they often slow the SAT solver
down on easier instances. These heavy-weight techniques do, however, often pay
off (sometimes dramatically) on harder instances on which the SAT solver needs
many hundreds or even thousands of seconds. So although our techniques con-
tinue to improve SAT solver performance on harder instances, the improvements
they yield on such instances are unlikely to be as great as these heavy-weight
techniques.

This is an important contrast as assumption-based SAT solving is applied in
a diverse set of application areas. In model-checking applications the instances
are often very large and very hard, and as shown in [25] on these types of
instances the heavy-weight techniques they describe can be very effective. The
application area we are most interested in, however, is MaxSat solving. In that
domain some solvers, e.g., MaxHS use SAT solving to solve quite simple SAT
instances [12], and the key to performance is SAT solver throughput, i.e., solving
many instances quickly. Other MaxSat solvers like RC2 [18] solve harder SAT
instances than MaxHS, but most of these instances still take less than a few
hundred seconds. We demonstrate that our techniques speed up both MaxHS
and RC2, enabling both state of the art solvers to solve more instances. Our
techniques also speed up the MUS extraction Muser tool [8].

In particular, we present two light-weight techniques for speeding up
assumption-based SAT solving. Our first technique is to enqueue all of the
assumptions at once in one decision level rather than the standard technique of

166 R. Hickey and F. Bacchus

sequentially making each assumption a decision and performing unit-propagation
after each decision. We show that the standard technique can suffer from unnec-
essary overhead that enqueueing all at once eliminates. We also provide an
extensive empirical verification of the effectiveness of this simple idea. Our sec-
ond technique is to develop a way of enhancing trail-savings in the presence
of assumptions during the same SAT solve and between different SAT solves.
Although our techniques are not technically sophisticated they have a signifi-
cant advantage in that they are very cost effective: they are easy to implement
and provide a non-trivial performance improvement.

In the rest of the paper we will first give some necessary background. Then we
motivate our first technique by demonstrating that the standard way of dealing
with assumptions can incur overheads that are easily fixed by our approach. We
then describe prior work on trail savings as applied to assumption based SAT
solving, and show how a simple method can provide savings both on restarts
and when unit clauses are learnt. We also show how trail savings can be realized
between two SAT solves using different sets of assumptions. Finally, we present
empirical results that demonstrate that our techniques provide non-trivial per-
formance improvements.

2 Background

When given an input CNF formula F , a SAT solver can produce either a satisfy-
ing truth assignment, or conclude that F is unsatisfiable. Assumption-based SAT
solving extends the capacity of the SAT solver by asking it to solve F subject
to a set of assumptions A which must be a set of literals. Now the SAT solver
must either find a truth assignment satisfying F ∧ A (i.e., a truth assignment
satisfying F that also makes all of the literals in A true), or it must conclude
that F ∧A is unsatisfiable. Furthermore, and most critical in many applications,
when F ∧ A is unsatisfiable the SAT solver must return a clause C such that
(1) C contains only negated literals of A, i.e., A |= ¬C and (2) F |= C. Putting
(1) and (2) together we obtain F |= ¬A. We call any clause C that satisfies (1)
and (2) a conflict clause for A. For any such clause C every model of F must
falsify at least one of the literals of A whose negation is contained in C.

It should be noted that the conflict clause C returned by the SAT solver
need not be minimal. That is, there could be another clause C ′ �⊆ C satisfying
the above two conditions, but the SAT solver did not compute it. In many
applications the size of the returned conflict is important for performance: the
shorter the returned conflict clause is the more effective it tends to be for the
application.

We assume the reader is familiar with conflict-driven clause learning (CDCL)
SAT solvers [29] and the concepts of unit-propagation and conflict analysis.
Some familiarity with the MiniSat or Glucose code base [4,15] might also be
helpful. Modern SAT solvers use a two-watch-literal scheme to effect efficient
unit-propagation. Treating a clause C as an indexed array of literals, the MiniSat
scheme is to delegate the first two literals in the clause, C[0] and C[1], as the

Speeding Up Assumption-Based SAT 167

watch literals. Associated with every literal � is a list of all clauses that � is
currently a watcher for, watchlist(�). Hence, for clause C, C[0] = � or C[1] = �
if and only if C ∈ watchlist(�).

CDCL SAT solvers utilize a trail containing the current path of the search
tree being explored. This path consists of the set of literals currently assigned
true. Let val(�) denote the assigned truth value (true or false) of literal �. Hence
the trail contains a sequence of literals �1, . . . , �k such that val(�i) = true for
1 ≤ i ≤ k. The literals on the trail are divided up into decision levels starting
at zero. Decision level zero contains literals implied by the input formula F .
Subsequent decision levels are started by finding a new unvalued literal d that
the SAT solver decides to make true (a decision literal). The trail’s decision level
is then incremented and that literal is then enqueued; i.e., it is assigned the
value true and it is added to the end of the trail. Whenever a literal is enqueued
its decision level is the trail’s current decision level so the decision literal d starts
a new decision level in the trail.

The SAT solver keeps a unit-prop pointer to the last literal on the trail that
has been unit propagated. The literals on the trail between the unit-prop pointer
and the end of the trail have not yet been unit propagated. So whenever new lit-
erals are added to the trail, the suffix of un-propagated literals grows. Before the
next decision is made the SAT solver unit propagates every un-propagated literal
on the trail moving the unit-prop pointer forward. This process might enqueue
new literals, but it eventually terminates (by finding a conflict, or by running
out of literals to unit propagate). After all literals have been unit-propagated
the SAT solver starts a new decision level. Hence, all literals enqueued by unit
propagation are at the same level as the most recent decision. If a conflict (a
clause falsified by the trail) is found, unit propagation is terminated and the
solver backtracks after learning a new clause. If all variables have been valued
the SAT solver terminates returning “satisfiable”.

The process of unit propagating a literal � involves examining all clauses in
watchlist(¬�) to determine if any of them have become falsified or unit (i.e., all
but one literal in the clause has been falsified). A clause cannot become unit
unless one of its watches has become false, hence it is sufficient to check only
the clauses in watchlist(¬�) when � is made true. If the clause C ∈ watchlist(¬�)
has become falsified, then unit propagation can stop and clause learning and
backtracking can occur. If C has become unit with sole remaining unfalsified
literal x, then x can be enqueued if it is not already on the trail. Determining
if C has become falsified or unit requires examining the non-watch literals in C
(i.e., from C[2] onwards) until a non-false non-watch literal x is found. In the
worst case this requires examining all literals in C (except for C[0] and C[1]).
If such a literal x is found, it replaces � as one of C’s watches. That is, x and
� are swapped with each other in C, and C is removed from watchlist(¬�) and
placed on watchlist(¬x). If no such x exists, then if C’s other watch is unvalued

168 R. Hickey and F. Bacchus

it is the sole remaining non-false literal in C and it can be enqueued, else if C’s
other watch is already false C has become falsified.1

3 Equeueing All Assumptions at once

3.1 Standard Approach

Let the input formula be F and the assumptions A = {a1, . . . , ak}. The standard
technique of supporting assumptions [16] used in most modern SAT solvers is to
require that the SAT solver choose ai as the decision literal whenever it starts
decision level i for 1 ≤ i ≤ k. If ai is already true the SAT solver increments the
decision level and continues to the i+1-th decision, i.e., an empty decision level
is added to the trail. If ai is already false, then it is the case that the previous
i−1 assumption decisions were sufficient to imply ¬ai. So C = (¬a1, . . . ,¬ai) is
already a clause such that F |= (¬a1, . . . ,¬ai) and A |= ¬C. That is, C is conflict
clause for A. However, by conflict analysis (described in more detail below) a
shorter conflict than C can typically be computed. Otherwise ai is still unvalued,
and it is enqueued as a new decision. After all assumptions are enqueued the
SAT solver is free to make decisions according to its normal heuristics.

Since A always becomes a prefix of the trail, if a satisfying model is found
that model must satisfy F ∧ A. Otherwise eventually a conflict will be found
that forces ¬aj for some j at some level i where i < j. In that case the SAT
solver will backtrack to level i and add ¬aj as a new unit implicant. Then when
the SAT solver descends again to level j it will find that aj is already false and
will invoke conflict analysis to compute and return a conflict clause over A. Note
that irrespective of the satisfiability status of F ∧ A, the SAT solver during its
search might learn any number of new clauses that cause new unit-implicants to
be added into the assumption levels (levels i ≤ k). Each such new implicant at
level i will cause the SAT solver to undo the decisions ai+1, . . . , ak, after which
it will have to make those decisions again as it re-descends the search tree.

This backtracking into the various assumption levels to add new implied lit-
erals and then having to redo the remaining assumption decisions is the first
inefficiency of the standard technique. In some applications, particularly in
MaxSat solving, there can often be thousands of assumptions, so this ineffi-
ciency can have a significant impact. The following example shows that this
inefficiency can potentially induce an overhead that is quadratic in the number
of assumptions.

Example 1. Let the assumptions A = {a1, . . . , an} be processed by the SAT
solver in this order, and the input formula F consist of three sets of clauses:
(1) {(¬a1, z

1
i , z

2
i)|i = 1 . . . n}, (2) {(¬yi,¬z1i)|i = 1 . . . n}, and (3) {(z1i ,¬z2i)|i =

1 . . . n}. Furthermore, assume that after setting the assumptions the SAT solver’s

1 Quick checks to determine if C is already satisfied can be made first by checking
data in the watch data structure (the blocking literal) and checking if the clause’s
other watch is true.

Speeding Up Assumption-Based SAT 169

branching heuristic selects variables y1, . . . , yn in that order before any of the
variables z11 , z

2
1 , . . . , z

1
n, z2n, and follows a default phase of first setting each literal

to true.
On its first descent the SAT solver will assume a1, . . . , an in the first n

decision levels. None of these decisions cause any unit propagations. Then it will
select y1 as its n+1-th decision. The literal ¬z11 will be implied by unit propa-
gation from the clause (¬y1,¬z11) in set (2). Then the literal ¬z21 will be implied
from the clause (z11 ,¬z21) in set (3). This will falsify the clause (¬a1, z

1
1 , z

2
1) in

set (1). The 1-UIP clause (¬a1, z
1
1) will be generated from resolving the conflict

(¬a1, z
1
1 , z

2
1) against the reason clause (z11 ,¬z21) for ¬z21 . This will cause the SAT

solver to backtrack to level 1, where both z11 and ¬y1 will be unit implied.
After this the SAT solver will repeat setting a2, . . . , an as assumptions, and

at decision level n+1 will select y2 as the decision literal. Applying the same rea-
soning as before, except with the clauses (¬y2,¬z12), (z12 ,¬z21), and (¬a1, z

1
2 , z

2
2),

we see that again the SAT solver will backtrack to level 1 where it will add the
unit implicants z12 and ¬y2. This would continue to happen n times, giving rise to
the SAT solver making the assumption decisions O(n2) times before concluding
that all clauses of F are satisfied. �

The second inefficiency of the standard technique arises from the observa-
tion by Gent [17] that the unit propagation scheme used in most modern CDCL
solvers can visit the literals of the same clause O(n2) times, where n is the
length of the clause, when descending a single branch. This second inefficiency
arises from having to move a clause from one watch list to another O(n) times
and each time having to scan O(n) literals in the clause.

Example 2. Let the assumptions A = {a1, . . . , an} be processed by the SAT
solver in this order. Consider the length n clause C = (x,¬a1,¬a2, . . . ,¬an−1).
The two watch literals are x (at C[0]) and a1 (at C[1]). The assumption a1 is
enqueued first by the SAT solver, and when unit propagated C ∈ watchlist(¬a1)
will be checked from C[2] onwards for a new non-false non-watch literal. This
search will find ¬a2 at position C[2] and make it a new watch by swapping ¬a1

(at C[1]) and ¬a2 (at C[2]) and placing C in watchlist(¬a2). The assumption a2

will be enqueued next, and C ∈ watchlist(¬a2) will be searched again, this time
from C[2] to C[3], before a new watch, ¬a3 is found at C[3]. Literals ¬a2 (at
C[1]) and ¬a3 (at C[3]) will be swapped and C placed in watchlist(¬a3). When
the i-th assumpution ai is made, C will be on watchlist(¬ai), and positions C[2]
to C[i+1] will be searched until finding ¬ai+1 as a new watch at position C[i+1].
Literals ¬ai (at C[1]) and ¬ai+1 (at C[i + 1]) will be swapped and C placed in
watchlist(¬ai+1). In total, in making the first n assumptions the SAT solver will
have to visit O(n2) literals in C to finally conclude that x is unit implied by the
assumptions.2 Figure 1 illustrates this process. �

2 This description follows the MiniSat and Glucose schemes for watch literals, but
this particular type of implementation is not necessary. Scanning O(n2) literals in
the clause down a single branch occurs with any implementation that stores no
information about the previous scan [17].

170 R. Hickey and F. Bacchus

Fig. 1. The propagate routine searching for a new watcher for clause C of Example 2
when each assumptions is made at a separate decision level and unit propagated before
moving to the next assumption. The first two literals are the current watched literals
and the line shows the span of literals traversed in searching for a replacement watcher.
Truth values are above each literal; “F” represents false, “T” represents true, and “U”
represents unassigned.

3.2 New Approach

The technique we propose for fixing both of these inefficiencies is very simple.
After all literals at level zero have been unit propagated, the SAT solver incre-
ments the decision level and enqueues all assumptions at decision level 1, after
which it performs unit propagation. So all assumptions are placed on the trail at
the top of level 1, and unit propagation is performed only after all assumption
literals are on the trail and have been assigned the value true.

If when processing the assumptions the SAT solver finds one ai that is already
true, then ai must have been made true at level 0 since unit propagation has
not yet been run at level 1. That is, ai is already on the trail in level 0 and we
do not need to enqueue it again so we can skip it. Similarly if ai is already false
then ¬ai must have been made true at level 0, so F |= (¬ai) and the SAT solver
can return the conflict clause (¬ai).

Enqueueing all assumptions at level 1 also necessitates a change to the SAT
solver’s analyzeFinal routine which is called in the standard technique to com-
pute a conflict clause when an assumption ai is about to be enqueued as the i-th
decision and is discovered to be false. We will describe those changes below, but
first we explain how our technique fixes the two inefficiencies identified above.

With our technique all assumptions are at level 1, so if a new unit implicant
of the assumptions is found during search, that clause will cause a backtrack
to level 1. None of the assignments in level 1 will be undone, instead the new
unit will be added to the bottom of level 1 and search will continue after unit
propagation is run on the new unit. This resolves the first inefficiency.

Example 3 (Example 1 continued). With the same set of assumptions A and
input formula F as Example 1 our technique would operate as follows. First all
assumption literals a1, . . . an would be enqueued at level 1 (in this example F
has no initial unit clauses so level 0 will be empty). As before unit propagation

Speeding Up Assumption-Based SAT 171

will not find any implied units. Then the SAT solver will increment the decision
level to 2 and select y1 as the next decision. Unit propagation operates in the
same way as in Example 1, and the learnt 1-UIP clause will again be (¬a1, z

1
1).

This will cause the SAT solver to backtrack to level 1, where it will add z11 and
¬y1 at the bottom of level 1 without disturbing any of the assumption literals
on the trail. The SAT solver will then make a new decision, y2 and in the same
way a backtrack to level 1 will be generated where the new units z12 and ¬y2 will
be added at the bottom of level 1 with out disturbing the previously added units
z11 and ¬y1. This will continue n times until all yi are set and all clauses are
satisfied. So this process will require making only n instead of O(n2) assumption
decisions. �

Our technique also addresses the second inefficiency. In particular, since all
assumption literals are valued before unit propagation starts, no clause will ever
be moved to the watch list of a negated assumption literal as all of these literals
are already false.

Fig. 2. The propagate routine searching for a new watcher when all assumptions are
enqueued before unit propagation on the clause from Example 2. Line shows span of
literals traversed in searching for a replacement watch.

Example 4 (Example 2 continued). With the same set of assumptions A and
clause C = (x,¬a1,¬a2, . . . ,¬an−1) as Example 2 our technique would operate
as shown in Fig. 2. Since all of the assumption literals in the clause have already
been made false, unit propagation will visit the literals from C[2] to C[n−1]
only once concluding that x is unit implied by the assumptions. That is, with
our technique only O(n) literals of C will be examined instead of O(n2) with
the standard technique. �

3.3 Implementation

Our new approach of enqueueing all assumptions at once is very simple to imple-
ment, and we illustrate this in the framework of the MiniSat code base. It should
be equally easy to implement our approach in non-MiniSat based SAT solvers.
Two routines need to be altered: (1) the main search() routine that makes new
decisions, invokes unit propagation, and performs clause learning when a conflict
is detected; and (2) the analyzeFinal() routine that computes the final conflict
clause. The needed changes to the search() routine are shown in Algorithm1.
If a conflict occurs at decision level 1 (where the assumptions are enqueued) we
must convert it into a conflict for the assumptions (line 6); and if we are making
a decision at level 0 we enqueue all assumptions at level 1 (lines 19–26).

172 R. Hickey and F. Bacchus

Algorithm 1. Code changes for a MiniSat based SAT Solver to implement
enqueueing all assumptions at once. Line 6 is added and lines 11–17 are
replaced with lines 19–17.
1 search ()
2 while true do
3 confl = unitPropagate()
4 if confl then
5 if decisionLevel() ≡ 0 then return false;
6 if decisionLevel() ≡ 1 then /* ADD THIS LINE*/
7 analyzeFinal(confl, conflict); return false;
8 analyze conflict and backtrack
9 else /* No conflict */

10 begin /* REMOVE THIS BLOCK /*
11 while assumptions remain do
12 ai = nextAssumption();
13 if value(ai) ≡ false then analyzeFinal(¬ai, conflict);
14 else if value(ai) ≡ true then newDecisionLevel();
15 else nextDecision = ai; break;
16 if nextDecision ≡ NIL then nextDecision = heuristic();
17 newDecisionLevel(); enqueue(nextDecision);
18 begin /* ADD THIS BLOCK */
19 if decisionLevel() == 0 then
20 newDecisonLevel()
21 forall the Assumptions ai do
22 if value(ai) ≡ false then conflict = {ai}; return false;
23 if value(ai) �≡ true then enqueue(ai);
24 else
25 nextDecision = heuristic()
26 newDecisionLevel(); enqueue(nextDecision)

The routine analyzeFinal() also changes. In the standard approach it is
passed an assumption literal that has been falsified by a prior set of assumption
decisions (line 13), whereas in the new approach it is passed the conflict clause
found at level 1 by unit propagation (line 6). In both cases the routine must
return the computed conflict in the passed conflict vector.

The standard MiniSat implementation starts with C equal to ¬ai’s reason
clause (i.e., the clause that became unit implying ¬ai). Then while there exists
a literal � in C not equal to ¬ai and such that ¬� has been unit implied by
reason clause reason(¬�) we replace C by the resolution of C and reason(¬�).
The end result is a conflict clause that contains ¬ai and the negation of decision
literals. Since, ¬ai was implied at a level where all decisions are assumptions,
the computed clause contains only negated assumption literals as required.

Speeding Up Assumption-Based SAT 173

The new implementation is very similar. It starts with C equal to the passed
conflict. Then while there exists a literal � in C such that ¬� has been unit
implied by reason clause reason(¬�) we replace C by the resolution of C and
reason(¬�). Since the conflict occurs at level 1 only the assumption literals have
no reason clause, so this process removes all non-assumption literals from C and
the final result contains only negated assumption literals as required.

It should be noted however that these two different approaches can produce
different conflict clauses even if the initial conflict and trail are similar. In some
cases the standard approach might produce a shorter clause and in other cases
our new approach might produce a shorter clause.

Example 5. The following table illustrates a case where the standard technique
will learn a shorter conflict clause.

Standard Enqueue All

Level Lit Reason Level Lit Reason

1 a1 nil 1 a1 nil

1 a2 (a2,¬a1) 1 a2 nil

1 a3 (a3,¬a1) 1 a3 nil

1 ¬a4 (¬a4,¬a3,¬a2,¬a1) 1 a4 nil

2 empty level Conflict at level 1: (¬a4,¬a3,¬a2,¬a1)

3 empty level

4 Conflict at level 4: ¬a4

The table shows the trail when a conflict is found. The left three columns show
the trail for the standard approach, and the right three show the trail for our
proposed approach of enqueueing all assumptions at level 1. The table indicates
the decision level, the literal on the trail and the reason clause. Literals with
non-nil reasons are implied literals.

The standard approach detects a conflict at level 4 when it tries to make
a4 true as the next decision and finds that a4 is already false. The conflict it
learns starts with the reason clause for ¬a4, (¬a4,¬a3,¬a2,¬a1), and proceeds
to resolve away all implied literals from this clause except for ¬a4. This involves
resolving away a3 and a2 to obtain the conflict (¬a4,¬a1).

Our new technique, on the other hand, will enqueue all assumptions at level
1, and then discover that the clause (¬a4,¬a3,¬a2,¬a1) is falsified. In the new
technique none of these literals are implied so no resolution steps are performed.
Hence it will return this longer clause as the conflict.

On the other hand, the following table illustrates a case where the standard
technique learns a longer conflict clause.

174 R. Hickey and F. Bacchus

Standard Enqueue All

Level Lit Reason Level Lit Reason

1 a1 nil 1 a1 nil

2 a2 nil 1 a2 nil

3 a3 nil 1 a3 nil

3 a4 (a4,¬a3,¬a2,¬a1) 1 a4 nil

3 ¬a5 (¬a5,¬a4) 1 a5 nil

4 empty level Conflict at level 1: (¬a5,¬a4)

5 Conflict at level 5: ¬a5

The standard technique discovers a conflict at level 5 when it finds that a5 is
already falsified. Starting with the reason clause (¬a5,¬a4), it will resolve away
the implied literal ¬a4 to obtain the conflict clause (¬a5,¬a3,¬a2,¬a1).

Our new technique, on the other hand, will return the shorter clause
(¬a5,¬a4) as the conflict, as again none of these literals are implied so no reso-
lution steps will be performed. �

As we will demonstrate later, although our technique could return longer con-
flicts in the same context, it generally returns shorter ones than the standard
technique.

3.4 Previous Work

Gent [17] proposed an alternate method for eliminating the second inefficiency
where a clause moves from the watch list of one assumption to another many
times and each time has many of its literals scanned. In particular, he proposed
keeping track of, for each clause, the location where the previous search for a
non-falsified literal stopped. Then when a new search is made, the search starts
at this previous location and if necessary wraps around. Gent showed that this
reduces the worst case number of literals that could be visited in a single clause
along a single branch to 2n down from O(n2) (n is the clause length). Unlike
our approach Gent’s method is more intrusive, requiring a change to the clause
data structure (to track the location the previous search stopped). However, it
accounts for non-assumption literals as well as assumption literals. Nevertheless,
Gent also showed that his technique did not yield any significant gains in SAT
solver performance on the instances he experimented with, whereas our technique
does yield performance gains, perhaps because it fixes both inefficiencies.

Audemard et al. [4] proposed four lightweight techniques for improving
assumption-based SAT solving in Glucose. First, they ignored the assumption
literals when computing the LBD score of a learnt clause. Our method comes
close to achieving the same improvement: with it all assumption literals are at
the same level, so they contribute only 1 (instead of 0) to the LBD score. Sec-
ond, they store all of the assumption literals at the end of each learnt clause
so as to avoid having to scan these literals on LBD score updates. Third, they

Speeding Up Assumption-Based SAT 175

check only the two watch literals of a clause to see if it is satisfied to avoid
scanning the entire clause.3 Our technique does not achieve the second nor the
third improvement.

Fourth, during unit propagation when scanning a clause for a new non-false
watcher, they continue searching until they find a non-false non-assumption lit-
eral. If none exist they use the last non-false literal found (even if it is an assump-
tion literal). This technique addresses some of the second inefficiency, but not
all of it. In particular, if in Example 2 the assumptions A are set in the order
a1, an−1, an−2, . . . , a2 then the clause (x,¬a1,¬a2, . . . ,¬an−1) will still have
its literals scanned O(n2) times when each assumption is a separate decision.
For example, when a1 is made true, all of the literals ¬a2, . . . , ¬an−1 will be
scanned, skipping over non-false assumption literals, until finally returning the
last non-false assumption literal ¬an−1 as the new watcher.

It can also be noted that none of the techniques of [4,17] address the first
inefficiency.

4 Trail Savings

When a restart returns the SAT solver to level zero, the solver can often proceed
to reproduce the same initial sequence of decisions that were on the trail before
the restart. Redoing these decisions is redundant work and methods for saving
this work by making the SAT solver backtrack only to the point where the restart
causes a divergence in the decisions made have been developed [31]. Similarly,
[4] proposes only backtracking to the bottom of the assumption levels on restart,
as all of the assumption decisions will be redone by the solver.

However, these techniques do not help when the SAT solver learns a new
unit clause. Unit clauses are added to level 0 so the solver must backtrack across
the assumptions to insert the new unit into the trail. After this it must redo the
assumptions. Our trail savings method is based on the observation that after a
new unit is added to level 0, the set of literals forced to be true at level 0 and 1
can only either (a) be contradictory or (b) be a superset of the previous set of
literals forced at level 0 and 1.

In particular, let L0 and L1 be the literals at level 0 and level 1 before a
new unit clause (�) is found. The new unit clause will cause a backtrack to the
end of level 0 where � will be added and unit propagated. Let L′

0 be the new
literals at level 0 after this process. If no conflict is found we have that Lo ⊂ L′

0.
Let L′

1 be the new level 1 generated by enqueueing all the assumptions not
already in L′

0 and then performing unit propagation. If L′
1 does not generate

a contradiction, we must have that L1 ⊆ L′
o ∪ L′

1. If x ∈ L1 is an assumption
then x ∈ L′

0 ∪ L′
1 as L′

1 starts with all assumptions not already at level 0.
Considering the unit implicants x ∈ L1 in the order they appeared in the trail,
we can conclude inductively that for every other literal l in x’s reason clause we

3 It is not clear if this third technique is an improvement outside of the context of
MUS extraction.

176 R. Hickey and F. Bacchus

have that ¬l ∈ L′
0 ∪ L′

1. Hence, x must also be a unit implicant at level 1 or 0.
Therefore, L1 ⊂ L′

o ∪ L′
1.

Our new technique based on this observation is as follows. When a new unit
is learnt we save a copy of the level 1 trail (all literals and clause reasons). Then
we backtrack the trail to the end of level 0, add the new unit, and perform unit
propagation. If no contradiction is found we then enqueue each literal from our
copy of the level 1 preserving the order these literals previously appeared on the
trail (so assumptions are enqueued first). If any of these literals is already true,
we skip enqueueing it. If any of these literals is already false, we can compute
a conflict for the assumptions. If the falsified literal is an assumption ¬ai then
the conflict is (¬ai), otherwise the conflict is computed by passing the stored
reason clause associated with the falsified literal (this reason clause has become
falsified at level 1) to analyzeFinal to compute the conflict. After all saved
literals have been added to level 1, we invoke unit propagation from the top of
level 1. Note that although we can restore the literals from level 1 we still have to
unit propagate them once again. However, this unit propagation process is sped
up by the fact that many literals have already been made true at level 1. Hence,
the second inefficiency of moving a clause from one watch literal to another will
occur less frequently.

We can further extend trail savings to provide a head start for the SAT solver
when it is called again with a different set of assumptions. Note that level 0 is
always preserved between calls to the SAT solver as this level does not depend
on the assumptions. Our extension is to also try to preserve as much of level 1
as is possible between SAT calls. The method is to save all of the literals implied
at level 1, and their reason clauses, at the time the SAT solver exits. Then when
the SAT solver is called again with a new set of assumptions, we enqueue all of
these assumptions at level 1 as normal. After the new assumptions are enqueued,
and before they are unit propagated, we check all of the saved literals previously
implied at level 1, in the order they were previously on the trail. If their reasons
are still unit clauses under the new trail, we enqueue them on the trail with the
same reason clause.4 Note that by examining these implied literals in trail order
we can detect preserved implied literals that rely on previously preserved implied
literals. For example, say x and y were at level 1 at the end of the previous SAT
solve with y appearing after x, and with reason clauses (x,¬a1) and (y,¬x).
Then if the new SAT call includes the previous assumption a1 our technique will
detect that x is still unit implied with the same reason clause, and x will be
added to the trail. Then y will also be detected to still be unit because x has
already been added to the trail.

4 We save a reference to the reason clause, so before checking to see if the reason is still
unit we must ensure that the references haven’t been changed by garbage collection,
and that the implied literal is still at position zero in the reason clause (this is a
MiniSat invariant for reason clauses).

Speeding Up Assumption-Based SAT 177

5 Experiments and Results

We implemented our techniques in the MiniSat 2.2 and Glucose 3.0 SAT solvers.
In Glucose 3.0 we also preserved the already implemented incremental techniques
of [4]. We then used these modified SAT solvers in the MaxHS [12] and RC2 [18]
MaxSat solvers, both of which are state-of-the-art MaxSat solvers. MaxHS uses
MiniSat while RC2 uses Glucose.

We then ran these solvers using both the modified and original SAT solvers
on 7439 benchmark instances (4627 unweighted and 2812 weighted) collected
from the 2008 to 2018 MaxSat Evaluations [1]. This benchmark set includes all
non-random instances used and submitted to these evaluations, excluding 825
“abrame-habet” random maxcut instances that were categorized as “crafted”
instances (none of these are solvable by either MaxHS nor RC2). We also removed
duplicate instances that had different names but were the same except for com-
ment lines. The experiments were run on 2.4 GHz Intel cores with 30 min CPU
time and 5.24 GB memory limits.

Total Unweighted Weighted
MaxHS +/- RC2 +/- MaxHS RC2 MaxHS RC2

original 6052 0/0 6030 0/0 3940 3993 2112 2037
enqueue assumptions as set 6131 114/35 6081 99/48 3995 4032 2136 2049
enqueue assumptions as set +
save literals after learnt units

6136 120/36 6079 95/46 3991 4030 2145 2049

enqueue assumptions as set +
save literals after learnt units +
save literals from last invocation

6138 115/29 6080 92/42 3989 4030 2149 2050

Fig. 3. Number of MaxSat instances solved by MaxHS and RC2 using different exten-
sions of the underlying SAT solver. The +/− column shows the number of instances
gained/lost vs the original.

Figure 3 shows that our first technique of enqueueing all assumptions at once
is surprisingly effective yielding 79 newly solved instances for MaxHS and 51
newly solved instances for RC2. It should be noted that both of these solvers are
state-of-the-art and techniques that allow them to solve this many new instances
are not easy to find. Trail savings within the same SAT solver call is a less suc-
cessful improvement. It gains 5 more problems for MaxHS but loses 2 problems
for RC2. Trail savings across different SAT solver calls, is even less impactful.
Hence, in terms of number of instances solved trail savings do not seem to be
either positively or negatively significant, and the remaining experiments use
only the enqueueing technique.

Figure 4 shows a cactus plot of the two solvers with and without enqueueing.
The plot shows that enqueueing provides a general speedup for both solvers with
more instances generally being solved at every time bound in the plot. Note the
first 5000 instances were solved by both solvers in ≤50 s per instance, so we
truncated that part of the plot to show more detail on the harder instances.

178 R. Hickey and F. Bacchus

5,000 5,100 5,200 5,300 5,400 5,500 5,600 5,700 5,800 5,900 6,000 6,100
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Instances Solved

Ru
nT

im
e(

sec
)

MaxHS original
MaxHS + enqueue

RC2 original
RC2 + enqueue

Fig. 4. Cactus plot comparing total instances solved within a given time bound for
MaxHS and RC2 with and without our assumption enqueueing techniques. The first
5000 instances were solved in less than 50 s each, so that part of the plot is truncated.

The run times shown in Fig. 4 are affected both by the speed of the SAT
solver and by the sequence of conflicts returned by the different SAT solvers.
That is, the SAT calls the MaxSat solver performs diverges as the instance is
solved. Hence, to get a more precise picture of the SAT solver speedup and the
quality of conflicts obtained by our technique, we changed RC2 so that it always
invokes both the original Glucose solver and then the modified Glucose solver
with enqueueing. However, RC2 always uses the conflict returned by the original
Glucose solver in its further processing. In this way, each version of the SAT
solver is solving an identical sequence of SAT calls during the processing of each
MaxSat instance. We ran this modified version of RC2 on the same suite of 7439
MaxSat instances, giving it 3600 s per instance to account for the doubled up
SAT solving. From this setup we obtained a sequence of matched pairs of SAT
solver calls where the standard and equeueing versions of the SAT solver are
both invoked to solve the same formula subject to the same set of assumptions
and with the same history of previous calls.

We measured the CPU time each SAT solver call took in each matched pair,
discarding those pairs where both solvers took less than 0.1 s. In particular,
we did not compare the CPU times of SAT solver calls that were so fast that
they were likely to be too noisy. This yielded 22,810 matched pairs of SAT
solver calls. There is quite a bit of variance in the runtimes, so a scatter plot
of these points was not very informative. Instead for each pair we computed
log2(

Original Glucose CPU
Enqueueing Glucose CPU). This number is positive when original Glucose is

slower and symmetric but negative when original Glucose is faster. Hence, the
absolute value of the negative numbers represent instances that had that log2
speedup ratio, while the positive numbers represent instances that had that
log2 slowdown ratio. Figure 5 left shows a side-by-side histogram of the number
of instances that had similar amounts of log2 speedup and slowdown ratio. The
Figure shows that although there is considerable variance among the instances—
some were sped up while others were slowed down—there is a general trend that
for all bands of speedup/slowdown factors more instances had a speedup of that
factor than had a slowdown of that factor.

Speeding Up Assumption-Based SAT 179

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

350

400

907 SAT calls had speedup or slowdown factor < 1.15

12193 SAT calls had speedup factor > 4

485 SAT calls had slowdown factor > 4

log2 Speedup or Slowdown Factor

N
um

be
r
of

Sa
t
C
al
ls

RC2 SAT Runtime Comparison

shrinkage
growth

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

·104

238225 cores had growth or shrinkage factor < 1.15
109103 cores had shrinkage factor > 4

11464 cores had growth factor > 4

log2 Core Size Growth or Shrinkage Factor

N
um

be
r
of

C
or
es
/1
04

RC2 Core Size Comparison

shrinkage
growth

Fig. 5. Left: Comparison of number of instances that had corresponding log2 speedups
or slowdowns. Right: Individual core size (right) log2 comparison.

Our setup also yielded 949,003 matched pairs of conflicts for each solver. In
each matched pair one conflict was produced by original Glucose and the other
one by enqueueing Glucose, both from solving the identical SAT problem under
an identical history of previous calls. As with the run times, we show in Fig. 5 a
side-by-side histogram of the log2(

Size of conflict from Original Glucose
Size of conflict from enqueueing Glucose) growth and

shrinkage ratios: shrinkage indicates that enqueueing Glucose produces a shorter
conflict, while growth indicates that it produces a longer conflict. As with the
run times there is a considerable variance in core sizes among these identical SAT
calls—on some calls enqueueing Glucose produced larger conflicts, and on others
it produced smaller conflicts. Nevertheless, the general trend is that for any band
of growth/shrinkage ratio, more conflicts produced by enqueueing Glucose had
that amount of shrinkage than that amount of growth. The only divergence from
this trend was that there were more cores grown by a log2 factor between 0.1 to
0.3 (the band centered at 0.2) than shrunk by this factor. Most notably, however,
almost 10 times as many cores were more than a factor of 4 smaller than were
more than a factor of 4 larger.

This experiment shows that the overall better performance of enqueueing
Glucose in RC2 is likely a product of both faster SAT calls and smaller conflicts.
Together these two effects tend to make RC2 more effective. Although we do
not have similar data for MiniSat used in MaxHS, we expect that similar results
hold since MaxHS is also more effective with enqueueing.

Although we do not have space to show the data, we also experimented with
MUS extraction in the Muser tool [8], and showed that our techniques speed
up Muser and allowed it to produce smaller MUSes. In the benchmark suite we
used for Muser we were not able, however, to solve any additional instances.
The heavier-weight techniques of [19] (involving introducing new abbreviation
literals) were able solve additional instances mainly by reducing Muser’s mem-

180 R. Hickey and F. Bacchus

ory footprint. Similarly, although the data presented above about number of
instances solved does not convincingly demonstrate the effectiveness of our pro-
posed trail saving techniques, finer grained data does indicate that these ideas
do tend to yield run time speedups.

6 Conclusion

We have introduced some simple ideas for improving the efficiency of assumption-
based SAT solving. Or experiments show that the easiest of these to implement,
enqueueing all assumptions at level 1, is quite effective in improving MaxSat
solvers. For future work, Example 5 indicates that finding a way to combine
clause minimization with our enqueueing technique might yield shorter conflicts.
Furthermore, finding ways of exploiting our trail savings technique at levels
besides level 1 might make this idea more useful.

References

1. Maxsat evaluation series: 2006–2016 http://www.maxsat.udl.cat/, 2017–2018
https://maxsat-evaluations.github.io/

2. Alviano, M., Dodaro, C., Ricca, F.: A MaxSat algorithm using cardinality con-
straints of bounded size. In: Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31
July 2015, pp. 2677–2683 (2015). http://ijcai.org/Abstract/15/379

3. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores
in MaxSat. In: Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015,
pp. 283–289 (2015). http://ijcai.org/Abstract/15/046

4. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5 23

5. Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search:
a simple way of managing optional clauses. In: Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, 27–31 July 2014, Québec City,
Québec, Canada, pp. 835–841 (2014). http://www.aaai.org/ocs/index.php/AAAI/
AAAI14/paper/view/8618

6. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently com-
pute minimal unsatisfiable sets. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9207, pp. 70–86. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21668-3 5

7. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012). https://doi.org/10.3233/AIC-2012-0523

8. Belov, A., Marques-Silva, J.: Muser2: an efficient MUS extractor. JSAT 8(3/4),
123–128 (2012). https://satassociation.org/jsat/index.php/jsat/article/view/101

9. Biere, A.: Cadical, Lingeling, Plingeling, Treengeling and YalSAT entering the sat
competition 2018. In: Heule, M.J.H., Järvisalo, M., Suda, M. (eds.) Proceedings
of SAT COMPETITION 2018 Solver and Benchmark Descriptions. University of
Helsinki (2018)

http://www.maxsat.udl.cat/
https://maxsat-evaluations.github.io/
http://ijcai.org/Abstract/15/379
http://ijcai.org/Abstract/15/046
https://doi.org/10.1007/978-3-642-39071-5_23
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8618
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8618
https://doi.org/10.1007/978-3-319-21668-3_5
https://doi.org/10.1007/978-3-319-21668-3_5
https://doi.org/10.3233/AIC-2012-0523
https://satassociation.org/jsat/index.php/jsat/article/view/101

Speeding Up Assumption-Based SAT 181

10. Cabodi, G., Lavagno, L., Murciano, M., Kondratyev, A., Watanabe, Y.: Speeding-
up heuristic allocation, scheduling and binding with sat-based abstraction/refine-
ment techniques. ACM Trans. Design Autom. Electr. Syst. 15(2), 121–1234 (2010).
https://doi.org/10.1145/1698759.1698762

11. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In: For-
mal Methods in Computer-Aided Design, FMCAD 2012, Cambridge, UK, 22–25
October 2012, pp. 52–59 (2012). http://ieeexplore.ieee.org/document/6462555/

12. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Proceedings Principles and Practice of Constraint Programming -
CP 2011–17th International Conference, CP 2011, Perugia, Italy, 12–16 September
2011, pp. 225–239 (2011). https://doi.org/10.1007/978-3-642-23786-7 19

13. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.
In: Proceedings of the Principles and Practice of Constraint Programming - 19th
International Conference, CP 2013, Uppsala, Sweden, 16–20 September 2013, pp.
247–262 (2013). https://doi.org/10.1007/978-3-642-40627-0 21

14. Eén, N., Mishchenko, A., Amla, N.: A single-instance incremental SAT formulation
of proof- and counterexample-based abstraction. In: Proceedings of 10th Interna-
tional Conference on Formal Methods in Computer-Aided Design, FMCAD 2010,
Lugano, Switzerland, 20–23 October, pp. 181–188 (2010).http://ieeexplore.ieee.
org/document/5770948/

15. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

16. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003). https://doi.org/10.1016/S1571-
0661(05)82542-3

17. Gent, I.P.: Optimal implementation of watched literals and more general tech-
niques. J. Artif. Intell. Res. 48, 231–251 (2013). https://doi.org/10.1613/jair.4016

18. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: a python-based MaxSat solver.
In: Bacchus, F., Järvisalo, M., Martins, R. (eds.) MaxSAT Evaluation 2018 Solver
and Benchmark Descriptions. University of Helsinki (2018)

19. Lagniez, J.-M., Biere, A.: Factoring out assumptions to speed up MUS extraction.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5 21

20. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2016). https://doi.org/10.1007/s10601-015-
9183-0

21. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver,.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 33

22. Menćıa, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 1973–1979
(2015). http://ijcai.org/Abstract/15/280

23. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: Proceedings of the Principles and Practice of Constraint Pro-
gramming - 20th International Conference, CP 2014, Lyon, France, 8–12 September
2014, pp. 564–573 (2014). https://doi.org/10.1007/978-3-319-10428-7 41

24. Nadel, A., Ryvchin, V.: Efficient SAT Solving under assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 19

https://doi.org/10.1145/1698759.1698762
http://ieeexplore.ieee.org/document/6462555/
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-642-40627-0_21
http://ieeexplore.ieee.org/document/5770948/
http://ieeexplore.ieee.org/document/5770948/
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1613/jair.4016
https://doi.org/10.1007/978-3-642-39071-5_21
https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1007/978-3-319-09284-3_33
http://ijcai.org/Abstract/15/280
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/978-3-642-31612-8_19

182 R. Hickey and F. Bacchus

25. Nadel, A., Ryvchin, V., Strichman, O.: Ultimately incremental SAT. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 206–218. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09284-3 16

26. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSat
resolution. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, Québec City, Québec, Canada, 27–31 July 2014, pp. 2717–2723 (2014).
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513

27. Previti, A., Menćıa, C., Järvisalo, M., Marques-Silva, J.: Improving MCS enumer-
ation via caching. In: Proceedings of the Theory and Applications of Satisfiability
Testing - SAT 2017–20th International Conference, Melbourne, VIC, Australia,
28 August–1 September 2017, pp. 184–194 (2017). https://doi.org/10.1007/978-3-
319-66263-3 12

28. Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT solver.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 34

29. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Handbook of Satisfiability, pp. 131–153. IOS Press (2009). https://doi.org/10.
3233/978-1-58603-929-5-131

30. Soos, M.: The cryptominisat 5.5 set of solvers at the sat competition 2018. In:
Heule, M.J.H., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT COMPETITION
2018 Solver and Benchmark Descriptions. University of Helsinki (2018)

31. van der Tak, P., Ramos, A., Heule, M.: Reusing the assignment trail in CDCL
solvers. JSAT 7(4), 133–138 (2011). https://satassociation.org/jsat/index.php/
jsat/article/view/89

https://doi.org/10.1007/978-3-319-09284-3_16
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
https://doi.org/10.1007/978-3-319-66263-3_12
https://doi.org/10.1007/978-3-319-66263-3_12
https://doi.org/10.1007/978-3-319-40970-2_34
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.3233/978-1-58603-929-5-131
https://satassociation.org/jsat/index.php/jsat/article/view/89
https://satassociation.org/jsat/index.php/jsat/article/view/89

	Speeding Up Assumption-Based SAT
	1 Introduction
	2 Background
	3 Equeueing All Assumptions at once
	3.1 Standard Approach
	3.2 New Approach
	3.3 Implementation
	3.4 Previous Work

	4 Trail Savings
	5 Experiments and Results
	6 Conclusion
	References

