Integrating Dependency Schemes in Search-based QBF Solvers (F Lonsing and A Biere)
presented by Dustin Wehr
Dependency schemes

A dependency scheme D for a PCNF F is first of all a DAG on the variables of F, with edges only between differently-quantified variables.

y depends on x according to D if there’s an edge from x to y.

$D(x)$ denotes the set of vars that depend on x (according to D).

D must have the property: It is sound for QDPLL to assign x just as soon as every predecessor of x is assigned. In that case we say x is enabled.
Quantifier trees give dependency schemes
(the D_{tree} family of dependency schemes)

Fig. 1. Quantifier trees for the PCNF $\exists a, b\forall x, y\exists c, d. (a \lor b) \land (a \lor x \lor c) \land (b \lor c) \land (b \lor y \lor d)$.

Left: $\exists a\exists b. (\forall y\exists d. b \lor y \lor d) \land (a \lor b) \land (\forall x\exists c. a \lor x \lor c) \land (b \lor c)$

Right: $\exists b. (\forall y\exists d. b \lor y \lor d) \land (\exists a. (a \lor b) \land (\forall x\exists c. a \lor x \lor c) \land (b \lor c))$
Dependency schemes

- Dependency scheme D_1 is **less restrictive** than dependency scheme D_2 iff $D_1 \subseteq D_2$ (i.e. $\text{edges}(D_1) \subseteq \text{edges}(D_2)$)

- Trivial dependency scheme D_{triv}:
 - We saw this in last friday’s lecture.
 - y depends on x iff x and y are differently-quantified and y is bound after x (in the given PCNF).

- Every D_{tree} scheme is less restrictive than D_{triv}.

- Authors also use a scheme called D_{std}, that is less restrictive than the D_{tree} schemes.
A nice way of viewing the state of the solver...

- Let $F = Q_1 \ldots Q_r \phi$ be an input PCNF.
- As QDPLL proceeds, learned clauses are added to ϕ. Let ϕ' be the expanded set.
- When ψ is the disjunction of the cubes learned so far while evaluating F, the augmented CNF form is $Q_1 \ldots Q_r \phi' \lor \psi$.
- At this stage, QDPLL has proved that the augmented CNF has the same truth value as F.
Survey of modifications to QDPLL

State qdplll ()
 while (true)
 State s = bcp ();
 if (s == UNDEF)
 // Make decision.
 v = select_dec_var ();
 assign_dec_var (v);
 else
 // Conflict or solution.
 // s == UNSAT or s == SAT.
 btlevel = analyze_leaf (s);
 if (btlevel == INVALID)
 return s;
 else
 backtrack (btlevel);

 DecLevel analyze_leaf (State s)
 R = get_initial_reason (s);
 // s == UNSAT: 'R' is empty clause.
 // s == SAT: 'R' is sat. cube...
 // ..or new cube from assignment.
 while (!stop_res (R))
 p = get_pivot (R);
 A = get_antecedent (p);
 R = constraint_res (R, p, A);
 add_to_formula (R);
 assign_forced_lit (R);
 return get_asserting_level (R);
Unit propagation with arbitrary dependency schemes

• A clause C is **unit** iff:
 • No literal in C is assigned true.
 • Exactly one \exists-literal l_e in C is unassigned.
 • l_e doesn't depend on any of the unassigned \forall-literals in C.

• A cube C is **unit** iff:
 • No literal in C is assigned false.
 • Exactly one \forall-literal l_u in C is unassigned.
 • l_u doesn't depend on any of the unassigned \exists-literals in C.
Unit propagation with arbitrary dependency schemes

(for clauses - defn for cubes is similar)

• Generalization of two-literal watching scheme:
 Two unassigned literals \(l_1, l_2\) in each clause are watched such that:
 • \(q(l_1) = q(l_2) = \exists\), OR
 • \(q(l_1) = \forall, q(l_2) = \exists\) and \(l_2\) depends on \(l_1\).
Constraint learning with arbitrary dependency schemes (i.e. clause and cube learning)

- Constraint learning is reminiscent of 1-UIP. We’ll focus on clause learning; cube learning is dual.

- The antecedent clauses on the conflicting path (all of which were unit clauses, as in 1-UIP) that are resolved with the conflicting clause to generate the learned asserting clause are first universally-reduced.

- Universal reduction of C: Remove a ∀-literal from C if there is no ∃-literal in C that depends on it.
Constraint learning with arbitrary dependency schemes

- The **antecedent clauses** on the conflicting path (all of which were unit clauses, as in 1-UlP) that are resolved with the **conflicting clause** to generate the learned **asserting clause** are first universally-reduced.

- **Universal reduction** of C: Remove a $∀$-literal from C if there is no $∃$-literal in C that depends on it.

- Starting with $R = the conflicting clause$, $∃$-literals in R (which were forced) of maximum decision level are resolved away until there is only one such literal l. After each such resolution, the resolvent is universally reduced.

- That literal l must have this property: any $∀$-literal l_u in R that l depends on was assigned false earlier (at a smaller decision level).
Constraint learning with arbitrary dependency schemes

DecLevel analyze_leaf (State s)
 R = get_initial_reason (s);
 // s == UNSAT: 'R' is empty clause.
 // s == SAT: 'R' is sat. cube...
 // . . . or new cube from assignment.
 while (!stop_res (R))
 p = get_pivot (R);
 A = get_antecedent (p);
 R = constraint_res (R, p, A);
 add_to_formula (R);
 assign_forced_lit (R);
 return get_asserting_level (R);
Incrementally maintaining the set of enabled vars using a compressed dependency graph

• Recall: var x is enabled iff all the variables that it depends on have been assigned.

• Efficiency issue 1: If the number of variables is large, it’s prohibitive to keep the dependency graph in memory explicitly (it can have size quadratic in # of vars)

• So merge vars into equivalence classes: x ~ y if x and y have the same predecessors and successors.

• Leave out transitive edges and then use adjacency lists.

• Efficiency issue 2: it’s too costly (in terms of time) to maintain the set of enabled vars explicitly (uncompressed).
Example: incrementally maintaining the set of enabled vars

- \([x_1] = [x_2] = \{x_1, x_2\}\), etc.
 i.e. \(\{x_1, x_2\}\) are an equivalence class; they’re equivalent w.r.t what the dependency scheme says about them.

- Initially:
 - no vars are assigned
 - \(w, x_1, x_2\) are the only enabled vars (since they have no predecessors). They are **decision candidates** since they’re also unassigned.
Example: incrementally maintaining the set of enabled vars

- select_dec_var() is called for first time and returns x_1.
- Suppose that causes x_2 and y_1 to be assigned by unit prop.
- Next call to select_dec_var() updates the dependency graph data structure, by processing x_1, x_2, y_1 in turn.
Example: incrementally maintaining the set of enabled vars

- Say \(x_1 \) got assigned 1.
- Processing \(x_1 \):
 - Because \(x_2 \in [x_1] \) is not yet assigned, no new vars could be enabled.
 - The graph is not traversed. (if it was traversed, nothing would change).
Example: incrementally maintaining the set of enabled vars

- Say x_2 got assigned 0 (by unit prop)
- Processing x_2:
 - Now every var in $[x_2]$ is assigned, so must traverse successors of $[x_2]$ (i.e. $[y_2]$ and $[w']$)
 - w' becomes enabled.
 - y_2 does not become enabled, since it depends on w, which hasn’t yet been assigned.
Example: incrementally maintaining the set of enabled vars

- Say y_1 got assigned 0 (by unit prop)
- Processing y_1:
 - Because $y_2 \in [y_1]$ is not yet assigned, no new vars could be enabled.
 - The graph is not traversed.
Experimental results

QBF-EVAL’08 (3326 formulae)

<table>
<thead>
<tr>
<th></th>
<th>D_{triv}</th>
<th>D_{tree}</th>
<th>D_{std}</th>
<th>QuBE6.6-np</th>
<th>QuBE6.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>solved</td>
<td>1223</td>
<td>1221</td>
<td>1252</td>
<td>1106</td>
<td>2277</td>
</tr>
<tr>
<td>time</td>
<td>579.94</td>
<td>580.64</td>
<td>572.31</td>
<td>608.97</td>
<td>302.49</td>
</tr>
</tbody>
</table>

QBF-EVAL’07 (1136 formulae)

<table>
<thead>
<tr>
<th></th>
<th>D_{triv}</th>
<th>D_{tree}</th>
<th>D_{std}</th>
<th>QuBE6.6-np</th>
<th>QuBE6.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>solved</td>
<td>533</td>
<td>548</td>
<td>567</td>
<td>458</td>
<td>734</td>
</tr>
<tr>
<td>time</td>
<td>497.12</td>
<td>484.69</td>
<td>469.97</td>
<td>549.29</td>
<td>348.05</td>
</tr>
</tbody>
</table>

Herbstritt (478 formulae)

<table>
<thead>
<tr>
<th></th>
<th>D_{triv}</th>
<th>D_{tree}</th>
<th>D_{std}</th>
<th>QuBE6.6-np</th>
<th>QuBE6.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>solved</td>
<td>321</td>
<td>357</td>
<td>357</td>
<td>296</td>
<td>395</td>
</tr>
<tr>
<td>time</td>
<td>316.06</td>
<td>248.20</td>
<td>248.07</td>
<td>357.52</td>
<td>173.53</td>
</tr>
</tbody>
</table>

- very good except in comparison to QuBE6.6 with preprocessing

- Authors’ solver DepQBF does not use preprocessing.
- But… in a later 2011 paper, they do preprocessing and give experimental results where they beat QuBE.
Experimental results

<table>
<thead>
<tr>
<th>QBFEVAL’08 (solved only)</th>
<th>(D_{\text{triv}} \cap D_{\text{tree}})</th>
<th>(D_{\text{triv}} \cap D_{\text{std}})</th>
<th>(D_{\text{tree}} \cap D_{\text{std}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>solved</td>
<td>1172</td>
<td>1196</td>
<td>1206</td>
</tr>
<tr>
<td>time</td>
<td>23.15</td>
<td>26.68</td>
<td>23.73</td>
</tr>
<tr>
<td>implied/assigned</td>
<td>90.4%</td>
<td>90.7%</td>
<td>88.6%</td>
</tr>
<tr>
<td>backtracks</td>
<td>32431</td>
<td>27938</td>
<td>34323</td>
</tr>
<tr>
<td>sat. cubes/sol.</td>
<td>1.8%</td>
<td>2.9%</td>
<td>1.8%</td>
</tr>
<tr>
<td>learnt constr. size</td>
<td>157</td>
<td>99</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QBFEVAL’07 (solved only)</th>
<th>501</th>
<th>513</th>
<th>537</th>
</tr>
</thead>
<tbody>
<tr>
<td>solved</td>
<td>501</td>
<td>513</td>
<td>537</td>
</tr>
<tr>
<td>time</td>
<td>31.22</td>
<td>34.46</td>
<td>32.76</td>
</tr>
<tr>
<td>implied/assigned</td>
<td>89.0%</td>
<td>89.2%</td>
<td>87.7%</td>
</tr>
<tr>
<td>backtracks</td>
<td>35131</td>
<td>22334</td>
<td>39906</td>
</tr>
<tr>
<td>sat. cubes/sol.</td>
<td>4.0%</td>
<td>10.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>learnt constr. size</td>
<td>150</td>
<td>101</td>
<td>134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herbstritt (solved only)</th>
<th>312</th>
<th>308</th>
<th>348</th>
</tr>
</thead>
<tbody>
<tr>
<td>solved</td>
<td>312</td>
<td>308</td>
<td>348</td>
</tr>
<tr>
<td>time</td>
<td>26.86</td>
<td>19.28</td>
<td>24.41</td>
</tr>
<tr>
<td>implied/assigned</td>
<td>96.6%</td>
<td>97.4%</td>
<td>96.2%</td>
</tr>
<tr>
<td>backtracks</td>
<td>26565</td>
<td>1329</td>
<td>26733</td>
</tr>
<tr>
<td>sat. cubes/sol.</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>learnt constr. size</td>
<td>174</td>
<td>306</td>
<td>173</td>
</tr>
</tbody>
</table>

- less-restrictive dependency schemes → more unit prop
- note \(D_{\text{std}}\) did *more* backtracks than \(D_{\text{tree}}\).
Experimental results

QBF EVAL’08 (3326 formulae)

<table>
<thead>
<tr>
<th></th>
<th>$D^{\text{triv}} \times D^{\text{std}}$</th>
<th>$D^{\text{std}} \times D^{\text{triv}}$</th>
<th>$D^{\text{tree}} \times D^{\text{std}}$</th>
<th>$D^{\text{std}} \times D^{\text{tree}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC/d</td>
<td>13801.0</td>
<td>13801.6</td>
<td>11409.7</td>
<td>11409.0</td>
</tr>
<tr>
<td>DC-upd.</td>
<td>3.23</td>
<td>3.16</td>
<td>3.30</td>
<td>3.43</td>
</tr>
<tr>
<td>\prec</td>
<td>1</td>
<td>-</td>
<td>6.21</td>
<td>-</td>
</tr>
<tr>
<td>C-red.</td>
<td>1.18</td>
<td>-</td>
<td>535.62</td>
<td>-</td>
</tr>
</tbody>
</table>

Herbstritt (478 formulae)

<table>
<thead>
<tr>
<th></th>
<th>$D^{\text{triv}} \times D^{\text{std}}$</th>
<th>$D^{\text{std}} \times D^{\text{triv}}$</th>
<th>$D^{\text{tree}} \times D^{\text{std}}$</th>
<th>$D^{\text{std}} \times D^{\text{tree}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-upd.</td>
<td>20.67</td>
<td>20.67</td>
<td>20.16</td>
<td>20.16</td>
</tr>
</tbody>
</table>

Pan (384 formulae) \cup Sorting-Networks (84 formulae)

<table>
<thead>
<tr>
<th></th>
<th>$D^{\text{triv}} \times D^{\text{std}}$</th>
<th>$D^{\text{std}} \times D^{\text{triv}}$</th>
<th>$D^{\text{tree}} \times D^{\text{std}}$</th>
<th>$D^{\text{std}} \times D^{\text{tree}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC/d</td>
<td>75.81</td>
<td>93.87</td>
<td>117.50</td>
<td>109.66</td>
</tr>
<tr>
<td>DC-upd.</td>
<td>86.89</td>
<td>86.90</td>
<td>120.03</td>
<td>119.98</td>
</tr>
</tbody>
</table>

- DC/d is (sum of $|\text{Decision Candidates}_i|$ over all decisions i) / (# of decisions) (or rather, the average of those terms)

- DC-upd: avg time cost per assigning/unassigning variables when updating DC before decision and during backtracking.

- \prec: average time cost of dependency checks for unit prop and constraint reduction

- C-red: Note they did not optimize constraint reduction
Summary of contributions

- demonstrating that using non-trivial dependency schemes can be useful in practice, despite the substantial extra overhead
- Even if the solver is highly modular w.r.t to the dependency scheme
- showing how dependency schemes can improve unit propagation and constraint learning