
Assignment 1

CSC2512—Winter 2020

Out: Feb 11th, 2020
Due: Monday March 2nd (email me your write-up)

1 Questions

Q1. 25/100 Consider the following CNF. (x1, x2), (x1,¬x2, x4), (¬x4, x3, x5,¬x6), (¬x4, x3, x5, x6),
(x3,¬x5, x7), (x3,¬x5,¬x7), (¬x3,¬x4, x8), (¬x3,¬x4,¬x8), (¬x1,¬x2), (¬x1, x2,¬x3), (x2, x3,¬x4),
(¬x1, x4, x8), (¬x1x4,¬x8)
Show how CDCL would solve this formula when it always branches on the variable with the lowest
index among the set of uninstantiated variables (xi before xj if i < j). The search always sets each
decision variable to true.

To show CDCL’s operation, draw the sequence of full configurations of the trail the algorithm ex-
plores, where each full configuration is the trail extended until it reaches a conflict or assigns all
variables.

Write each full trail as a sequence of literals made true in the trail, marking each literal as being a
decision or a unit implied literal. For each unit implied literal show the reason clause. If the trail
results in a conflict, show the conflict clause, and show the resultant 1-UIP clause.

Use the 1-UIP clause (if one is found) to generate the next trail configuration by backtracking the
previous configuration, adding the literal implied by the 1-UIP clause and then continuing down until
once again you have fully extended the trail. Assume that all learnt 1-UIP clauses are remembered
and used when generating the subsequent trail configurations.

Finally, show the resolution proof that CDCL has found (as a sequence of clauses).

Q2. 75/100 Cardinality constraints are an important type of constraint that appear in many SAT problems.
These are constraints of the form

∑
x∈S x ≤ k. That is, of the Boolean literals in the set S at most k

of them can be assigned the value TRUE. (The sum assumes that TRUE is equal to 1, while FALSE is
equal to 0). For example, x1 + ¬x2 + x3 ≤ 1 is a cardinality constraint that states that of the literals
x1, ¬x2 and x3 at most one can be true.

In the paper “Efficient CNF Encoding of Boolean Cardinality Constraints” by Bailleux and Boufkhad
you will find a description of one way of encoding this kind of constraint into SAT.

Implement this encoding. You can choose any programming language you want to do your imple-
mentation. SAT solvers take their input as a file of clauses specified in DIMACS format. In DIMACS
format, literals are represented as positive and negative integers (not equal to 0). So your implemen-
tation should take as input

1



1. The set S specified as a sequence of positive or negative integers (representing the literals in the
sum).

2. The number k that is the upper bound of the sum.

3. A number n which specifies where the new variables introduced by the encoding are to start.

That is, all of the auxiliary variables (i.e., new variables) used in your encoding are to be numbered
from n upwards.

Your implementation should produce as output a sequence of clauses that are only satisfied by truth
assignments in which the number of true literals in S is less than or equal to k.

Using your implementation, produce a DIMACS formatted file with the clausal encoding of the
cardinality constraint, and test the encoding with MiniSat (which you can download at https:
//github.com/niklasso/minisat). The solutions produced by MiniSat should satisfy the
cardinality constraint. You can experiment with multiple cardinality constraints in one file and or with
cardinality constraints of different sizes.

Do some experiments (10-20 test cases should suffice) to test how your encoding performs as the
number of literals in S, the bound k, and the number of different cardinality constraints varies. De-
scribe the experiments and draw some conclusions. (Note that in most cases a SAT problem encoding
just one cardinality constraint is likely to be very quickly solved by MiniSat, but if you add multiple
different cardinality constraints over intersecting sets S the problem can quickly become hard.)

In your hand in, describe what experiments you ran to test the performance of your encodings. Give
some conclusions drawn from your experience in implementing and testing your encoding. Keep
your write up short, maximum of 3 pages for this last question.

You might also find the paper “SAT Encodings of the At-Most-k Constraint” by Bittner, Thm, and
Schaefer interesting.

2 Notes

See the web page for links to MiniSat, documentation about the DIMACs format and the papers mentioned.

2

https://github.com/niklasso/minisat
https://github.com/niklasso/minisat

	Questions
	Notes

